氟接触工人氟负荷与骨损伤早期指标的调查分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟是人体的必需微量元素,但过量摄入可引起机体以骨骼改变为主的全身性损害。随着对健康要求的提高,国内外学者越来越关注筛选导致高氟的危险因素,以及确定氟性骨损伤的早期灵敏指标。本文通过现场职业人群调查和实验室检测相结合,系统探讨了影响体内氟负荷的相关因素,以及氟对骨损伤的早期灵敏指标,为氟暴露人群提供早期、灵敏、经济实用的健康监测指标。
     第一部分氟负荷(血氟,尿氟含量)与相关因素的调查分析
     目的调查铝厂不同的车间五年以上工龄的男性工人的氟负荷情况,并分析年龄、工龄、吸烟、饮酒、工种共五个相关因素与血清氟浓度、尿氟浓度的关系。
     内容与方法本次研究对象来自湖北某铝业集团的电解车间、铝杆车间和机关的男性从业人员共212人以及在当地无迁徙史、年龄为25~45岁、无工业氟接触史的男性50名。测定各车间和集镇空气中氟浓度和研究对象血清氟、尿氟浓度。并调查研究对象的年龄、工龄、吸烟、饮酒、工种共5个相关因素的分布。
     结果电解车间和铝杆车间空气中氟浓度(2.31±1.01mg/m3;0.26±0.10mg/m3)明显高于对照组(0.10±0.05mg/m3),差异有显著性(P<0.01)。电解车间研究对象的血清氟浓度和尿氟浓度(0.22±0.06mg/L;7.96±8.41mg/L)明显高于对照组(0.16±0.03mg/L;2.19±1.02mg/L),差异有显著性(P<0.01)。铝杆车间研究对象的血清氟浓度和尿氟浓度(0.22±0.07mg/L;4.39±5.21mg/L)明显高于对照组(0.16±0.03mg/L;2.19±1.02mg/L),差异有显著性(P<0.01)。高年龄组研究对象的血清氟浓度和尿氟浓度(0.22±0.08mg/L;5.10±4.01mg/L)明显高于低年龄组(0.19±0.05 mg/L;4.27±4.92mg/L),差异有显著性(P<0.05)。高工龄组研究对象的血清氟浓度和尿氟浓度(0.22±0.07mg/L;6.01±7.05mg/L)明显高于低工组(0.20±0.06mg/L;3.22±4.32mg/L),差异有显著性(P<0.05)。经常吸烟组研究对象的血清氟浓度和尿氟浓度(0.22±0.04mg/L;5.73±4.92mg/L)明显高于不吸烟组(0.19±0.05mg/L;4.33±3.96mg/L),差异有显著性(P<0.05)。各饮酒组之间血清氟、尿氟浓度比较差异无显著性(P>0.05)。
     结论电解车间和铝杆车间研究对象的血清氟浓度和尿氟浓度明显增高,年龄、工龄、工种、吸烟4个因素对血清氟、尿氟浓度的影响差异有显著性,可以认为是影响血清氟、尿氟浓度的危险因素;饮酒对血清氟、尿氟浓度的影响差异有显著性,尚不能认为是影响血清氟、尿氟浓度的危险因素。
     第二部分氟负荷与血清骨钙素、降钙素含量的分析
     目的通过血清骨钙素、降钙素浓度的检测,探讨工业氟性骨损伤早期指标,进一步阐述骨钙素、降钙素在工业氟性骨损伤的作用机理。通过对该指标的监测,以筛选高危人群,评估人群健康风险,以便对高风险人群进行重点预防。
     内容与方法在第一部分对血清氟、尿氟浓度分析的基础上,把90个接氟人员按照血清氟、尿氟浓度的高低分为低氟负荷组:尿氟浓度≤2.0mg/L并且血清氟浓度≤0.17mg/L;中氟负荷组:2.0mg/L<尿氟浓度≤4.0mg/L并且0.17mg/L<血清氟浓度≤0.20mg/L;高氟负荷组:尿氟浓度>4.0 mg/L并且血清氟浓度>0.20mg/L。采用放射免疫法测定血清中的骨钙素、降钙素浓度。
     结果高氟负荷组的血清骨钙素浓度和降钙素浓度(7.37±2.18ng/mL;84.11±25.45 pg/mL)明显高于对照组(4.87±1.85ng/mL;59.96±21.16pg/mL),差异有显著性(P<0.01)。中氟负荷组的血清骨钙素浓度和降钙素浓度(5.99±2.03ng/mL;71.92±13.29pg/mL)明显高于对照组(4.87±1.85ng/mL;59.96±21.16pg/mL),差异有显著性(P<0.05)。高氟负荷组的血清骨钙素浓度和降钙素浓度(7.37±2.18ng/mL;84.11±25.45pg/mL )明显高于正常参考浓度( 5.40±3.30ng/mL ; 72.00±7.00pg/mL),差异有显著性(P<0.01)。
     结论各氟负荷组的血清骨钙素、降钙素浓度之间的比较差异有显著性,与正常参考浓度比较差异也有显著性。认为血清骨钙素、降钙素浓度可作为工业性氟性骨损伤的早期诊断的参考指标。
Fluoride is an essential element for human body, but excess intake of fluoride in human body can mainlycause damage of teeth and bone. Many scholars paid close attention to screening risks factors of high fluoride in organism and it is very essential to indentify the primary sensitive indicatrix for forecasting fluoride bone injury. Experimental study and field research were used to explore influencing factors for fluoride concentration in organism and search for early sensitive index for fluoride bone injury. The purpose of the study is to provide early, sensitive, economical and practical indexes for the people exposed to fluoride.
     Part I Analysis of about fluoride burden(serum fluoride , urine fluoride)and influnencing factors
     Objective This study is cohort study to examine fluoride burden state among male workers whom were from different aluminiun factory workshop with five yeare length of service, And analyze association of five risk factors-Workmen's age, length of service, smoking, drinking and workshop.
     Method and Content 212 male subjects from an aluminiun factory in HUBEI province were selected, whom come from institution ,aluminum pole workshop and potroom . 50 male subjects without exposure history of industry fluoride (age25~45) from the same region were recruited. The subjects with the diseases of liver and kidney what influence fluoride absorption and egestion were excluded. The subjects who take medicine hormone in three month were excluded. Evaluate atmosphere fluoride of workshops and town, serum fluoride and urine fluoride of objects. Observe five risk factors-Workmen's age, length of service, smoking, drinking and workshop.
     Results The atmosphere fluoride of aluminum pole workshop and potroom(2.31±1.01 mg/m3; 0.26±0.10 mg/m3) is more than atmosphere fluoride of control group(0.10±0.05 mg/m3)with a significant difference(P<0.01). The urine fluoride and serum fluoride of potroom (0.22±0.06 mg/L;7.96±8.41 mg/L) is more than urine fluoride and serum fluoride of control group(0.16±0.03 mg/L;2.19±1.02 mg/L)with a significant difference(P<0.01). The urine fluoride and serum fluoride of aluminum pole workshop (0.22±0.07mg/L;4.39±5.21mg/L)is more than urine fluoride and serum fluoride of control group(0.16±0.03 mg/L;2.19±1.02 mg/L)with a significant difference(P<0.01). The urine fluoride and serum fluoride of the high age group(0.22±0.08mg/L;5.10±4.01mg/L)is more than urine fluoride and serum fluoride of control group(0.19±0.05 mg/L;4.27±4.92 mg/L)with a significant difference(P<0.05). The urine fluoride and serum fluoride of the long length of service group(0.22±0.07mg/L;6.01±7.05mg/L)is more than urine fluoride and serum fluoride of control group(0.20±0.06mg/L;3.22±4.32mg/L)with a significant difference(P<0.05).The urine fluoride and serum fluoride of the quaque smoking group(0.22±0.04mg/L;5.73±4.92mg/L)is more than urine fluoride and serum fluoride of control group(0.19±0.05mg/L;4.33±3.96mg/L)with a significant difference(P<0.05). The urine fluoride and serum fluoride of all drinking groups without a significant difference(P>0.05).
     Conclusions Urine fluoride and serum fluoride of object whom come from potroom and aluminum pole workshop more than the control group. The factors- Workmen's age, length of service, smoking and workshop influence urin fluoride and serum fluoride with a significant difference. The risk factors-drinking influence urin fluoride and serum fluoride without a significant difference.we cannot think. The factor-drinking is a risk factor what influence urine fluoride and serum fluoride.
     Part II Analysis about fluoride burden and serum osteocalcin, serum calcitionin
     Objective This study is to investigate the early indexes of industry bone injury by examine serum osteocalcin and serum calcitonin, to explain the mechanism of action of serum osteocalcin and serum calcitonin about industry bone injury. We will discover high-risk group and evaluate risk-health by examine serum osteocalcin and serum calcitonin.so that we will focal point safeguard the crowd whom with high risk-health.
     Method and Content We group 90 hapto-fluoride subjects into three groups according to urine fluoride and serum fluoride, base on the analysis of urine fluoride and serum fluoride in part I: low fluoride burden group(urine fluoride≤2.0 mg/L and serum fluoride≤0.17mg/L); midst fluoride burden group(2.0 mg/L< urine fluoride≤4.0 mg/L and 0.17mg/L4.0 mg/L and serum fluoride>0.20mg/L)。we examine serum osteocalcin and serum calcitonin by radio-immunity method.
     Results The serum osteocalcin and serum calcitonin of high fluoride burden group (7.37±2.18ng/mL;84.11±25.45 pg/mL)is more than serum osteocalcin and serum calcitonin of control group(4.87±1.85ng/mL;59.96±21.16pg/mL)with a significant difference(P<0.01). The serum osteocalcin and serum calcitonin of midst fluoride burden group (5.99±2.03ng/mL;71.92±13.29 pg/mL)is more than serum osteocalcin and serum calcitonin of control group(4.87±1.85ng/mL;59.96±21.16pg/mL)with a significant difference(P<0.05). The serum osteocalcin and serum calcitonin of high fluoride burden group (7.37±2.18ng/mL;84.11±25.45 pg/mL)is more than serum osteocalcin and serum calcitonin of normal reference group(5.40±3.30ng/mL;72.00±7.00pg/mL)with a significant difference(P<0.01).
     Conclusions The serum osteocalcin and serum calcitonin of all fluoride burden groups with a significant difference, and compare with serum osteocalcin and serum calcitonin of normal reference group with a significant difference.So we think that the serum osteocalcin and serum calcitonin are early diagnosis reference indexes of industry bone injury.
引文
[1] WHO (World Health Organization).Trace elements in human mutrition and health[R]. Geneva: World Health Organization, 1996.
    [2] Carbo-Fluoride Compounds, Chemistry, Biochemistry. Biological Activities[R]. Elsevier, Admsterdm-London-New York 1992.
    [3] Hughes JP, et al.Understanding Occupational Exposure to Fluoride[J].JOM 1977, 19:11.
    [4] Carnow BW, et al. Industrial Fluorosis[J]. Fluoride 1981,14:172.
    [5]卫生部饮茶型氟中毒专家调查组.饮茶型氟骨症病情与影响因素的Logistic回归分析[J].中国地方病防治杂志,2000,15(4):193~195.
    [6]陈璐璐,童安莉,余达林,等.氟化钠对乳鼠成骨细胞c-los、c-jtin基因表达及细增殖的影响[J].中华预防医学杂志,2000,34(6):327~329.
    [7]刘秉慈,许增禄,缪庆,等.实验性氟中毒骨组织中Ⅱ型胶原基因表达及结构的改变[J].中华预防医学杂志,2003,37(4):243~246.
    [8]罗海萍.日本女性血清氟离子浓度正常值研究[J].国外医学医学地理分册,2006,21 (2):87~88.
    [9] Kertesz P, et al. Monitoring Occupational Fluoride Exposure through Urinary and Salivary Tests [J]. Fluoride 1989,22(2):85~89.
    [10] Editorial-Urinary Fluoride: Measure of Toxicity [J]. Fluoride 1984,17(4): 207~209.
    [11] Raja RD, et al. Urinary Fluoride Excretion in Skeletal Fluorosis. [J] Fluoride 1984,17; 243~246.
    [12] Waldbott GL, et al. Editorial-The Value of Urinary Fluoride Determinations.[J] Fluoride.1982, 15:109.
    [13]黄意府,王清海,林惠,等.电解铝作业工人尿氟浓度分析[J].广西预防医学, 2005,11(1):30~31.
    [14]王空军,张瑞琴,连轶伟,等.氟作业工人的尿氟调查[J].工业卫生与职业病, 1997,23(6):380.
    [15]何凤生,王世俊,任引津.中华职业医学[M].北京:人民卫生出版社,1999,382~389.
    [16]陆瑞元.低浓度接触氟化氢影响男工尿氟因素探讨[J].职业卫生与应急救援, 1999, 17(1):19~21.
    [17]陈亚珍,李尚朝.磷肥生产中氟化物对作业工人健康的危[J].职业与健康, 2005, 21(7):973~975.
    [18] Yang Z, et al. Industrial Fluoride Pollution in the Metallurgical Industry in China[J]. Fluoride 1987,20: 118~125.
    [19]万桂敏,莫志亚,刘忠杰,等.地方性氟中毒患者多项检验指标的测定及分析[J].中国地方病学杂志,2000,20(2):137~139.
    [20]韦耀东,李朝敢,张树球.电解铝厂人员尿氟及尿羟脯氨酸测定分析[J].右江民族医学院学报,2000,22(6):877~878.
    [21]蔡建峰,王志勇,林文敏,等.磷肥厂接触氟化物工人尿氟与血氟测定结果研究[J].海峡预防医学杂志, 2003,9(3):37.
    [22]刘克俭,余达林,陈荣安,等.氟暴露对机体骨外系统的研究(二)兼与《现行工业性氟病诊断标准及处理原则》的商榷[J].工业卫生与职业病,1996,22(6):350~352.
    [23]孙灿林,姜琳.吸烟对异氟醚吸入麻醉时无机氟代谢的影响[J].中国临床医学,2004, 11(2):243~245.
    [24]王海英,李静,周超,等.慢性饮酒对小肠菌群的影响[J].胃肠病学,2007,12 (11): 654~657.
    [25]中华人民共和国国家标准,工业性氟并诊断标准及处理原则(GB3234-82),1982.
    [26]崔舜,余达林,余立凯.实验性氟暴露对成骨细胞成骨功能表达的影响[J] .中华劳动卫生职业病杂志,2002, 20(1):57~58.
    [27]陈璐璐,柯俐,曾天舒,等.氟化钠及其拮抗剂硫酸锌对成骨细胞的影响[J].国骨质疏松杂志,2000,6(3):5~8.
    [28]谭皓,刘克俭,鲁翠荣,等.氟致骨相损伤早期诊断指标的实验研究[J].工业卫生与职业病,2005,31 (3):149~152.
    [29]蔡锡麟,临床放射免疫学[M].原子能出版社,1994.150.
    [30] Carlson CH, Armstrong WD, Singer L. Distribution, migration and binding of whole blood fluoride evaluated with radio fluoride [J]. Am J Physiol, 1990, 199 :187~190.
    [31] Hosking DJ, Chamberlain MJ. Studies in man with fluoride [J].Clin Sci 1977, 42: 153~161.
    [32] WHO.Fluorides and health [R].WHO Monograph series. NO.59. Geneva, 1990, 93~161.
    [33]刘昌汉,主编.地方性氟中毒防治指南[M].北京:人民卫生出版社,1988,14~73.
    [34]李东.破骨细胞骨吸收机制研究进展[J].生殖医学杂志,2001,10(1):46~49.
    [35]刘继中,胡蕴玉.破骨细胞骨吸收机制的研究进展[J].中国矫形外科杂志, 2002, 10(4):401~402.
    [36]刘忠厚.骨质疏松症[M].北京:化学工业出版社,1992,403~415.
    [37] Price PA, Williamson MK, Lothringer JW. Origin of the vitamin K-de-pendent bone protein found in plasma and its clearance by kidney and bone[J]. Biol Chem, 1981, 256:12760~12766.
    [38] Huauschka PV,Lian JB,Gallop PM.Direct identification of the calci-um-binding amino acid,γ-carboxyglutamate in mineralizeal tissue[J]. ProcNatl Acad Sci USA, 1995, 72:925~929.
    [39] Guylaine Ferland. Vitamin K-dependent protein an update[J]. Nutri Rev, 1998, 56: 223~230.
    [40]蒋明,朱立平,林孝义,主编.风湿病学[M].北京:科学出版社,1998.1658
    [41]梁君慧,陈风琴,成小梅.氟骨症患者骨密度与血清骨钙素和生化指标的相关分析[J].中国地方病学杂志,2002,21 (4) :304~305.
    [42]王莹,顾祖维,张胜年,主编.现代职业医学[M].北京:人民卫生出版社,1996,262.
    [43] Jurutka PW, MacDonald PN, Nakajima S, et al. Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor[J]. Cell Biochem.2002, 85:435~437.
    [44]王春红,徐晖,李广生,等.氟对体外培养骨髓基质细胞表达骨形成蛋白和型胶原的影响[J].中国地方病学杂志,2007,26(5):501~504.
    [45] Xiao G. Jiang D, Gopalakrishnan R, et al. Fibroblast growth factory 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2[J]. Biol Chem, 2002, 277: 36181~36187.
    [46] Locatelli F, Cannatar-Andia JB, Drueke TB, et al. Manngement of disturbances of calcium and phosphate metabolism in chronic renal insufficiency with emphasis on thecontrol of hyperpbospba -taemia[J]. Nephrol Dial Transplant, 2002, 17:723~731.
    [47] Boguslawski G, Hale LV, YU XP, et al. Activation of osteocalcin transcription involves interaction of protein kinase A-and protein kinase C-dependent pathways [J]. Biol Chem, 2000, 275:999~1006.
    [48] Warshawsky H, Goltzman D, Rouleau MF, et al.Direct in vivo demonstration by radioautography of specific binding sites for calcitonin in skeletal and renal tissue of rat [J]. Cell Biol. 1980, 85(3):682~687.
    [49] Kobayashi T, Sugimoto T, Saijoh K, et al. Calcitonin in directly acts on mouse osteoblastic MC3T3 E1 cells to stimulate mRNA expression of c-fos , insulin-like growth factor I and osteoblastic phenotypes(type collagen and osteocalcin) [J]. Biochem Biophys Commun.1994, 199(2):876~878.
    [50] Drissi H, Hott M, Marie PJ,et al. Expression of the CT/CGRP gene and its regulation by dibutyry1 cyclic adenosine monophosphate in human osteoblastic cells [J]. Bone Miner Res. 1997, 12(11):1805~1814.
    [51]朱建民,方浩,陈新刚,等.降钙素对体外培养成骨细胞的影响[J].中国骨质疏松杂志. 2001,7(2):147~148.
    [52]黄志军,李克俊,候岗,等.氟作业工人生化指标相关关系研究[J].中华劳动卫生职业病杂志,2002,20(3):192~194.
    [53]李培川,李克俊,黄志军,等.“抗氟灵”的排氟作用及拮抗氟危害的效果观察[J].河南医药信息,1996,4(7):1~41.
    [54] A Machhoy-Mokrzynaka, Z Machoy-Azczecin. Another look at the interaction of fluorine with calcium [J]. Fluoride, 1993, 26 (4) 237~239.
    [55]谢春,张震,张华,等.燃煤型氟骨症早期大鼠血清PTH-CT的变化[J].中国公共卫生,2005,21(12) :1480~1482.
    [56]朱静媛,巴月,李二卫,等.高氟饮水对人群激素水平的影响[J].郑州大学学报(医学版),2007,42(1):58~60.
    [57]姚笠,邵庆亮,李晶,等.高氟地区新生儿脐血血清骨钙素与降钙素测定及分析[J].中国地方病学杂志,2005,24(1):83~84.
    [1]杨克敌.微量元素与健康[M].第1版.北京:科学出版社,2003,242.
    [2]朱宪彝.代谢性骨病[M].天津:天津科学技术出版社,1989,415.
    [3]李广生,徐辉.再谈慢性氟中毒与氧化应激[J].中国地方病学杂志,2005,24: 324.
    [4] Reddy GB, Khandare AL, Reddy PY, et al. Antioxidant defence system and lipid peroxidation in patients with skeletal fluorosis and in fluoride-intoxicated rabbits [J]. Toxicol Sci, 2003,72:363~368.
    [5] Shivarajashankara YM, Shivarashankara AR, Rao SH, et al. Oxidative stress in children with endemic skeletal fluorosis [J]. Fluoride, 2001, 34: 103~107.
    [6]徐辉,张静敏,常明,等. Bcl22在染氟肾小管上皮细胞氧化应激态中的作用[J].中国地方病学杂志,2005, 24: 17220.
    [7]陈树君,孙玉敏,孟羽俊,等.慢性氟中毒大鼠睾丸组织总抗氧化能力与一氧化氮合酶和一氧化氮水平的变化[J].环境与健康杂志,2007,24(8): 627~629.
    [8] Fareley JR, Wergeda l J E, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells [J].Science,1983,222:330~332.
    [9] Dequeker J, Declerck K, Pellenberg, et al. Fluorine the treatment of osteoporosis: an overview of thirty years clinical research[J].Schweiz Med Wochenschr,1993,123 (47) : 2228~2234.
    [10] Chavassieux P, Boivin G, Seree CM ,et al .Fluoride increases rat osteob last function and pop u la t ion after in vivo admin is ra2t ion but no t after in vitro expo sure[J].Bone, 1993,14(5):721~725.
    [11]余达林,崔舜.氟化钠对成骨细胞增殖及分化影响的实验研究[J].同济医科大学学报,2000,29(5):471~473.
    [12] Helen E, Gruber PHD , D avid J ,et a l the effect of fluoride on bone [J].Gruber and Baylink,1991,267:264~277.
    [13]任立群,李广生,孙波.不同钙含量饲养条件下氟中毒对大鼠骨转换的影响[J].中华病理学杂志,1991,26(5):277~280.
    [14]孙梅,李广生.骨软化性氟骨症发病机理研究[J].中国地方病学杂志,1993,12(3):132~135.
    [15]任立群,李广生,孙波.中长周期慢性氟中毒对大鼠骨转换的影响及机理研究[J].中国地方病学杂志,1998,17(2):75~78.
    [16] Frank J. A new concept of the effect of fluoride on bone [J].Fluoride, 1979, 12 (4):195.
    [17] Bely M. The inhibited enchondral ossification in experimental osteogluorosis in rats [J].Fluoride,1991,24 (1) :17~22 .
    [18] Srivastava RN , G ill D S, Mordgil,et a l. Normalionized calcium , parathyroid hypersecretion, and slsvated o steocalcin in a family with fluorosis [J]. Metablism , 1989, 38 (2) : 120~124.
    [19] Pettifor JM, Schnitzler CM, Ross FP, et a l. Endemic skeletal flurosis in children: hypocakemia and the p resence of renal resistance to parathyroid hormone [J].Bone M iner, 1989, 7 (3) : 275~288.
    [20] Farely JR, Hall SL , Tarbaux NM . Calcitonin (but no t calcitonin gene-related peptide) increases mouse bone cell proliferation in a dose-dependent manner, and increases mouse bone formation ,alone and in combination with fluo- ride [J].Calcif Tissue In t, 1989, 45 (2) : 214~221.
    [21]刘晓秋,薛琰等.氟化物对骨形成中成骨细胞的影响及机制[J].地方病学杂志.2000, 19 (5) : 394~395.
    [22] Wallach S, Rousseau G, Martin L. Effects of calcitonin on animal and in vitro models of skeletal metabolism [J].Bone, 1999, 25:509~516.
    [23] Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calciteonin[J]. Clin Invest, 1999,104:1363~1374.
    [24] Jika RL. Cytokines, bone remodeling, and estrogen deficiency: A 1998 update [J]. Bone, 1998, 23 (2) : 75~81.
    [25] Watts CKW,King RJB.Over expression of estrogen reactor in H TB 96 hum an osteo sarcomm a cells result s in estrogen-induced growth inhibition and recrptor cross talk [J].Bone Miner Res,1994 9 (8): 1251~1258.
    [26] Huo B ,Dossing DA ,Dimuzio M T.Genera t ion and characterization of a hum an osteosarcom a cell line stably transfected with the hum an estrogen receptor gene [J].Bone Miner Res , 1995, 10 (5) : 769~781.
    [27]刘凤,刘开泰,李灵芝,等.氟化物对成骨细胞增殖和分化的影响[J].地方病通报,2004,19(3):10.
    [28]龙丽,李灵芝,刘开泰.氟化钠对成骨样细胞功能表达影响的研究[J].中国预防医学志,2004,5(3):168~171.
    [29]徐顺清,郑刚,李明健.氟对骨形态发生蛋白的直接作用[J].中华预防医学杂志,2000,34 (4): 215~217.
    [30] Hock JM, Centrella M, Canalis E. IGF-1 has independent effects on bone matrix formation and cell replica t ion [J]. Endocrinology, 1988, 122 (1) : 254~260.
    [31] Ammamm P, Rizzoli R, Caverzasio J, et a l. Fluoride potentiates the osteogenic effect s of IGF-1 in aged ovariectomized rats [J]. Bone, 1996, 22 (1) : 39~43.
    [32] Hughes D E, Wright KR, Mundy GR, et a l. TGF induces osteoclast apoptosis in vitro [J]. Bone Miner Res, 1994, 9 (supp l) : 71.
    [33] Reed BY, Zerwekh JE, Antich PP ,et a l. Fluoride-stimulated [3H] thymidine up take in hum an osteoblastic o steosarcom a cell line is dependent on t ransforming growth factor beta [J].Bone Miner Res, 1993, 8 (1) : 19~25.
    [34]尹飚,苏增贵,彭杰,等.碱性成纤维细胞因子影响兔成骨细胞增殖与分化的实验研究[J].广州医学院学报,2001,29 (1) : 22~24.
    [35] Caverzasio J , Palmer G, Bonjou r JP. Fluoride: mode of action [J].Bone, 1998, 22 (6) : 585~589.
    [36] Lau KH , Farley JR , Freema TK, et a l. A proposed mechanism of the mitogenic action of fluoride on bone cells: inhibition of the activity of an osteoblast acid phosphatase [J]. M etabilism, 1989, 38 (9) : 858~867.
    [37] Lau KHW , Wu LW , Yoon HK, et a l. Inhibition of phosphotyrosine dephosphorylation dephosphorylation (p-tyr ) lead s to increasee ptyr phosphorylation of MAPK inase (MAPK), MAPK activity, and hum an bone cell proliferation [J]. Bone,1995, 16( l) , 96.
    [38] Burgener D , Bonjour J P , Caverzasio J. Fluoride increases tyro sine activity in osteoblast-like cell: tegulatory role for the stimelation of cell proliferation and Pitran sport across the plasma membrane [J].Bone Miner Res, 1995, 10 (1) : 164~171.
    [39] Caverzasio J , Palmer G, Suzuki A ,et a l. Mechanism of the mitogenic effect of fluoride on osteoblast-like cells: evidences for a G-protein-dependent tyrosine pho sphorylation process [J].Bone Miner Res. 1997, 12(12):1975~1983.
    [40] Caverzasio J , Imai T , Amman P, et a l. Aluminum potentiates the effect of fluoride on tyrosine phosphorylat -ion and osteoblast replication in vitro and bone mass in vivo [J]. Bone Mier Res , 1996, 11(1) : 46~55.
    [41] Susa M. Hetero trimetric Gproteins as fluoride target s in bone (review)[J]. Int J Mol Med, 1999, 3(2): 115~126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700