宽带数字阵列波束形成算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多功能相控阵雷达,即用一部雷达系统可实现多部雷达的战术功能,是相控阵雷达的发展方向。为了使多功能相控阵雷达具有目标识别、成像的能力,这就要求相控阵雷达应具有高的距离分辨率,即相控阵雷达应工作在宽带。
     宽带数字阵雷达为实现相控阵雷达的多功能提供了可行的硬件平台。它用数字时延取代了传统的移相器,可减小孔径效应,使相控阵雷达实现宽带宽角扫描。
     另外,它还具有很高的动态范围、容易实现发射波形和频率捷变等优点。宽带数字波束形成是宽带数字阵雷达中的关键技术之一。要实现宽带波束形成,不能再采用普通相控阵雷达中的移相技术,而必须采用数字时延,另外,为了在形成正确波束指向的同时,还在干扰到来方向形成零点,以提高系统性能,所采用的自适应算法和技术也不同于窄带自适应波束形成技术。
     所以,以宽带数字阵雷达为应用背景,开展数字时延产生、宽带波束形成、自适应宽带干扰置零、系统实现方案等关键技术研究,有着重要的理论意义和实用价值,这也是目前阵列信号处理研究中的热点问题。
     本文针对宽带数字阵雷达系统波束形成技术进行了研究,主要研究包括:
     1、研究了基于分数时延的宽带波束形成技术,分析了直接射频采样模式下,基于时延的波束形成结构,并对分数时延的三种产生方法在宽带波束形成中的应用与实现、性能及复杂性进行了分析、比较,指出尽管分数时延能够获得较理想的阵列方向图特性,但是全部阵元都采用分数时延结构可能会带来系统实现的复杂性和高成本。
     2、研究了分子阵的宽带波束形成技术。在实际大型相控阵雷达中,由于阵元数成百上千甚至上万个,如果每个阵元后面都采用分数时延方法,会给系统海量数据的传输与存储、高速滤波器实现等方面带来很大的压力,必须采用分子阵的波束形成结构以降低系统实现难度和成本。研究了子阵划分的原则和方法,对基于阵元内单元移相加子阵间分数时延的宽带波束形成性能进行了分析,并用仿真结果验证了方法的有效性。
     3、研究了宽带自适应波束形成算法在数字阵中的应用。宽带自适应波束形成方法不同于窄带波束形成,论文对宽带自适应波束形成算法,特别是ISM和CSM算法在宽带数字阵中的自适应干扰置零方面的性能进行了分析、对比,对它们在不同工作频率、工作带宽、干扰模式、阵列形式等条件下的性能进行了仿真分析,并讨论了快拍数、采样率、FFT点数等对干扰置零性能的影响,这些结果和结论为宽带数字阵实验系统选择自适应波束形成算法以及系统参数提供理论依据。
     4、研究了宽带数字阵雷达可能的实现方案及对应的波束形成方法。分析比较了宽带数字阵雷达可能采用的三种宽带信号:瞬时宽(频)带信号、宽带线性调频信号和频率步进信号,以及直接射频采样、中频采样等方式下宽带数字阵雷达系统及波束形成实现方案及特点、难度和存在的问题。对于去斜方案,提出了一种能够灵活控制波束指向的宽带波束形成方法。另外,针对宽带数字阵实现时可能存在的多通道采样不同步问题,分析了它对波束形成性能的影响,并进行了详细的理论推导和分析,以及仿真验证,为今后宽带数字阵雷达系统设计提供硬件选型和波束参数选择等方面的理论参考。
     此外,论文还针对阵列处理的另一个重要应用领域—MIMO通信系统中的检测算法进行了研究。MIMO技术是近年来的一个热点研究问题,也是下一代无线通信系统(B3G)中的关键技术之一。
     论文研究了非线性检测算法在MIMO通信系统中的应用。利用非线性算法将MIMO系统中多个天线接收信号进行合成,充分利用接收信号中所包含的高阶信息,提高MIMO系统检测性能。为了克服非线性检测算法在计算复杂性方面的不足,提出了两种降低计算量的方法:基于矩阵递增求解的方法和基于Fisher比的稀疏化方法。仿真验证了这两种算法都能够显著降低非线性算法的计算量,而且误码率性能远远超过传统的常规MIMO系统线性检测算法。
Multifunction digital array radar, which employs a single radar system to obtain the tactic functions of multiple radars, is very important for the development of future phase array radar. High range resolution is required to enable the multifunction digital array radar for target identification and target imaging. Thus, the operation frequency of the phased array radar should be wideband.
     Wideband digital array radar makes the realization of the multifunction phased array radar possible. In the wideband digital array radar, time delay elements are used instead of the phase shifters used in the traditional phased array radars, such that the aperture effect can be eliminated and wideband wide scan can be implemented. Further, the wideband digital array radar has the advantages of very high dynamic range, facilitating transmitting waveforms, and frequency agility.
     Wideband digital beamforming is the key technique for the wideband digital array radar. Wideband beamforming requires replacing phase shifters used in the traditional phased array radars by the time delay elements. On the other hand, to form a null in the direction of interference to improve the system performance, adaptive beamforming algorithms and techniques are needed, which are different from those used for narrowband adaptive beamforming.
     Towards the application of wideband digital array radar, the research on digital time delay, adaptive wideband interference nulling, and other related techniques are of significant theoretical and practical importance. Of course, they are emergent topics in the current research of array signal processing.
     This thesis studies the beamforming for the wideband digital array radar. The research includes:
     1. Wideband digital beamforming based on fractional time delay is investigated. When direct RF sampling is adopted, the beamforming scheme based on time delay is discussed. Three types of fractional time delay approaches are applied to the wideband beamforming. The performance and complexity of these approaches are analyzed and compares. The complexity of applying fractional time delay to all array elements is shown.
     2. Beamforming based on sub-array level is discussed. Although fractional time delay can achieve accurate digital time delay and obtain the desired array beam pattern, when the number of array elements is very large, as in some practical phased array radars, employing fractional time delay for each array element seems impossible due to the problems faced in the data transmission and storage and high speed filtering. In this case, we have to resort to the beamforming scheme in the sub-array level. The principle and approach for dividing subarrays are studied. The performance of wideband beamforming based on applying phase shifters within sub-array and fractional time delayer between sub-arrays is analyzed and illustrated by simulations.
     3. Wideband adaptive beamforming algorithms are studied. The performances of the wideband adaptive beamforming algorithms, particularly the ISM and CSM algorithms, used in the wideband digital array radar system, are analyzed, simulated, and compared. The performance of these algorithms under different operation frequencies, operation bandwidths, coherent interferences, and array configurations are investigated through simulations. The discussions on the impacts of the number of snapshots, sampling frequency, and FFT point on the beamforming performance are provided, which is useful for the test system design.
     4. The possible realizations of the wideband digital array radar and the corresponding beamforming methods are investigated. Three types of wideband signals are analyzed and compared, including instantaneous wideband signals, wideband linearly modulated signals, and frequency stepped signals. The advantages, difficulties and existing problems of the realization of wideband digital array radar system based on the direct RF sampling and IF sampling are studied. A wideband beamforming approach based on dechirping is proposed. Further, the impact of the multi-channel non-synchronized sampling on the beamforming performance is studied, which provides a theoretical reference for the hardware and waveform selection for designing the wideband digital array radar system.
     Additionally, the application of the array signal processing in MIMO communications system is studied in this thesis. MIMO technique is a hot topic in recent years, which is one of the key techniques of the next generation wireless communications systems (Beyond 3G).
     We focus on the application of the nonlinear detection algorithms in MIMO communications system. Multiple received signals in the MIMO system are combined using nonlinear algorithms. Taking the advantage of the higher-order information, the detection performance of the MIMO system is improved. To combat the drawbacks of the nonlinear algorithms in computational complexity, two methods based on incremental method and Fisher rate method are proposed for reducing the computation load of the nonlinear algorithms, which also lead to improved bit error rate performances than the traditional linear detection algorithms used in MIMO systems.
引文
[1]. Special issue on adaptive arrays. IEEE Trans. Antenna Propagation, 1964. 12
    [2]. Special issue on adaptive arrays. IEEE Trans. Antenna Propagation, 1976. 24
    [3]. Special issue on adaptive arrays. IEEE Trans. Antenna Propagation, 1986. 34
    [4]. B. D. V. Veen and K. M. Buckley, Bemaforming: A versatile approach to spatial filtering. Acoust, Speech, Signal Processing, 1988. 5:4-24
    [5]. W F Gabrial. Adaptive processing array systems. Proc IEEE. 1992,80(1):152- 163
    [6]. H Steyskal.J F Rose. Digital beamforming for radar systems. Microwave Journal.1989,28(1):121-136
    [7]. L C Godara. Applications of antenna arrays to mobile communications I: performance improvement feasibility and system considerations. Proceedings of IEEE.1997,85 (7):1031-1060
    [8]. L C Godara. Applications of antenna arrays to mobile communications II:beam–forming and direction-of-arrival considerations. Proceedings of IEEE.1997,85 (8):1195-1245
    [9]. H .Krim, M .Vibeg.Two decades of array signal processing research: The parametric approach. IEEE Signal Processing magazine.1996,16(4):67-94
    [10]. S H aykin, J P Reilly, V .Kezys. Some aspects of array signal processing. IEE Proceedings. 1992,13 9(1):1- 26
    [11]. Harry L, Van Trees. Optimum array processing. John Wiley.2002
    [12]. Simon Hykin. Adaptive Filter Theory–Fourth Edition. House of Electronics industry,2002
    [13]. L C Liberd T S Rappaport. Smart Antenna for Wireless Communications:IS- 95 and Third Generation CDMA Application .Person Education North Asia Ltd.2 002
    [14]. R T Compton. Adaptive antennas: concept and performance. Prentice Hall,1988
    [15].何子述.现代数字信号处理及其应用.北京.清华大学出版社,2009
    [16].龚耀寰.自适应滤波(第二版)--时域自适应滤波和智能天线.北京:电子工业出版社,2003
    [17]. M C Dogan. J M Mendel; Applications of Cumulants to Array Processing Part I: Aperture Extension and Array Calibration. IEEE Trans.on Signal Processing.1995,43 (5):1200-1216
    [18]. M C Dogan, J M Mendel. Applications of Cumulants to A rray Processing-Par t II: Non-Gaussion Noise Suppression.IEEE Trans.on Signal Processing.1995,43(7):1663-1675
    [19]. E Gonen,J M Mendel.Applications of Cumulants to Array Processing Part III :Blind Beamforming for Coherent Signals . IEEE Trans.on Signal Processing.1997,45(9):2252 -2264
    [20]. T H .L iu,J M Mendel. Applications of Cumulants to Array Processing Part IV: Dierction Finding in Coherent Signals Case: IEEE Trans.on Signal Processing.1997,45 (9):2265 -2275
    [21]. T H .Li u,J M Mendel. Applications of Cumulants to Array Processing Part V: Sensitivity Issues. IEEE Trans.on Signal Processing.1999,47(3):746-759
    [22]. M C.Dogan,J M Mendel. Cumulant-based blind optimum beamforming.IEEE Trans onAES.1994,30 (3):722-741
    [23]. W A Gardner. The Spectral Correlation Theory of Cyclostationary Time Series.Signal Processing.1986,11 (1):13 -36
    [24]. B G Agee, S V Schell, W A Gardner. Spectral self-coherence restoral: A new approach to blind adaptive signal extraction using antenna arrays.IEEE i n P r oc s.19 90,78(4):95 3-967P
    [25]. W A Gardner, C M Spooner. The cumulant theory of cyclostationary time-series I: Foundation.IE EE Trans on signal processing.1994,42 (12):3387 -3408
    [26]. C M Spooner, W A Gardner. The cumulant theory of cyclostationary time–series II: Development and applications. IEEE Trans on signal processing.1994,42 (12):34 09-3429P
    [27]. D L iu,L Tong. Ananalysis of constant modulus algorithm for array signal processing in Signal Processing.1999,73 (2):81-104
    [28].郭艳.恒模算法及其在盲波束形成中的应用〔博士论文〕西安西安电子科技大学
    [29]. Z.Rong Simulation of adaptive array algorithms for CDMA systems. Master’s thesis,Mobile& portable radio research group, Virginia tech, Blackburg,VA, Sept,1996
    [30]. K Steele. Comparison of directional and derivative constraints for beamformers subject to multiple linear constraints. IEE Porc.1983,130(l):41-45
    [31]. M.H .Er, Y C.Soh. Paritaly adaptive array design using DOA estimation and null steering IEE Proc. Radar, Sonar N avig..1995,142(l):1-5
    [32]. B.D .Van Veen, Roberts RA .Partially adaptive beamformer design via output power minimization. IEEE Trans. on Acoustics, Speech. And Signal Processing.1987,35( 11):1524-1532
    [33]. J.W Kim, C .K Un. A robust adaptive array based on signal subspace approach. IEEE Trans. Signal Processing.41(11):3166-3171
    [34]. Jian LiStoica, P Zhisong Wang. On robust Capon beamforming and diagonal loading.IEEE Trans.on Signal Processing .2003,51 (7) :1702-1715
    [35]. Vorbyov,S.A ,Gershman,A. B.Zh i-Quan Luo. Robust adaptive beamfoming using worst -case performance optimization: a solution to the signal mismatch problem. IEEE Trans.on Signal Processing .2003,51(2):313-324
    [36]. Stoica,P Zhisong Wang. Robust Capon beamforming. Signal Processing Letters, IEEE. 2003, 10(6):172一175
    [37]. A.Bjork,Solving linear least squares problems by Gram-Schmidt orthogonaliation. BIT, 1967(7):1~21
    [38]. C.R.Ward,A novel algorithm and architecture for adaptive digital beamforming. IEEE Trans.on Antennas and Propagation, 1986.34(3):338~346
    [39]. C.R.Ward,A.J.Robson,P.J.Hargrave, Application of a systolic array to adaptive beamforming. 1984.131(6):638~645
    [40]. D D Feldman, L J Grifrths. A constrain projection approach for robust adaptive beamforming. IEEE.ICASSP 1991,(5 ):1964-1972
    [41]. J L Y u,C C Y eh.Generalized Eigenspace-Based Beamformers.IEEE Trans.on signal processing.1995,43 (11):2453-2461
    [42]. L Chang, C C Yeh. Performance of DMI and eigenspace-based beamform rs. IEEE Trans onAntennas and Propagation.1992,4 0(11):1336 -1347
    [43]. D D Feldman, L J Griffiths. A projection approach for robust adaptive beamforming.IEEE Trans.on signal processing.1994,42(4):867-876
    [44]. D D Feldman. An analysis of projection method for robust adaptive beamforming. IEEE Trans on Antennas and Propagation.1 996,4 4(7):1023 -1030
    [45]. C C Lee, J H Lee. An efficient technique for eightspace-based adaptive interference cancellation.IEEE Trans.on Antennas and Propagation.1998,46 (5) :694 -699
    [46]. C C Lee, J H Lee. Eigenspace-based adaptive array-beamfonning with robust capabilities. IEEE Trans on antennas and propagation.1997,45(2):1711-1716
    [47]. J H Lee, C C Lee. Analysis of the performance and sensitivity of an eigenspace-based interference canceller.IEEE Trans on Antennas and Propagation.2000,48 (5):826-835
    [48]. I. S. Reed, Rapid convergence rate in adaptive antenna. Aerospace and Electronic Systems, 1974. 10(6): 853~863
    [49]. I. S. Reed, J. D. Mallett, and L. E. Brennan, Sample matrix inversion technique. presented at adaptive antenna system workshop, Navel Research Laboratory, Washington. DC, 1974.
    [50]. B. V. Veen, An analysis of several partially adaptive beamformer designs.Acoust., Speech, Signal Processing, 1989. 37:192~203
    [51]. B. V. Veen, Partially adaptive beamformer design via output power minimization. IEEE Trans. On Acoustics, Speech, Signal Processing, 1987. 35:1524~1532
    [52]. T. T. Ma and L. T. Griffiths, A solution space approach to achieving partially adaptive array, ICASSP'88, 1988.
    [53]. B. D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays. Aerospace and Electronic Systems, 1988. 24(4): 397~401
    [54].廖桂生,保铮,张林让,基于特征结构的自适应波束形成新算法.电子学报,1998. 26(3)
    [55]. R.L.Dilsavor, R.L.Moses. An experimental smi adaptive antenna array simulator for weak interfering signals. IEEE Trans.on Antennas and Propagation,1991.39(2):236~243
    [56]. B D Carlson. Covariance Matrix Estimation Errors and Diagonal Loading in Adaptive Arrays. IEEE Trans on AES 1988,24(4):397-401
    [57]. J Li, P Stoica. On Robust Capon Beamforming and Diagonal Loading IEEE Trans.on Signal Processing.2003,51(7):1702-1715
    [58]. A B.Gershman,U Nickle.J F Bohme.Adapitve Beamforming Algoirthms with Robustness against Jammer Motion.IEEE Trans.on Signal Processing.1997, 45 (7 ): 1878-1885
    [59]. H S ubbaram,K A bend. Interference suppression via orthogonal projections: a performance analysis.IEEE Trans Antennas and Propagation.1993,41 (9):1187 -1193
    [60]. B Friedlander. A signal subspace method for adaptive interference cancellation. IEEE Trans on Acoustics, Speech, and Signal processing.1989, 36(12 ):1835-1845
    [61].何子述,金林,韩蕴洁,严继鸿.光控相控阵雷达发展动态和实现中的关键技术.电子学报. 2005,33(12): 2191-2195
    [62]. AH Quazi. An Overview on the Time Delay Estimate in Active and Passive Systems for Target Localization. IEEE Trans, Acoust, Speech, Signal Processing, 1981,ASSP-29 (3): 527-533
    [63]. Pridham RG, Mueei RA .Digital interpolation beamforming for low—pass and bandpass signals.Proceedings of the IEEE.1979.67(6):904-919
    [64].王敏,吴顺君,杨淑媛. UWB脉冲信号的时域波束形成方法.电波科学学报,2006,21(2): 238-243
    [65]. F.O.L.An algorithm for linearly constrained adaptive array processing. Proc IEEE, 1972. 60(8):926~935
    [66]. M.Agrawal, S.Prasad. Robust adaptive beamforming for wide-band moving,and coherent jammers via uniform linear arrays. Antennas and Propagation,1999.47(8)
    [67]. D.D.Aalfs, E.J.Holder,Impact of wideband channel-to-channel on adaptive arrays. 2000: 459~463
    [68]. G.M.Raz. An approach to adaptive beam-forming for wideband systems using a subband decomposition.2000:300~305
    [69]. R.L.Fante, J.J.Vaccaro,Wideband cancellation of interference in a gps receive array Aerospace and Electronic Systems,2000.36(2):549~564
    [70]. E.D.D.Claudio, R.Parisi,Robust ml wideband beamforming in reverberant fields.Signal Processing,2003.51(2):338~349
    [71]. K.N ,T.K. Broadband and robust adaptive antenna under correlation constraint. IEEE Proceeding,1989.136(2):85~89
    [72]. Tuan-Do-Hong, P. Russer. Signal processing for wideband smart antenna array applications. IEEE Microwave Magazine, Vol.5, No.1, Mar. 2004:57-67
    [73]. Longyang Huang, Bin Shen. An efficient subband method for wideband adaptive beamforming . Advanced communication technology, Feb. 2008, Vol.3 :1489-1492
    [74].王永良,陈辉,彭应宁.空间谱估计理论与算法.北京:清华大学出版社,2004
    [75].张林让,保铮,张玉洪,通道响应失配对dbf天线旁瓣电平的影响.电子科学学刊, 1995 . 17(3):268~275
    [76].傅有光,唐纬,张倩,通道间幅相差异对旁瓣相消性能的影响与解决方法.现代雷达, 2000.22(6):50~55
    [77]. G.M.Raz,An approach to adaptive beam-forming for wideband systems using a subband decomposition.2000:300~305
    [78].陈四根.阵列信号处理相关技术研究.博士学位论文.哈尔滨工业大学.2004
    [79].武思军.稳健的自适应波束形成算法研究.博士学位论文.哈尔滨工业大学.2005
    [80].包志强.快速稳健的参数估计及波束形成技术研究.西安电子科技大学.2006
    [81].苏保伟.阵列数字波束形成技术研究.博士学位论文.国防科技大学.2006
    [82].顾宇杰.鲁棒自适应波束形成技术研究.博士学位论文.浙江大学.2008
    [83].陈其璋.宽带波束形成算法设计与实现.博士学位论文.浙江大学.2008
    [84]. B Cantrel1. Development of a Digital Array Radar(DAR). IEEE Aerospace and Electronic Systems Magazine, 2002, 17(3): 22-27
    [85]. Daniel J Rabideau. An S-Band Digital Array Radar Testbed. 2003 IEEE Int Symp on Phased Array System and Technology, 2003. 113-118
    [86].吴曼青.数字阵列雷达的发展与构想.雷达科学与技术.2008,6(6):401-405
    [87]. Wang Yan, Wu Manqing. The development of DBF phased array radar system. 2001 CIE International conference on radar proceeding, Beijing, China,2001:61-64
    [88].郑正.智能天线系统若干关键技术研究.硕士学位论文.浙江大学.2007
    [89]. Paulraj A J, Gore D A, Nabar R U, et al. An overview of MIMO communications—a key to gigabit wireless. Proceedings of the IEEE, 2004, 92(2): 198-218.
    [90]. Telatar E. Capacity of multi-antenna gaussian channels. Euro. Trans. Telecommun.1999, 10(6): 585-595
    [91]. Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1998, 6(3): 311~335
    [92]. H. Zhu, Z. Lei, and F. P. S. Chin. An improved square-root algorithm for BLAST. IEEE Signal process letter, 2004,11( 9): 772–775.
    [93]. J. Benesty, Y. Huang, and J. Chen.A fast recursive algorithm for optimum sequential signal detection in a BLAST system. IEEE Trans. Signal Process.2003,51(7) :1722–1730
    [94]. H. Zhu, Z. Lei, and F. Chin.An improved recursive algorithm for BLAST. Signal Processing. 2007,87(6):1408–1411
    [95]. Y. Shang, and X.-G. Xia.An improved fast recursive algorithm for V-BLAST with optimal ordered detections. in Proc. IEEE Int. Conf. Commun., May 2008
    [96]. T.I.Laakso, V. Valimdki. M. Karjalainen. Splitting the unit delay: Tools for fractional delay filter design. IEEE Signal Processing Mag, vol. 13, pp. 30-60, Jan. 1996
    [97].张贤达,保铮.通信信号处理.北京:国防工业出版社. 2000
    [98]. V. Valimdki. Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filter. Doctoral dissertation. Helsinki University of Technology, Laboratory of Acoustics and Audio signal processing.1995
    [99]. C.W. Farrow. A Continuously Variable Digital Delay Element. Proc. IEEE Int. Sym. Circ. and Syst. Espoo. Finland pp. 2461-2465, June 7-9,1988
    [100].何子述,李会勇,等.宽带数字阵雷达研究报告.电子科技大学技术报告.2008
    [101]. T.-B. Deng.Symmetry-based low-complexity variable fractional-delay FIR Filter. in Proc. 2004 IEEE Int. Symp. Communications Information Technologies (ISCIT’04), Sapporo, Japan, Oct. 26–29, 2004, pp. 194–199.
    [102].张直中.论宽带相控阵雷达的战术优越性.电子学报,1993,21(03):86-92
    [103].邓璐.基于子阵的部分波束形成技术研究.硕士研究生论文.电子科技大学.2007
    [104]. H. Wang, M. Kaveh. Focusing matrices for coherent signal-subspace processing. IEEE Trans. on ASSP,1988,Vol.36(8):1272-1281
    [105]. S. Valaee, P. Kabal. Wideband array processing using a two-sided correlation transformation. IEEE Trans. on SP. 1995,Vol.43 (1):160-172
    [106]. A. Doron, J. Weiss. On focusing matrices for wide-band array processing. IEEE Trans. on SP. 1992, Vol.40 (1):1295-1302
    [107]. S. Valaee, B. Champagne. Localization of wideband signals using least-squares and total least-squares approaches. IEEE Trans. on SP. 1999, Vol.47 (5):1213-1222
    [108].远海鹏,曾大治,龙腾.频率步进相控阵雷达原理与实现方案的研究.现代雷达, 2008, 30(7):24-27
    [109]. T.Lo, H.Leung, J.Litva. Nonlinear Beamforming. Electronics Letters, 1991, 27(6): 350– 352
    [110]. Tidestav C, Ahlen A, and Sternad M. Realizable MIMO decision feedbackequalizers:structure and design. IEEE Trans. on Signal Processing, 2001, 49(1): 121-133
    [111]. Nee R van, Zelst A van, and Awater G. Maximum likelihood decoding in a space division multiplexing system. in: Proc. of IEEE VTC, 2000:6-10
    [112]. S.Chen, L.Hanzo and A.Wolfgang. Kernel-Based Nonlinear Beamforming Construction Using Orthogonal Forward Selection With the Fisher Ratio Class Separability Measure. IEEE Signal Processing Letters, 2004, 11(5): 478-481
    [113].边肇祺,张学工.模式识别.第二版.北京.清华大学出版社.2000
    [114]. Benyong Liu, Jing Zhang, An adaptive trained kernel-based nonlinear representor for handwritten digit classification. J. Electronics (China), 2006, 23(3):379-383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700