ESI-RIT质谱仪和智能VOC_s检测仪中关键部件的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Development of Key Components of ESI-RIT-mass Spectrometer and Intelligent VOCs Analyzer
  • 作者:金伟
  • 论文级别:博士
  • 学科专业名称:测试计量技术及仪器
  • 学位年度:2007
  • 导师:金钦汉
  • 学科代码:080402
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-04-01
摘要
本论文结合电喷雾离子化离子阱质谱仪和便携式VOCs检测仪的研制任务,开展了其中几种关键部件的研制,取得了较好的结果。论文由两部分组成:
     第一部分:结合电喷雾离子化-矩形离子阱(RIT)质谱仪(ESI-RIT-MS)的研制,自行设计制作了一种易于加工、装调的矩形离子阱,同时与合作者一起开发了电喷雾离子化源(ESI)、截取器(Skimmer)、和六极杆等关键部件。申请发明专利二项。
     第二部分:一种以小型飞行时间质谱仪为基础的便携式VOCs检测仪关键部件的研制,开发了一种双层膜进样(MI)系统和有特色的电子轰击(EI)源。并申请发明专利一项。
Part1: Development of key components of an ESI-RIT mass spectrometer
     The most crucial components in ESI-RIT-MS is electrospray ionization (ESI), skimmer, hexapole, ion lens, rectilinear ion trap (RIT), gradient vacuum system and signal processing system. In this paper the first 5 components have been designed by the author according to the project requirements.
     1. Development of various kinds of soft ionization methods is now a hot study topic in mass spectrometry field. ESI has high sensitivity and reliable accuracy. In this paper an ESI source has been designed independently according to the requirements of the project.
     2. Skimmer plays a key role in forming gradient vacuum and separation neutral particles and ions. A processing technique for overcoming the difficulty of skimmer’s machining was developed in this paper and an innovation patent is pending.
     3. Hexapole has much better focus efficiency then quadrupole for ion transmission. The RF of hexapole can promise higher ions throughput and so can reduce the ion loss. Two processing techniques were developed to improve the sensitivity of the analyzer.
     4. An advanced RIT was designed, and machined and assembled independently. The RIT developed has larger ion storage space, smaller space-charge effect and is easier to be machined and assembled.
     5. The problem of having glow discharge in the second stage of the vacuum system was solved. The gradient vacuum formed is well suited to the introduction of ions from atmospheric pressure to vacuum system. And made the whole MS system work effectively.
     The ESI-RIT-MS platform developed has been tested. The developed prototype worked properly and it was shown that the mass range it could measure was up to 650(Figure 1). However, the mass resolution and sensitivity are still to be improved. Taking into consideration of the main factors affecting the performance of the instrument, our further study will focus on the improvement of materials performance used, machining precision of components, power stability, structural design of RIT and various circuit designs.
     Part2: Development of key components for an intelligent VOCs analyzer
     During the development of an intelligent VOCs analyzer some key components, such as membrane introduction (MI) of sample and electron impact (EI) ionization source are developed, and time-of-flight (TOF) mass analyzer and vacuum system are improved.
     1. Sample introduction include direct and indirect methods. Membrane introduction technique(MI)is a simple and mature sampling technique. By using this technique, the heavy turbo molecular pump and its power supply system are omitted, and it is very beneficial to the miniaturization of MS. The polydimethylsiloxane (PDMS) membrane we chose has a large permeation rate for VOCs molecules and small or zero permeation for background chemicals (especially, for N2 and O2). A double-membrane structure was adopted to keep vacuum system sealing and reduce the response time. Double-membrane structure divided vacuum chamber into a gradient vacuum with two stages. This reduces the thickness of the membrane used, only a 0.15mm thick membrane can keep a vacuum of 10-5Pa.
     2. A vacuum chamber was designed according to the requirement of the project. Taking into consideration of the merits of different pumps, a double-pump system consisting of a getter pump and a sputter ion pump has been used to keep the high vacuum. And then, the main requirements for processing and assembling the vacuum chamber were put forward.
     3. There are four kinds of ionization sources in common use: electron impact source(EI), chemical ionization(CI), adsorptions ionization (DI) and spray ionization(SI). Because of there are a great deal of advantages of EI, such as stable ion flow, higher ionization efficiency, better reproducibility, easy to be made and the fragments containing more information etc. An EI source with direct thermal cathode structure (made from rhenium wire) and auxiliary magnetic field has been independently developed.
     4. The structure of this VOCs has a time-of-flight mass analyzer which is relatively simple and has better mass resolution. The structure of orthogonal injection made all ions have the same initial velocity in drift tube. And a“Space Focus”is realized. and by utilizing reflective drift tube an“Energy Focus”is also realized.
     5. The ion detector used is a multichannel plate detector (MCP). The intelligent VOCs analyzer developed is based on a local control system, a data transmission system and a remote control system. The analytical to performance including detection limit, resolution, dynamic linear range, stability and remote monitoring operating parameters were all tasted.
     A preliminary study was also carried out and the results show that the prototype developed has a mass range up to 700(Figure 2) and could detect most volatile organic compounds with quite good detection limits(Table 1). This prototype has passed the check by the related authority and be accepted. It is currently the only miniature mass spectrometer whit a battery as a power supply in our country. It should be able to meet the needs of such fields as indoor and outdoor environmental monitoring, food safety and commodity inspection etc.
引文
〔1〕陈焕文,李明,金钦汉,质谱仪器及其发展,大学化学,2004,第19卷第3期
    〔2〕GB/T 6041一2002, 质谱分析方法通则
    〔3〕Beckey HD. Int J Mass Spectrum ION phye, 1969, 2:500-503
    〔4〕Barber M, Bordoli R S, Sedgwick R D, Tyler A N,. J Chem Soc Chem Commun, 1981, (2):325-327
    〔5〕Karas M., Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons, Anal Chem, 1988, 60: 2299-2301
    〔6〕JB Fenn, M Mann, CK Meng, SK Wong, CM Whitehouse. Electrospray Ionization for Mass Spectrometry of Large Biomolecules, Science, 1989, 246:64-71
    〔7〕Weickhardt C , Moritz F , and Grotemeyer J .Tim-of-Flight Mass Spectrometry: State of the Art in Chemical Analysis and Molecular Science, J .Mass Spectrometry Reviews, 1996, 15 ( 3 ) :1392162.
    〔8〕Ryhage R, Use of Mass Spectrometry as a Detector and Analyzer for Effluents Emerging from High Temperature Gas Liquid Chromatog Raphy Columns, Anal. Chem. 1964, 36: 759-764
    〔9〕Arpino P, Haas P. J. Chromatogr A, 1995, 703: 479-488
    〔10〕Preisler J, Foret F, Kargerr B L, On-Line MALDI-TOF-MS Using a Continuous Vacuum Deposition Interface, Anal. Chem. 1998, 70: 5278-5287
    〔11〕Mehl J T, Hercules D M. Direct TLC-MALDI Coupling Using a Hybrid Plate, [J]. Anal. Chem. 2000, 72: 68-73
    〔12〕Susanne Moyer, Robert Cotter , Atmospheric Pressure MALDI, Anal. Chem. A-Pages; 2002; 74(17); 469 A-476 A.
    〔13〕M. Guilhaus, D. Selby, V. Mlynski. Mass Spectrometry Reviews, 2000, 19: 65~103
    〔14〕Tabert A M, Cooks R G, High-Throughput Miniature Cylindrical Ion Trap Array Mass Spectrometer, Anal. Chem. 2003, 75: 5656-5664
    〔15〕范世福,分析检测技术与分析仪器的现代化发展,分析仪器,2003年第1期
    〔16〕Mini MS shows big results ANAL. CHEM., 2003, 75: 250 A
    〔17〕Maria C. Prieto, Viatcheslav V. Kovtoun, R. J. Cotter, Miniaturized Linear Time-of-Flight Mass Spectrometer with Pulsed Extraction, J.Mass Spectrom. 2002, 37, 1158–1162
    〔18〕Riter L S , Meurer E C, Cooks R G., Solid Phase Micro-Extraction in a Miniature Ion Trap Mass Spectrometer, Analyst, 2003,128(9):1119-1122
    〔19〕Augusti R, Turowski M, Cooks R G., Membrane Introduction Mass Spectrometry for Monitoring Complexation Equilibria of -cyclodextrin with Substituted Benzenes, Analyst, 2003, 128:61
    〔20〕Ouyang Z, Takáts Z, Cooks R G., Preparing Protein Microarrays by Soft-landing of Mass-selected Ions., Science, 2003, 301(5638): 1351~1354
    〔21〕Takáts Z, Wiseman J M, Cooks R G., Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization, Science, 2004, 306: 471~47
    〔22〕Cooks R G, Ouyang Z, Takáts Z, Ambient Mass Spectrometry, Science, 2006, 311(17): 1566~1570
    〔23〕Cody R B, Laramée J A, Durst H D., Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions, Anal. Chem., 2005, 77: 2297~2302
    〔24〕Chen H W, Venter A, Cooks R G., Extractive Electrospray Ionization for Direct Analysis of Undiluted Urine, Milk and Other Complex Mixtures without Sample Preparation, Chem. Commun., 2006, 2042~2044
    〔25〕Chen H W, Wortmann A, Zhang W, Zenobi R, Rapid In Vivo Fingerprinting of Nonvolatile Compounds in Breath by Extractive Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry, Angew. Chem. Int. Ed., 2006, 45, in press
    〔26〕Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M, Electrospray Ionization-Principles and Practice. Mass Spectrometry Reviews, 1990, 9: 37~70
    〔27〕Karas M, Hillenkamp F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons, Analytical Chemistry, 1988, 60: 2299~2301
    〔28〕Van V L, Adriaens A, Gijbels R., Static Secondary Ion Mass Spectrometry (S-SIMS) Part 1, Methodology and Structural Interpretation, Mass Spectrom. Rev., 1999, 18: 1~47
    〔29〕Kauppila T J, Talaty N, Cooks R G., New Surfaces for Desorption Electrospray Ionization Mass Spectrometry: Porous Silicon and Ultra-thin layer Chromatography Plates, Rapid Commun. Mass Spectrom, 2006, 20 (14): 2143~2150
    〔30〕Van Berkel G J, Ford M J, Deibel M A, Thin-layer Chromatography and Mass Spectrometry Coupled Using Desorption Electrospray Ionization, Analytical Chemistry, 2005, 77 (5): 1207~1215
    〔31〕Takáts Z, Cotte-Rodriguez I, Talaty N, Chen H W, Cooks R G. Direct, Trace Level Detection of Explosives on Ambient Surfaces by Desorption Electrospray Ionization Mass Spectrometry, Chem. Commun., 2005, 1950~1952
    〔32〕Cotte-Rodriguez I, Takats Z, Talaty N, Chen H W, Cooks R G., Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization, Analytical Chemistry, 2005, 77 (21): 6755~6764
    〔33〕Chen H, Talaty N, Takáts Z, Cooks R G., Desorption Electrospray Ionization Mass Spectrometry for High Throughput Analysis of Pharmaceutical Samples in the Ambient Environment, Analytical Chemistry, 2005, 77 (21): 6915~6927
    〔34〕Rodriguez-Cruz S E., Rapid Analysis of Controlled Substances Using Desorption Electrospray Ionization Mass Spectrometry, Rapid Commun. Mass Spectrom, 2006, 20: 53~60
    〔35〕Weston D J, Bateman R, Wilson I D, Wood T R, Creaser C S., Direct Analysis of Pharmaceutical Drug Formulations Using Ion Mobility Spectrometry/Quadrupole-Time-of-Flight Mass Spectrometry Combined with Desorption Electrospray Ionization, Analytical Chemistry, 2005, 77: 7572~7580
    〔36〕Williams J P, Scrivens J H., Rapid Accurate Mass Desorption Electrospray Ionisation Tandem Mass Spectrometry of Pharmaceutical Samples, Rapid Commun. Mass Spectrom., 2005, 19: 3643~3650
    〔37〕Leuthold L A, Mandscheff J, Hopfgartner G., Desorption Electrospray Ionization Mass Spectrometry: Direct Toxicological Screening and Analysis of Illicit Ecstasy Tablets, Rapid Commun. Mass Spectrom, 2006, 20: 103~110
    〔38〕Williams J P, Lock R, Patel V J, et al., Polarity Switching Accurate Mass Measurement of Pharmaceutical Samples Using Desorption Electrospray Ionization and a Dual Ion Source Interfaced to an Orthogonal Acceleration Time-of-Flight Mass Spectrometer, Analytical Chemistry, 2006, 78 (21): 7440~7445
    〔39〕Talaty N, Takáts Z, Cooks R G., Rapid in Situ Detection of Alkaloids in Plant Tissue under Ambient Conditions Using Desorption Electrospray Ionization, Analyst, 2005, 130: 1624~1633
    〔40〕Myung S, Wiseman J M, Valentine S J, et al., Coupling Desorption Electrospray Ionization with Ion Mobility/Mass Spectrometry for Analysis of Protein Structure: Evidence for Desorption of Folded and Denatured States, Journal of Physical Chemistry B, 2006, 110 (10): 5045~5051
    〔41〕Chen H W, Pan Z Z, Talaty N, et al, Combining Desorption Electrospray Ionization Mass Spectrometry and Nuclear Magnetic Resonance for Differential Metabolomics without Sample Preparation, Rapid Commun. Mass Spectrom, 2006, 20 (10): 1577~1584
    〔42〕Kauppila T J, Wiseman J M, Ketola R A, et al., Desorption Electrospray Ionization Mass Spectrometry for the Analysis of Pharmaceuticals and Metabolites, Rapid Commun. Mass Spectrom, 2006, 20 (3): 387~392
    〔43〕Chen H W, Li M, Jin Q H. Desorption Electrospray Ionization Mass Spectrometry for Direct analysis of Clinic Urine Samples, Chemical Journal of Chinese University. 2006, 27 (8): 1439~1442
    〔44〕Leuthold L A, Mandscheff J F, Fathi M, Giroud C, Augsburger M, Varesio E, Hopfgartner G, Desorption Electrospray Ionization Mass Spectrometry: Direct Toxicological Screening and Analysis of Illicit Ecstasy Tablets, Rapid Commun Mass Spectrom, 2006, 20 (14): 2143~2150
    〔45〕Mulligan C C, Talaty N, Cooks R G., Desorption Electrospray Ionization with a Portable Mass Spectrometer: in Situ Analysis of Ambient Surfaces, Chem. Commun., 2006, (16): 1709~1711
    〔46〕Sparkman O D., Mass Spectrometry PittCon2005, J Am Soc Mass Spectrom, 2005, 16: 967~976
    〔47〕Cody R B, Laramee J A., Atmospheric Pressure Ion Source, US Patent, 2006, 6949741
    〔48〕Sparkman O D., Mass Spectrometry PittCon2003, J Am Soc Mass Spectrom., 2003, 14: 542~551
    [1] Janiszewski J. S., Rogers K. J., Whalen K. M., Cole M. J., Liston T. E., Duchoslav E., Fouda H.G.., A High-Capacity LC/MS System for the Bioanalysis of Samples Generated from Plate-Based Metabolic Screening, Anal. Chem., 2001, 73: 1495– 1501
    [2] Whitehouse C. M., Dreyer R. N., Yamashita M., Fenn J. B., Electrospray Interface for Liquid Chromatographs and Mass Spectrometers, Anal. Chem., 1985, 57: 675–679
    [3] Bateman K. P., White R. L., Thibault P., Disposable Emitters for On-Line Capillary Zone Electrophoresis/Nanoelectro-spray Mass Spectrometry, Rapid Commun. Mass Spectrom, 1997, 11: 307–315
    [4] Chapman, S., Physical Review, 10, 1937: 184-190
    [5] Dole M., Mack L.L., Hines R.L., Journal of Chemical Physics, 49, 1968: 2240-2249
    [6] Mack L.L., Kralik P., Rheude A., Dole M., Journal of Chemical Physics, 52, 1970: 4977-4986
    [7] Whitehouse CM, Dreyer RN, Yamashita Metal., Electrospray interface for Liquid Chromatographs and Mass Spectrometers, Anal. Chem., 1985, 57∶675
    [8] Yamashita M., Fenn JB., Negative Ion Production with the Electrospray Ion Source, J Phys Chem, 1984, 88: 4451
    [9] Simon JG.., Electrospray: Principles and Practice, Mass Spectrometry, 1997, 32: 677-688
    [10] Loeb LB., Kip AF., Hudson GG., Bennet WH., Phys. Rev., 1941. 60: 71
    [11] Dela Mora JF., Locertales IG., The Current Emitted by Ldghly Conducting Taylor Cones, J. Fluid Mech., 1994, 260:155-184
    [12] Wilm M., Mann M., Analytical Properties of the Nanoelectrospray Ion Source, Anal. Chem., 1996, 68: 1–8
    [13]Olivares J. A., Nguyen N. T., Yonker C. R., Smith R. D., On-Line Mass Spectrometric Detection for Capillary Zone Electrophoresis, Anal. Chem., 1987, 59: 1230–1232.
    [14] Douglas D.J., French J.B., J.Am.Soc.Mass Spectrom, 1992, 3: 398
    [15] Tolmachev A.V., Chernushevich I.V., Dodonov A.F., etal., Nucl. Instrum. Methods, Phys.Rev.Sec.B, 1997, 124: 112
    [16] Smith R. D., etal., Rapid Comm.Mass Spectrom, 1997, 11: 1813
    [17] Bossel U., On the Optimization of Skimmer Geometries, Entropie, 1971, 42:12
    [18] 苏永选,周振,杨芃原,王小如,黄本立, 辉光放电飞行时间质谱仪离子光学系统的改进及其性能的初步测试,质谱学报,1996,18(3): 13
    [19] Campargue R., Rev Sci Instrum, 1964, 35: 111
    [20] Gerlich D., Advances in Chemical Physics LXXXII. Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions, New York: John Wiley and Sons, 1992, 1–176
    [21] Szilagi M., Electron and Ion Optics, New York Plenum Press, 1988, 62
    [22] Szabo I., New Ion-Optical Devices Utilizing Oscillatory Electric Fields, Principle of Operation and Analytical Theory of Multipole Devices with Two-Dimensional Electric Fields, Int. J. Mass Spectrom Ion Proc, 1986, 73: 197–235
    [23] Rama Rao VVK, Bhutani A, Electric Hexapoles and Octopoles with Optimized Circular Section Rods, Int J Mass Spectrom, 2000, 202: 31–36.
    [24] 徐林贞,汪嚥,质谱仪器,机械工业出版社,1995
    [25] Genoveva Martinez, Miguel Sancho, Accurate Calculation of Geometric Aberrations in Electrostatic Lenses, Nuclear Instruments and Methods in Physics Resesrch, 1995, A360: 198-204
    [26] C.E. Kuyatt, S. Natali and D. Chio, Rev. Sci. Instr., 1972, 43, 84
    [27] E. Kasper, Optik, Numerical Determination of Electron Optical Focusing Properties and Aberrations, 1985, 69: 117-125
    [28] A. Renau and D.W.O. Heddle, Geometric Aberrations in Electrostatic Lenses: II. Aberration Coefficients and Their Interrelations, J.Phys.E, 1986, 19: 288-295
    [29] Badman E. R., Cooks R. G., J. Mass Spectrom., 2000, 35: 659-671.
    [30] Dawson P.H., Quadrupole Mass Spectrometry and its Applications, Elsrvier: Amsterdam, 1976
    [31] Ethan R. Badman and R. Graham Cooks, Special Feature: Perspective Miniature Mass Analyzers, J. Mass Spectrom, 2000, 35: 659–671
    [32] March R.E., Hughes R.J., Quadrupole Storage Mass Spectrometry, John Wiley and SONS, New York, 1989
    [33] March R.E., Todd J.F.J., Practical Aspects of Ion Trap Mass Spectrometry, Vol.I: Fundamentals of Ion Trap Mass Spectrometry, CRC Press, Boca Raton, FL, 1995
    [34] March R.E., Todd J.F.J., Practical Aspects of Ion Trap Mass Spectrometry, Vol.II: Ion Trap Mass Instrumentation, CRC Press: Boca Raton, FL, 1995
    [35] March, R.E.; Todd, J.F.J., Practical Aspects of Ion Trap Mass Spectrometry, Vol.III: Chemical, Environmental and Biomedical Applications, CRC Press, Boca Raton, FL, 1995
    [36] Nourse B.D., Cooks R.G., Aspects of Recent Developments in Ion-Trap Mass Spectrometry Review, Anal. Chim. Acta., 1990,228: 1-21
    [37] 李燕, 梁汉东, 韦妙, 李良,离子阱质谱计的研究现状及其进展,质谱学报, 2006, 27 (4): 249-256
    [38] J. Matthew and R. L.Walker, Mathematical Methods of Phydics, W.A. Benjamin Inc., Menlo Park, 1970
    [39] Ethan R. Badman and R. Graham Cooks, Special Feature: Perspective Miniature mass analyzers, J. Mass Spectrom., 2000, 35: 659–671
    [40] R. E. March and R. J. Hughes, Quadrupole Storage Mass Spectrometry, John Wiley Sons, Toronto, 1989
    [41] P.H.Dawson, Quadrupole Mass Spectrometry and Its Applications, Elsevier, N.Y., 1976
    [42] Ouyang Z, Wu G, Cooks R G., Rectilinear Ion Trap: Concepts, Calculations, and Analytical Performance of a New Mass Analyzer, Anal. Chem., 2004, 76(16): 4595-4605
    [43] Kaiser RE, Cooks R G., Stafford G C, Syka J E P, Hemberger P., Operation of a Quadrupole Ion Trap Mass Spectrometer to Achieve High Mass/Charge Ratios., Int. J. Mass Spectrom. Ion Processes, 1991, 106: 79-115
    [44] Wells J M, Badman Ethan R, Cooks R G., A Quadrupole Ion Trap with Cylindrical Geometry Operated in the Mass-Selective Instability Mode, Anal. Chem., 1998, 70: 438~444
    [45] Tabert A. M., Griep-Raming J, Cooks R G., High Throughput Miniature Cylindrical Ion trap Array Mass Spectrometer, Anal. Chem., 2003, 75: 5656~5664
    [46] Gao L, Song Q, Cooks R G., Handheld Rectilinear Ion Trap Mass Spectrometer, Anal. Chem., 2006, 78(17): 5994~6002
    [47] March R. E., Todd J. F. J., Eds., Practical Aspects of Ion Trap MassSpectrometry Vol. I: Fundamentals of Ion Trap Mass Spectrometry; CRC Press: Boca Raton, FL, 1995, 25–167
    [48] Kocher F., Favre A., Gonnet F., Tabet J.-C., Study of Ghost Peaks Resulting from Space Charge and Nonlinear Fields in an Ion Trap MassSpectrometer, J. Mass Spectrom, 1998, 33: 921–935
    [49] Quarmby S. T., Yost R. A., Fundmental Studies of Ions Injection and Trapping of Electrospray Ion on a Quadrupole Ion Trap, Int. J. Mass Spectrom, 1999, 190/191: 81-102
    [50] Zheng Ouyang, Guangxiang Wu, Yishu Song, Hongyan Li, Wolfgang R. Plass and R. Graham Cooks, Rectilinear Ion Trap: Concepts, Calculations, and Analytical Performance of a New Mass Analyzer, Anal. Chem., 2004, 76: 4595-4605
    [51] Ouyang Z., Cooks R G., Rectilinear Ion Trap and Mass Analyzer System and Method, US patent, 2005, 683
    [52] Song Q, Kothari S, Cooks R G., Rectilinear Ion Trap Mass Spectrometer with Atmospheric Pressure Interface and Electrospray Ionization Source, Anal. Chem., 2006, 78: 718~725
    [53] Schwartz J C, Senko M W, Syka J E P., A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer, J. Am. Soc. Mass Spectr, 2002, 13: 659~669
    [54] Ouyang Z., Cooks R. G., U.S.Patrnt, applied, 2003
    [55] Yishu Song, Guangxiang Wu, Qingyu Song, R. Graham Cooks, and Zheng Ouyang, Novel Linear Ion Trap Mass Analyzer Composed of Four Planar Electrodes, J Am Soc Mass Spectrom, 2006, 17: 631–639
    [56] Hager. J. M., A new Linear Ion Trap Mass Spectrometer, Rapid Commun. Mass Spectrom, 2002.16:512-526
    [57] Schwartz J. C., Senko. M. W. Syka., J. Am. Soc. Mass Spectrom, 2002, 13: 659-669
    [58] Jae C. Schwartz and Michael W. Senko, A Two-Dimensional QuadrupoleIon Trap Mass Spectrometer, J. Am. Soc. Mass Spectrom, 2002, 13: 659–669
    [59]Ouyang Z, Wu G, Cooks R. G.., Rectilinear Ion Trap: Concepts, Calculations and Analytical Performance of a New Mass Analyzer, Anal. Chem., 2004, 76(16): 4595~4605
    [60] Franzen J., Gabling R. H., Schubert M., Wang Y., In Practical Aspects of Ion Trap Mass Spectrometry, March, R. E., Todd, J. F. J., Eds.; CRC Press: Boca Raton, FL, 1995; Vol. 1, 49-167
    [61] Wells, J. M., Plass W. R., Patterson G. E., Ouyang Z., Badman E. R., Cooks R. G., Anal. Chem., 1999, 71: 3405-3415
    [62] Zheng Ouyang, Guangxiang Wu, Yishu Song, Hongyan Li,Wolfgang R. Plass and R. Graham Cooks, Rectilinear Ion Trap: Concepts, Calculations and Analytical Performance of a New Mass Analyzer, Anal. Chem., 2004, 76: 4595-4605
    [63] 姜杰,费强,金伟,李明,庞晓东,李彬,范志勇,许晓宇,周建光,金钦汉,小型矩形离子阱质谱仪的研制
    [64] Schwartz J. C., Syka J. E. P., Jardine I. J., Am. Soc. Mass Spectrom, 1991, 2: 198-204
    [65] Williams J. D., Cox K. A., Cooks R. G.., Kaiser R. E., Schwartz J. C., High Mass-Resolution Using a Quadrupole Ion-Trap Mass Spectrometer, Rapid Commun. Mass Spectrom, 1991, 5: 327-329
    [1] Susan D. Richardson, Mass Spectrometry in Environmental Sciences, Chem. Rev. 2001, 101, 2112?54
    [2] R. C. Johnson, R. G. Cooks, T. M. Allen, M. E. Cisper, P. H. Hemberger Membarane Introduction Mass Spectrometry Trends and Applications, Mass Spectrometry Reviews, 2000, 19, 1-37
    [3] Ojala, M., Ketola, R.A., Mansikka, Kotiaho, T. &. Kostiainen, R.: Determination of Mono- and Sesquiterpenes in Water by Membrane Inlet Mass Spectrometry and Headspace Gas Chromatography, Talanta, 49, 179-188, 1999
    [4] M.A. LaPack, J.C. Tou, V.L. McGuffin, C.G. Enke; The Correlation of Membrane Permselectivity with Hildebrand Solubility Parameters, J. Membrane Sci. 86, 263-280 (1994)
    [5] T. Kotiaho, F. R. Lauritsen, T. K. Choudhury, R. G. Cooks, J. C. Tou, and L. B. Westover, Membrane Introduction Mass-Spectrometry, Anal. Chem. 63, 875A ~1991
    [6] M.A.LaPack, J.C.Tou, V.L.McGUFFIN and C.G. Enke, The Correlation of Membrane Permselectivity with Hildebrand Solubility Parameters, Journal of Membrane Science, 86(1994) 263-280
    [7] On-Line Mass Spectrometry: A Faster Route to Process Monitoring and Control, Kelsey D. Cook, Kevin H. Bennett, and Martin L, Haddix Ind. Eng. Chem. Res. 1999, 38, 1192-1204
    [8] Gregori, A. M.; Kephart, L. A., Membrane Inlet Mass Spectrometers Used for the On-line Analysis of Liquid Streams. Adv. Instrum., Control 1995, 50 (13), 1179-1186.
    [9] Slivon, L. E.; Ho, J. S.; Budde, W. L., Real Time Measurement of Volatile Organic Compounds in Water Using Mass Spectrometry with a Helium-Purged Hollow Fiber Membrane, Pollut. Prev. Ind. Processes 1992, 169-177.
    [10] LaPack, M. A.; Tou, J. C.; Enke, C. G. Membrane Extraction Mass Spectrometry for the On-line Analysis of Gas and Liquid Process Streams. Anal. Chem. 1991, 63, 1631-1637.
    [11] M. A. LaPack, J. C. Tou, and C. G. Enke, Membrane Mass Spectrometry for the Direct Trace Analysis of Volatile Organic Compounds in Air and Water, Anal. Chem., 62, 1265~1990
    [12]达道安, 真空设计手册, 国防工业出版社, 1991
    [13]Nier A O., A Mass Spectrometer for Routine Iso Tope-Abundance Measurement, Rev Sci. Instrum., 1940, 11:212
    [14] 徐贞林 汪臙, 质谱仪器, 机械工业出版社, 1995
    [15] Wiley W C, Mclaren I H., Time of Flight Mass Spectrometer with Improved Resolution, Rev Sci Instrum, 1955, 26 (12) : 1150
    [16]许胜国, 热电子轰击气体离子源若干结构与工艺问题, 质谱学报,15 卷, 2 期
    [17] KelseyD.Cook, KevinH. Bennett, and MartinL, On-Line Mass Spectrometry:A Faster Routeto Process Monitoring and Control,. Haddix Ind. Eng. Chem. Res.1999, 38,1192-1204
    [18] 王理 刘志欣, 电子轰击型离子源磁场方向的探讨, 质谱学报, 15 卷 3 期
    [19] Cameron A E , Eggers D F Jr., Anion“velocitron”, J.Rev Sci Instrum, 1948, 19: 605-607
    [20] Mamyrin B A., Time of Flight Mass Spectrometry (Concepts, Achievements, and Prospects), Int J Mass Spectrom Ion Processes , 2001 ,206 : 251 - 266
    [21]苏永选,周振,杨芃原,王小如,黄本立,辉光放电飞行时间质谱仪离子光学系统的改进及其性能的初步测试,质谱学报,18 卷,3 期
    [22] Boesl U ,Weinkauf R ,Schlag E W, Ion Processes, Int.J. Mass Spectrom, 1992, 11 2: 12
    [23] 刘宇清,俞学东,陆家和,送风华,薛坤,窦德景,查良镇,新型小飞行时间质谱仪的研究,真空科学与技术,1998,18,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700