六盘山北侧叠叠沟流域华北落叶松人工林蒸腾特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国西部地区,由于受独特的自然地理条件限制,水分极其短缺,随着人口的增加和对自然资源长期不合理的开发利用以及降水分布的不均匀,造成干旱缺水的矛盾日益加大,使得西北地区植被生长严重受限,迫切需要研究植被的水分利用机理,以提高植被的存活率。本研究选择宁夏六盘山叠叠沟小流域试验区为试验地,于2008年生长季利用热扩散技术对当地主要造林树种华北落叶松人工林蒸腾耗水的时空变化规律及其影响因子进行研究,研究结果对提高半干旱地区森林植被建设和管理的理论与技术意义重大,并能更好的调节森林植被与水资源管理之间的关系,为当地植被恢复与植被建设提供科学指导,主要结论包括以下几个方面:
     (1)华北落叶松人工林蒸腾耗水变化研究表明:树干液流速率在凌晨到清晨数值最小,中午前后最高,夜间最低,在8:00-18:00液流量占全天液流总量的70%以上,在三种天气条件下液流速率峰值出现在10:00-16:00的百分比依次为98.61%、84.49%和55.82%;夜间液流速率呈“L”型,曲线在晴天比较平滑,阴天波动较大,雨天最平稳;阴天、雨天夜间的耗水量占白天的比值为10.6%~29.6%,晴天比例更大,分析夜间树木耗水量发现水分亏缺条件下,夜间平均耗水量占全天的12.81%,而水分充足条件下比例则上升到21.65%。各月的累计液流量大小为6月>5月>7月>8月>9月>10月。
     (2)土壤水分对蒸腾耗水的研究表明:土壤水分与降雨同步性较强,土壤水分亏缺下各层土壤水势变化幅度为20-40cm>40-60cm>0-20cm,土壤水分充足时20-40cm>0-20cm>40-60cm,土壤水分亏缺条件下,液流速率随着土壤水势的升高和降低,在水分充足条件下,同步性较差。
     (3)气象因子的研究分析结果:液流速率与太阳辐射、空气温度合度较高,太阳辐射存在滞后效应,空气温度与太阳辐射对液流影响的差别主要体现在夜间,空气相对湿度与液流速率呈负相关,20cm明显比40cm土温变化有规律,与液流相比滞后性较大,最小风速与液流速率的变化比较合。研究表明:不同水分条件下各因素相关性差异显著,在水分亏缺与水分充足条件相比,各气象因子的相关性明显偏低,说明两种条件下,前者气象因子对树干液流速率的影响较后者低,即在水分亏缺条件下,树干液流速率受土壤水分影响较大,受气象因子作用小,而在水分充足条件下,树干液流速率与土壤水分的关系不明显,而受气象因子的影响较大。
     (4)其他因素研究:从树木径向变化中研究发现树干液流速率随树干径向的膨胀与收缩变化明显,但是液流的变化与树干的膨胀收缩变化相比滞后,树干径向变化一般傍晚前后处于最低点,早上8:00前后达到最高点,表现明显的昼夜周期。
The western areas of China is facing the serious problem of water shortage because of the unique natural and geographical conditions. And the situation is serious increasingly with the population growth and the long-term unreasonable development and utilization for the natural resource, and the uneven distribution of precipitation, which enlarged contradiction between water shortage and plant growth. Therefore, it is necessary to study the mechanism of water utilization to improve the survival rate of vegetation. In this paper, we took the Liupan Mountains in Ningxia Hui Autonomous Region for experiment area, and studied the variation of spatial and temporal of the water consumption by transpiration of Larix principis-rupprechtii plantation and the effect factors on it by using the technology of TDP during the growing season in 2008. The main results are as follows:
     (1) The studies on transpiration Change of Larix principis-rupprechtii plantations indicated that: the sap flow velocity is lowest in the early morning, and highest around noon, and lowest at night. The sap flow value between 8:00 and 18:00 accounted for more than 70% of the total sap flow value. The percentage of peak value sap flow velocity appearing at 10:00-16:00 is respectively 98.61%、84.49% and 55.82% at the three types of weather conditions. The sap flow velocity was "L" curve in the night, and it is smoother in sunny, and is the most steady in rainy day. It moved larger in cloudy day. The ratio of consumption accounted for 10.6% ~ 29.6% in Cloudy and rainy day of night, and the proportion was greater at sunny days. Further reach indicated that the day's average water consumption accounts for 12.81% of the night under water deficit, the ratio rose to 21.65% under sufficient water conditions. The sap flow value of every month was decreased in the order of June, May, July, Aug., Sept., and Oct.
     (2) The studies of the effects of soil moisture on transpiration showed that: soil moisture and rainfall are highly synchronized. The Range of soil water potential was decreased in the order of 20-40cm, 40-60cm, 0-20cm under the soil water deficit, and was decreased in the order of 20-40cm, 0-20cm, 40-60cm under adequate soil moisture. Under the soil water deficit conditions, the flow velocity varied with soil water potential, but the flow velocity and soil water potential has poor synchronization under the water adequate conditions.
     (3) The results of the analysis on meteorological factors: the sap flow velocity was highly degree of consistent on solar radiation and air temperature, but solar radiation had lagged effect, the effects of the air temperature and solar radiation on the sap flow velocity appeared at night, there was a negative correlation between the sap flow velocity and relative humidity, and the variation of soil temperature in 20cm was more regularly than 40cm. The change of smallest wind speed and the sap flow velocity was consistent. The results showed that: the differences of different factors were significantly, Correlation of the different meteorological factors was significantly lower. Under the two type water conditions, the effect of meteorological factors on the sap flow velocity was smaller than soil moisture. That is under water deficit conditions, the sap flow velocity was influenced by the soil moisture, but under the water sufficient conditions was influenced by the meteorological factors.
     (4) The study of other factors showed that: The variation of the sap flow velocity was significant with the radial expansion and contraction of the trunk , but the variation of former lagged in the latter. The value of the radial variation showing clear diurnal cycle was smallest before and after evening, and was largest around 8:00 in the morning.
引文
[1]周晓峰.中国森林生态环境[M].北京:中国林业出版社,1999.95-99.
    [2]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2): 117-126.
    [3]巨关升,刘奉觉,郑世锴.选择树木蒸腾耗水测定方法的研究[J].林业科技通讯,1998 (10): 12-14.
    [4]Fredrik L,Anders L.Transpiration response to soilmoisture in pineand spruce trees in Sweden [J].Agricultural and Forest Meteorology,2002,112: 67-85.
    [5]巨关升,刘奉觉,郑世锴,等.稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学研究,2000,13(4): 360-365.
    [6]张劲松,孟平,尹昌君.植物蒸腾耗水量计算方法综述[J].世界林业研究,2001,14(2): 23-28.
    [7]Wilson K B,Hanson P J,Mulholland P J,etal.A comparison of methods for determining forest evapotranspiration and its compo-nents: sap-flow,soilwater budget,eddy covariance and catchmentwater balance[J].Agricultural and Forest Meteorology,2001,106:153-168.
    [8]王华田.林木耗水性研究述评[J].世界林业研究,2003,16(2):23-27.
    [9]马玲,赵平,饶兴权,等.乔木蒸腾作用的主要测定方法[J].生态学杂志,2005,24(1): 88-96.
    [10]Phillips N,Oren R,Zimmermann R.Radial patterns of xylem sap flow in non-,diffuse-and ring-porous tree species[J].Plant,CellandEnvi-ronment,1996,19(8): 983-990.
    [11]Jimenez S,Nadezhdina N,Cermak J.Radial variation in sap flow in five laurel forest tree species in Tenerife,Canary Islands[J].Tree Physiology,2000,20: 1149-1156.
    [12]Lu P,Warrem J M,EliasChackoK.Spatial variations in xylem sap flux density in the trunk oforchard-grown,maturemango trees under changing soil water conditions[J].Tree Physiology, 2000,20: 683-692
    [13]Ford C R,Goranson C E,Mitchell R J,etal.Diurnal and seasonal variability in the radial distribution of sap flow: Predicting total stem flow in Pinus taedatrees[J].Tree Physiology,2004a,24: 941-950.
    [14]Hirose S,Kume A,Takeuchi S,etal.Stem water transport of Lithocarpus edulis,an ever green oak with radial porous wood[J].Tree Physiology,2005,25: 221-228.
    [15]Wullschleger S D,King A W.Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees[J].Tree Physiology,2000,20: 511-518.
    [16]Ford C R,Mcguire M A,Mitchell R J,etal.Assessing variation in the radial profile of sap flux density in Pinuss pecies and its effect on daily water use[J].Tree Physiology,2004b,24: 241-249.
    [17]王艳,王景华,许福明.锌肥对日光温室西芹硝酸盐及营养品质研究[J].生态学报,2001,21(4): 681-683.
    [18]杨凤娟.锌对大蒜生理生化指标及营养品质的影响[J].土壤肥料,2005(1): 35-38.
    [19]马长明.官厅库区小叶杨和刺槐的耗水特性研究[D].保定:河北农业大学,2004.
    [20]刘文国.杨树人工林蒸腾耗水特性及其环境因子关系的研究[D].保定:河北农业大学,2007.
    [21]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5): 1-6.
    [22]严昌荣,Alec D,韩兴国,等.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报,1999,19(6): 793-797.
    [23]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报, 1998,20(1): 1-6.
    [24]孙慧珍,孙龙,王传宽,等.东北东部山区主要树种树干液流研究[J].林业科学,2005,41(3): 36-42
    [25]马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报,2002,24(3): 23-27.
    [26]孙慧珍,孙龙,王传宽,等.东北东部山区主要树种树干液流研究[J].林业科学,2005,41(3): 36-43.
    [27]赵平,饶兴权,马玲,等.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J].植物生态学报,2006,30(4): 655-665.
    [28]张小由,康尔泗,张智慧,等.沙枣树干液流的动态研究[J].中国沙漠,2006,26(1):146-151.
    [29]Wullschleger S D,Meinzer F C,Vertessy R A.1998.Review of whole-plant water use studies in trees[J].Tree Physiology,18: 499-512.
    [30]王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报,2002,26(6): 661-667.
    [31]Nicolas E,Torrecillas A,Ortuno M F,etal.Evaluation of transpiration in adult apricot trees from sap flow measurements[J].Agricultural Water Management,2005,72: 131-145.
    [32]夏佳敏,康绍忠,李玉成,等.甘肃石羊河流域干旱荒漠区柠条树干液流的日季变化.生态学报, 2006,26(4): 1186-1193.
    [33]程根伟,于新晓,赵玉涛,等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004.
    [34]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报,2004,15(6): 1074-1078.
    [35]马长明,袁玉欣.国内外退耕地植被恢复研究现状[J].世界林业研究,2004,17(4): 24-27.
    [36]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8): 1640-1647.
    [37]申元村.黄土高原植被生态建设的反思与对策[J].大自然.2005,(1): 15-19.
    [38]王瑞辉,马履一,奚如春,等.元宝枫生长旺季树干液流动态及影响因素[J].生态学杂志,2006,25(3): 231-237.
    [39]孙慧珍,李夷平,王翠,等.不同木材结构树干液流对比研究[J].生态学杂志,2005,24(12): 1434-1439.
    [40]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5): l-6.
    [41]马履一,王华田.油松边材液流时空变化及其影响因子的研究[J].北京林业大学学报,2002,23(4): 23-37.
    [42]张小由,龚家栋.利用热脉冲技术对梭梭液流的研究[J].西北植物学报,2004,24(12): 2250-2254.
    [43]康绍忠,刘晓明,熊运章.土壤一植物一大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994.
    [44]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学.2003,39(2): 1-7.
    [45]岳广阳,张铜会,赵哈林等.科尔沁沙地黄柳和小叶锦鸡儿茎流及蒸腾特征[J].生态学报,2006,26(10): 3205-3213.
    [46]冯永建,马长明,王彦辉,等.华北落叶松蒸腾特征及其土壤水势的关系[J].中国水土保持科学. 2010,8(1): 93-98
    [47]曹云,黄志刚,欧阳志云,等.南方红壤区杜仲(Eucommia ulmoides)树干液流动态[J].生态学报, 2006,26(9): 2887-2895.
    [48]张刚华,陈步峰,聂洁珠等.热带山地雨林峰栲边材液流及其与环境因子的关系[J].应用生态学报,2007,4(18): 742-748.
    [49]马长明,翟明普.干季核桃树干液流特征及其与气象因子的关系[J].林业科学研究,2007,20(6): 883-886
    [50]张宁南,徐大平,Morris J,等.雷州半岛尾叶桉人工林树液茎流特征的研究[J].林业科学研究, 2003,(16)6: 661-667
    [51]Chelcy R F,Carol E G,RobertJ M,etal.Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees[J].Tree Physiology,2004,24: 941-950
    [52]张娜,于振良,赵士洞.长白山植被蒸腾量空间变化特征的模拟[J].资源科学,2001,23(6): 91-96
    [53]Weiss M,Baret F,Smith G J,etal.Review of methods for in situ leaf area index(LAI) determination Part l: Estimation of LAI,errors and sampling [J].Agric.For.Meteorol.2004,121: 37-53.
    [54]Makinen H,Nojd P,Saranpaa P.Seasonal changes in stem radius and production of new tracheids in Norway spruce[J].Tree Physiology,2003,23: 959-968.
    [55]Medhurstj L,Beadle C L.Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitensis altered by high-intensity thinning[J].Tree Physiology,2005,25: 981-991.
    [56]侯爱敏,周国逸,彭少麟.鼎湖山马尾松径向生长动态与气候因子的关系.应用生态学报,2003, 14(4): 637-639
    [57]Ghasem A..The impact of soil moisture on stem growth of spruce forest during a 22-year period[J].Forest Ecology and Management,2002,166: 17-33
    [58]Makinen H,Njd P,Saranpaa P.Seasonal changes in stem radius and production of new tracheids in Norway spruce[J].Tree Physiology,2003,23: 959-968
    [59]Deslauriers A,Morin H,Urbinati C,etal.Daily weather response of balsam fir (Abies balsamea(L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Qubec (Canada)[J].Trees,2003,17: 477-484
    [60]Otieno D.Coordinated tree response to drought-vulnerability and sustainable production: hypotheses on arid ecosystem adjustments to limitation in water resources[J/OL].Doctoral Thesis,University Bayreuth,Germany September 2004
    [61]Braeuning A,Burchardt I.Detection of growth dynamics in tree species of a tropical mountain rain forest in southern Ecuador,trace-tree rings in archaeology,climatology and ecology[J].Proceedings of the Dedrosymposium,2005,4: 127-131
    [62]Braun P,Schmid J.Sap flow measurements in grapevines (Vitis vinifera L.) 1.Stem morphology and use of the heat balance method[J].Plant and Soil ,1999,215: 39-45.
    [63]Kostner B,Biron P,Siegwolf R,etal.Estimates of water vapor flux and canopy conductance of Scots pine at tree level utilizing different xylem sap flow methods[J].Theoretical and Applied Climatology,1996,53: 105-113.
    [64]孙龙,王传宽,杨国亭,等.应用热扩散技术对红松人工林树干液流通量的研究[J].林业科学,2007, 43(11): 8-14.
    [65]熊伟,王彦辉,于澎涛,等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推[J].林业科学,2008,44(1): 34-40.
    [66]孙慧珍,李夷平,王翠,等.不同木材结构树干液流对比研究[J].生态学杂志,2005,24(12): 1434-1439.
    [67]马履一,王华田.油松边材液流时空变化及其影响因子的研究[J].北京林业大学学报,2002,24(3): 72-76.
    [68]王华田,赵文飞,马履一,等.侧柏树干边材液流的空间变化规律及其相关因子[J].林业科学,2006, 42(7): 21-27.
    [69]刘德良,李吉跃,马达,等.侧柏树干边材液流空间变化规律[J].生态学杂志,2008, 27(8): 1262-1286.
    [70]Vertessy R A,Benyon R G,etal.Relationships between stem diameter,sapwood area,leaf area,and transpiration in a young mountain ash forest[J].Tree Physiol,1995,15: 559-567.
    [71]Teskey R O,Sheriff D W.Water use by Pinus radiata trees in a plantation[J].Tree Physiol,1996,16: 273-279.
    [72]常学向,赵文智,赵爱芬.黑河中游二白杨叶面积指数动态变化及其与耗水量的关系[J].冰川冻土,2006,28(1): 85-89.
    [73]Clark T.A review of past research on dendrometers [J].Forest Science,2000,46(4): 570-576.
    [74]Yoda K,Suzuki M,Suzuki H.Development and evaluation of a new type of opto-electronic dendrometer[J].IAWA Journal,2000,21(4): 425-434.
    [75]Braekke F H,Kozlowski T T.Shrinkage and swelling of stems of Pinus resinosa and Betula papyrife rain Northern Wisconsin[J].Plant and Soil,1975,43:387-410.
    [76]Lassoie J P.Douglas-fir of different crown classes [J].Forest Science,1979,25:132-144.
    [77]Downes G,Beadle C,Worledge D.Daily stem growth patterns in irrigated Eucalyptus globules and E.nitensin relation to climate [J].Trees,1999,14:102-111.
    [78]陈章和,张德明,郭志华.南亚热带气候下3种树木径向生长季节节律研究[J].生态学报,1999, 19(6): 939-943.
    [79]陈章和,王伯荪,张宏达.广东黑石顶南亚热带常绿阔叶林树木生长研究[J].植物生态学报,1999, 23(5): 441-450.
    [80]司建华,冯起,张小由,等.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3): 450-459.
    [81]孙慧珍,孙龙,王传宽,等.东北东部山区主要树种树干液流研究[J].林业科学,2005,41(3): 36-42.
    [82]卞立云.山东省主要造林树种木质部水分传输特性的研究[D].济南:山东农业大学,2006.
    [83]蔺琛,马钦彦,韩海荣,等.山西太岳山辽东栋的光合特性[J].生态学报,2002,22(9): 1400-1406.
    [84]曹文强,韩海荣,马钦彦.山西太岳山主要树种树干液流研究[D].北京:北京林业大学,2003.
    [85]王沙生,高荣孚,吴贯明.植物生理学[M].北京:中国林业出版社,1981: 243-266.
    [86]Granier A.A new method for measure sap flow[J].Ann Sci.for.1985.,42: 193-200
    [87]孙鹏森,马履一.水源保护树种耗水特性研究与应用[M].北京:中国环境科学出版社,2002.
    [88]管伟.六盘山北坡叠叠沟小流域华北落叶松生长及水分影响研究[D].北京:中国林业科学研究院,2007.
    [89]孙林.六盘山半干旱区坡面植被蒸腾模拟[R].北京:中国林业科学研究院,2008.
    [90]王孟本,李洪建.黄土高原人工林水分生态研究[M].北京:中国林业出版社,2001: 86-87
    [91]熊伟,王彦辉,程积民,等.不同植被覆盖条件下土壤水分蒸发的比较[J].中国水土保持科学,2005,3(3):65-68
    [92]王国梁,刘国彬,常欣,等.黄土丘陵区小流域植被建设的土壤水温效应[J].自然资源学报,2002,17 (3): 340-341.
    [93]黄春霞,郭建斌,梁月.黄土半干旱区不同土壤水分下核桃的蒸腾速率研究[J].四川林勘设计,2007(4): 4-8.
    [94]刘建立,王彦辉,管伟,等.六盘山北侧生长季内华北落叶松树干液流速率研究[J].华中农业大学学报,2008,27(3): 434-440
    [95]Kozlowski T T,Pallardy S G.Physiology of woody plants[J].USA: Academic Press,1996: 270-286
    [96]Germak J,Ulehla J,Kucera J,et al.Sap flow rate and transpiration dynamics in the full-grow oak (Quercus robur L.) in floodplan forest exposed to seasonal floods as related to potential evapotrnspiration and tree dimensions[J].Biol.Plant (Praha),1982,24: 446-460
    [97]张小由,康尔泗,张智慧,等.黑河下游天然胡杨树干液流特征的试验研究[J].冰川冻土,2005,27(5): 742- 746
    [98]孙鹏森,马履一.水源保护树种耗水特性研究与应用[M].北京:中国环境科学出版社,2002.
    [99]Wasseige C,de Bastin D,Defoumy P.Seasonal variation of tropical forest LAI based on field measurements in Cent African Republic [J].Agricultural and Forest Metrology,2003,119: 181-194.
    [100]Tian Y,Wang Y,zhang Y,etal.Radioactive transfer based scaling of LAI ret rivals from reflectance data of different resolutions [J].Remote Sensing of Environment,2002,84:143-159.
    [101]lweiss M,Baret F,Smith G J,etal.Review of methods for in situ leaf area index(LAI) determination Part l: Estimation of LAI,errors and sampling [J].Agric For Meteorol,2004,121: 37-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700