合成孔径雷达高分辨成像及运动目标成像新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨成像处理以及运动目标的检测与成像是合成孔径雷达研究的核心内容,也是合成孔径雷达重要的研究和发展方向。本文的主要工作集中在合成孔径雷达成像算法研究,合成孔径雷达高分辨成像处理,以及运动目标的检测与成像处理三个方面。
     论文首先简要介绍了合成孔径雷达的基本工作原理,建立点目标雷达回波模型。在此基础上,讨论了合成孔径雷达距离多普勒成像算法以及Chirp-Scaling成像算法,分析了各自的特点,对两种成像算法进行了计算机仿真实验以及实际数据实验验证。
     合成孔径雷达实现几何高分辨成像处理的关键之一是进行运动补偿和聚焦处理来补偿各种原因引起的相位误差。本文研究了合成孔径雷达三种自聚焦算法,子孔径自聚焦算法、相位梯度自聚焦算法以及对比度最优自聚焦算法,分析了三种聚焦算法的原理和特点,同时对聚焦成像算法进行了计算机仿真以及实际数据实验验证。
     如何提高辐射分辨是获得高分辨合成孔径雷达图像的另一个关键问题。本文讨论了与合成孔径雷达辐射分辨特性相关的问题,相干斑噪声的产生机理以及多视处理方法克服相干斑噪声的原理。文中还对实际合成孔径观测数据进行多视处理实验分析。
     运动目标检测和成像是合成孔径雷达一个十分重要的发展方向。本文在前人工作的基础上,提出了一种新的基于分数傅立叶变换的运动目标检测和成像算法,在对该算法进行理论分析的基础上,给出了计算机仿真实验以及基于实际数据的运动目标检测和成像结果。实验证明该方法是一种有效的运动目标检测与成像算法,能够方便的在现有的系统中实现,具有的实用化潜力。
Synthetic Aperture Radar high resolution imaging, moving targets detection and imaging are key issues in the research field of Synthetic Aperture Radar. The dissertation focuses on three aspects, that is, Synthetic Aperture Radar imaging algorithms, Synthetic Aperture Radar high resolution imaging, moving targets detection and imaging.
    Firstly, the fundamentals of Synthetic Aperture Radar have been briefly introduced and the radar return signal of point target has been constructed. Two common-used Synthetic Aperture Radar imaging algorithms, Range-Doppler algorithm and Chirp-Scaling algorithm, have been analyzed and tested using compute simulation and real Synthetic Aperture Radar data.
    One key issue of the Synthetic Aperture Radar high resolution imaging is how to obtain SAR image of high geometrical resolution. The phase error reduction using motion compensation and autofocus algorithms are the essential steps in Synthetic Aperture Radar high resolution imaging. The dissertation analysis the three autofocus algorithms, namely, Map Drift autofocus algorithm. Phase Gradient Autofocus algorithm and Contrast Optimization autofocus algorithm. Meanwhile, the computer simulation and the real Synthetic Aperture Radar data are used to test these algorithms.
    The other key issue of the Synthetic Aperture Radar high resolution imaging is how to obtain SAR image of high radiometric resolution. The dissertation discusses some related issues on SAR radiometric resolution, the fundamentals of speckle noise and the suppression of speckle noise using multilook processing. The real Synthetic Aperture Radar data experiment demonstrates the effectiveness of multilook processing.
    Moving targets detection and imaging is also an important research trend of Synthetic Aperture Radar. Based on the analysis of previous research work, a novel
    
    
    
    
    moving targets detection and imaging method using fractional Fourier has been proposed in this dissertation. Its technical background has been analyzed carefully and its feasibility and effectiveness are supported by the computer simulation and the real Synthetic Aperture Radar data experiment. In addition, it is easy to be implemented in the SAR system, which enhances its potential for practical application.
引文
[1] Ausherman D.A., Kozma A., Walker J.L., et al, "Developments in Radar Imaging", IEEE Trans. on AES, 1984, 20(4), pp. 363-400
    [2] Bamler R., "A Comparison of Range-Doppler and Wave number Domain SAR Focusing Algorithm", IEEE Trans. on GE, 1992, 30(4), pp. 706-713
    [3] Bamler R., "Doppler Frequency Estimation and the Cramer-Rao Bound", IEEE Trans. on GE, 1991, 29(3), pp. 385-340
    [4] Barbarossa S., et al, "A Combined Wigner Ville and Hough Transform for Cross Term Suppression and Optimal Detection and Parameter Estimation", IEEE ICASSP'92, 1992, pp. 173-176
    [5] Barbarossa S., Farina A., "Detection and Imaging of Moving Objects with Synthetic Aperture Radar 2. Joint Time-Frequency Analysis by Wigner-Ville Distribution", Radar and Signal Processing, IEE Proceedings F, 1992, 139(1), pp. 89-97
    [6] Barbarossa S., Farina A., "Space-Time-Frequency Processing of Synthetic Aperture Radar Signal", IEEE Trans. on AES, 1994, 30(2), pp. 341-358
    [7] Berizio F., Corsini G., "Autofocusing of Inverse Synthetic Aperture Radar Images Using Contrast Optimization", IEEE Trans. on AES, 1996, 32(3), pp. 1185-1191
    [8] Brooks S.R., Miller P.F., "The Influence of Radiometric Resolution on Synthetic Aperture Radar Design Parameters", ESA SEASAT Workshop, ESA SP-154, 1979, pp. 79-85
    [9] Chang C.Y., Jin M., Curlander J.C., "Squint Mode SAR Processing algorithms", IGARSS'89, 1989, pp. 1702-1706
    [10] Chen H.C., Mcgillem C.D., "Target Motion Compensation by Spectrum Shifting in Synthetic Aperture Radar", IEEE Trans. on AES, 1992, 28(3), pp.895-901
    [11] Chen V.C., Ling H., "Time-Frequency Transforms for Radar Imaging and Signal Analysis", Artech House, Inc. 2002
    
    
    [12] Cafforio C., Prati C., Rocca F., "SAR Data Focusing Using Seismic Migration Techniques", IEEE Trans. on AES, 1991, 27(2), pp. 194-207
    [13] Carrara W.G., Goodman R.S., Majewski R.M., "Spotlight Synthetic Aperture Radar: Signal Processing Algorithms", Artech House, Boston, MA, 1995
    [14] Chen H., McGillem C.D., "Target Motion Compensation by Spectrum Shifting in Synthetic Aperture Radar", IEEE Trans. on AES, 1992, 28(3), pp.895-901
    [15] Curlander J.C., McDonough R.H., "Synthetic Aperture Radar: System and Signal Processing", John Wiley & Sons Inc., New York, 1991
    [16] Davidson G.W., Cummiing I.G., Ito M.R., "A Chirp Scaling Approach for Processing Squint Mode SAR Data", IEEE Trans. on GE, 1992, 30(1), pp.121-133
    [17] Elachi C., Bicknell T., "Spacebome Synthetic-Aperture Imaging Radars: Application, Techniques, and Technology", Proceeding of IEEE, 1982, 70(10), pp. 1174-1209
    [18] Eichel P.H., Jakowatz C.V. Jr., "Phase-gradient Algorithm as an Optimal Estimator of the Phase Derivative", Optics Letters, Oct. 1989, 14(20), pp. 1101-1103
    [19] Eichel P.H., Ghiglia D.C., Jakowatz C.V. Jr, "Speckle Processing Method for Synthetic-Aperture-Radar Phase Correction", Optics Letters, Oct. 1989, 14(20), pp. 1-3
    [20] Freeman A., "Simple MTI Using Synthetic Aperture Radar", IGARSS'84,1984, pp. 65-69
    [21] Freeman A., Currie A., "Synthetic Aperture Radar (SAR) Images of Moving Targets", GEC Journal of Research, 1987, 5(2), pp. 106-115
    [22] Frost V.S., "Probability of Error and Radiometric Resolution for Target Discrimination in Radar Images", IEEE Trans. on GE, 1984, 22(2),pp.121-125
    [23] Goodman J.M., et al, "Some Fundamental Properties of Speckle", J. Opt. Soc.Amer., 1976, 66(11), pp. 1145-1150
    
    
    [24] Jackowatz C.V., Wahl D.E., Eichel P.H., Ghiglia D.C., Thompson P.T., "Spotlight Mode Synthetic Aperture Radar: a Signal-Processing Approach",Kluwer Academic, Boston, 1996
    [25] Jin M.Y., Wu C., "A SAR Correlation Algorithm Which Accommodates Large Range Migration", IEEE Trans. on GE, 1984, 22(6), pp. 592-597
    [26] Kirk J.C. Jr., "Motion Compensation for Synthetic Aperture Radar", IEEE Trans. on AES, 1975, 11(3), pp. 338-348
    [27] Kutay A., Ozaktas H.M., Ankan O., Onural L., "Optimal Filtering in Fractional Fourier Domains", IEEE Trans. on Signal Processing, 1997, 45(5),pp. 1129-1143
    [28] Lanari R., "A New Method for the Compensation of the SAR Range Cell Migration Based on the Chirp-Z Transform", IEEE Trans. on GE, 1995, 33(5), pp. 1296-1299
    [29] Lanari R., "A New Method for the Wide Field Synthetic Aperture Radar Processing", IGARSS'94, 1994, pp. 1961-1963
    [30] Lee J.S., "Speckle Suppression and Analysis of Synthetic Aperture Radar Images", Opt. Eng., 1986, 25(5), pp. 636-643
    [31] Li F.K., Croft C., Held D.N., "Comparison of Several Techniques to Obtain Multiple-Look SAR Imagery", IEEE Trans. on GE, 1983, 21 (3), pp. 370-375
    [32] Li F.K., Goldstein R.M., "Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radars," IEEE Trans. on GE, 1990, 28(1), pp. 88-97
    [33] Li F.K., Held D.N., Curlander J.C., Wu C., "Doppler Parameter Estimation for Spacebome Synthetic Aperture Radars", IEEE Trans. on GE, 1985, 23(3), pp. 47-56
    [34] Lohmann A.W., Soffer B.H., "Relationships between the Radon-Wigner and fractional Fourier transform", J. Opt. Soc. Am. A, 1994, 11(6), pp. 1798-1801
    [35] Madsen S.N., "Estimating the Doppler Centroid of SAR Data", IEEE Trans.on AES, 1989, 25(2), pp. 134-140
    [36] Moore R.K., "Tradeoff between Picture Element Dimensions andNonconherent Averaging in Side-looking Airborne Radar", IEEE Trans. on
    
    AES, 1979, 15(5), pp. 697-708
    [37] Moreira A., "Improved Multilook Techniques Applied to SAR and SCANSAR Imagery", IEEE Trans. on GE, 1991, 29(4), pp. 529-534
    [38] Moreira A., Mittermayer J., Scheiber R., "Extended Chirp-Scaling Algorithm for Air-and Space-borne SAR Data Processing in Stripmap and Scan SAR Imaging Modes", IEEE Trans. on GE, 1996, 32(5), pp. 1123-1136
    [39] Moreira J.R., Keydel W., "A New MTI-SAR Approach Using the Reflectivity Displacement Method", IEEE Trans. on GE, 1995, 33(5), pp. 1238-1244
    [40] Ouchi K., "Multilook Images of Ocean Wave by Synthetic Aperture Radar", IEEE Trans. on Antennas and Propagation, 1987, 35(3), pp. 313-317
    [41] Ouchi K., "On the Multilook Images of Moving Targets by Synthetic Aperture Radar", IEEE Trans on AES, 1985, 33(8), pp. 823-827
    [42] Ozaktas H.M., Arikan O., Kutay A., Bozdagi G., "Digital Computation of the Fractional Fourier Transform", IEEE Trans. on Signal Processing, 1996, 44(9), pp. 2141-2150
    [43] Porcello L.J., et al, "Speckle Reduction in Synthetic Aperture Radars", Int.Opt. Soc. Amer., 1976, 66(11), pp. 1305-1311
    [44] Raney R.K., "Synthetic Aperture Imaging Radar and Moving Targets", IEEE Trans. on AES, 1971, 7(3), pp. 499-505
    [45] Raney R.K., Runge H., Bamler R., et al "Precision SAR Processing Using Chirp Scaling", IEEE Trans. on GE, 1994, 32(4), pp. 786-799
    [46] Runge H., Bamler R., "A Novel High Precision SAR Focusing algorithm Based on Chirp Scaling", IGARSS'92, 1992, pp. 372-375
    [47] Smith A.M., "A New Approach to Range-Doppler SAR Processing", International Journal of Remote Sensing, 1991, 12 (2), pp. 235-251
    [48] Soumekh M., "Synthetic Aperture Radar Signal Processing with MATLAB Algorithms", John Wiley and Sons, New York, 1999
    [49] Sun H.B., Liu G.S., Gu H., "A New Approach to Detect Moving Target for Airborne SAR-the Fractional Fourier Transform", EUSAR'2002, 2002
    
    
    [50] Sun H.B., Liu G.S., Gu H., Su W.M., "Application of the Fractional Fourier Transform to Moving Target Detection in Airborne SAR", IEEE Trans. on AES, 2002, 38(4), pp. 1416-1424
    [51] Wahl D.E., Eichel P.H., Ghiglia D.C., Jakowatz C.V. Jr., "Phase Gradient Autofocus-a Robust Tool for High Resolution SAR Phase Correction", IEEE Trans. on AES, 1994, 30(3), pp. 827-835
    [52] Wu C., Lin K.Y., Jin M.Y., "Modeling and Correlation Algorithm for Space borne SAR Signal", IEEE Trans. on AES, 1982, 18 (5), pp. 563-575
    [53] 杜向锋,机载SAR运动目标成像的新方法研究,中科院电子所硕士论文,1997
    [54] 郭华东等,《感知天地——信息获取与处理技术》,科学出版社,2000年11月
    [55] 何映霞,机载SAR运动目标实时检测方案若干技术问题的研究,中科院电子所博士论文,2000
    [56] 李刚,机载高分辨率合成孔径雷达方位向压缩加速板设计及运动目标检测/成像工程应用算法研究,中科院电子所博士论文,1999
    [57] 李立伟,高分辨机载合成孔径雷达中运动补偿问题的研究 北京航空航天大学博士论文,1998
    [58] 刘永坦,《雷达成像技术》,科学出版社,1999年10月
    [59] 刘月花,高分辨机载SAR信号处理研究——自聚焦算法,中科院电子所硕士论文,2001
    [60] 乌拉比F.T.,穆尔R.K.,冯健超著,侯世昌,马锡冠等译,《微波遥感》第1卷,科学出版社,1988年4月
    [61] 乌拉比F.T.,穆尔R.K.,冯健超著,侯世昌,马锡冠等译,《微波遥感》第2卷,科学出版社,1988年4月
    [62] 吴一戎,朱敏慧,“合成孔径雷达技术的发展现状与趋势”,遥感技术与应用,2000年6月
    
    
    [63] 杨士中,《合成孔径雷达》,国防工业出版社,1981年
    [64] 禹卫东,合成孔径雷达信号处理研究,南京航空航天大学博士学位论文,1997
    [65] 袁孝康,“合成孔径雷达的辐射分辨特性”,上海航天,1998年第3期
    [66] 张冰尘,合成孔径雷达实用化运动目标检测和成像技术研究,中科院电子所硕士论文,1999
    [67] 张澄波,《综合孔径雷达——原理、系统分析与应用》,科学出版社,1989年11月
    [68] 张贤达,保铮,《非平稳信号分析与处理》,国防工业出版社,1998年9月
    [69] 钟青春,从合成孔径雷达外场数据中检测和成像运动目标,中科院电子所硕士论文,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700