加工中心托盘自动交换装置液压系统动态特性分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
托盘自动交换装置(Tray Automatic Exchange Device)是加工中心的主要功能部件,其功能主要是实现待加工工件与已加工工件之间的自动交换,可以在加工的同时装夹零件,实现加工时间与辅助时间的重合。托盘自动交换装置是集机、电、液、计算机技术高度一体化的关键功能部件,借助它可以将加工中心集成到柔性制造单元(FMC)或柔性制造系统(FMS)。随着工业技术的不断进步和发展,加工中心的发展趋势是高效率、高精度、高自动化、高柔性和高可靠性,同样的,对托盘自动交换装置的静动态稳定性、可靠性、精确性及高效性提出了越来越高的要求。托盘自动交换装置由机械系统、液压系统与控制系统组成,结构非常复杂,为了提高其性能,除了运用传统的分析技术外,运用计算机仿真技术对液压系统动态特性进行分析也具有重要意义,计算机仿真技术不仅可以预测系统性能,减少设计时间,还可以对所涉及的系统进行整体分析和评估,从而达到优化系统性能、缩短设计周期和提高系统稳定性的目的。论文的主要工作如下:
     在第二章中,首先,基于几种不同的交换装置驱动机构的介绍,重点对液压驱动交换装置的结构和工作原理进行了分析和研究;定义了托盘自动交换装置故障树分析与液压系统动态特性分析以及优化设计三者之间的关系,同时运用故障树分析(FTA)方法对托盘自动交换装置潜在故障进行了定性分析,并提出了改进措施。
     在第三章,介绍了液压系统建模仿真软件AMESim的基本特性和主体软件AMESim的使用方法,根据托盘自动交换装置力(力矩)平衡方程、动力学方程和信号控制原理建立了液压系统执行装置的等效模型、液压缸缓冲等效模型和液压系统控制信号等效模型,同时运用该软件建立了托盘自动交换装置旋转和升降液压系统的仿真模型;分析了不同工件质量对液压系统执行装置动态特性的影响,分析了节流口直径对托盘自动交换装置液压系统执行装置动态特性的影响,包括液压缸缓冲节流口直径和回路单向节流阀开口直径对液压系统执行装置动态特性的影响。对造成交换架振动和来回晃动以及噪声等故障的主要原因进行了定量分析,包括液压冲击的本质、原因以及液压冲击最大值的计算,并提出了预防和减小液压冲击的措施。
     在第四章,研制和开发了托盘自动交换装置试验平台,制定了托盘交换装置动态特性试验方案和步骤,对仿真模型和参数设置的正确性进行了验证,同时验证了可以通过调节液压缸缓冲节流口直径大小来改善交换架交换动作的平稳性,提高交换架动态品质;接着,针对托盘自动交换装置液压系统存在的缺陷和不足,作者进行了优化设计,提出了采用三位四通电液伺服阀进行闭环控制,建立了改进后的液压系统仿真模型,并对系统动态跟踪误差和稳态误差进行了仿真分析,证明了该液压系统能够满足托盘自动交换装置交换平稳、准确、可靠等性能要求。
     在运用故障树分析法对托盘自动交换装置故障进行定性分析的基础上,采用仿真分析和试验研究相结合的技术手段,对托盘自动交换装置主要故障进行了定量分析,得出了一些重要的性能曲线,对了解托盘自动交换装置的交换速度、动作时间及液压系统压力和流量变化等参数以及液压系统各个液压元件间相互影响等起到重要的作用,同时为托盘自动交换装置液压系统优化设计提供了理论依据,从而为进一步完善和提高现有托盘自动交换装置交换平稳、轻便、准确和可靠等动态性能奠定了基础,可以为现场操作人员和调试人员提供了定量参考。
Tray Automatic Exchanging Device (TAED) is one of the main function components of Machining Center, and its main function is to realize the automatic exchange between the workblank and finished workpiece, to clamp parts while the workpiece is in processing, so it can be realize the processing time and auxiliary time coincidence. TAED is key functional components highly integrated by the machine, electricity, liquid, computer technology. With the help of it Machining Center can be integrated into flexible manufacturing unit (FMC) or flexible manufacturing system (FMS). With the industrial technology unceasing progress and development, the development trend of Machining Center is high efficiency, high precision, high automation, and high flexible and high reliability. Meanwhile, more and higher demand of TAED with static and dynamic stability, reliability, accuracy and efficiency are put forward. TAED is comprised of mechanical system, hydraulic system and control system, and its structure is very complex. In order to improve its performance, in addition to use traditional analysis technology, it also has important significance to analyze the dynamic characteristics of hydraulic system by using computer simulation technology, because computer simulation technology can not only predict the system performance, reduce design time, it can also analyze and evaluate integrally the involved system, so as to achieve some purposes ,including the optimization system performance, shorten the design cycle and improvethe system stability. This paper, the major work is as follows:
     In the second chapter, first of all, based on the present development situation at home and abroad of TAED, and structure and working principle of TAED with exchange workbench driven by hydraulic are analyzed and researched in depth. The relationships among fault tree analysis, hydraulic system dynamic characteristic analysis and optimization design is defined. Meanwhile, the failures of TAED are analyzed with the fault tree analysis (FTA) method, and measures for improvement are put forward.
     In the third chapter, the basic characteristics of the hydraulic system modeling simulation software AMESim and usage of main software AMESim are introduced. According to force (moment) balance equation, dynamic equation and signal control principles, the equivalent model of hydraulic system actuator, the hydraulic cylinder cushion equivalent model and the hydraulic system control signal model are established. At the same time, simulation model of rotation and lifting hydraulic system of Tray Automatic Exchanging Device are established by using the software. The influences on hydraulic system dynamic characteristics of actuators from the different workpiece quality and the throttling mouth diameter are analyzed, including buffer throttling mouth diameter of hydraulic cylinder and one-way throttle valve opening diameter of hydraulic loop. The main reasons of exchange bracket vibration, sloshing and noise are found out by quantitative analysis, including the essence and cause of the hydraulic impact phenomenon, and the maximum value of hydraulic impact is calculated, finally, some measures of prevention and reduction are put forward.
     In the fourth chapter, test platform of TAED are designed and developed, the tray automatic switching device, and through making test plan and steps of dynamic characteristics of TAED, the correctness of simulation model and parameter set are demonstrated. Meanwhile, by adjusting the hydraulic cylinder buffer throttling mouth diameter values to improve steadiness, and enhance dynamic quality of exchange bracket are proved by test. Then, base on defects and the insufficiency of hydraulic system of TAED, the optimization design is proposed by the author, the suggestion of using a three-four electro-hydraulic servo valve to realize closed loop control is proposed and put to use, the improved hydraulic system simulation model is established, and the system dynamic tracking error and steady-state error are analyzed by simulation, finally, the ability which the hydraulic system can meet the TAED to exchange smooth, accurate, reliable performance requirements is proved.
     on the basis of qualitative analysis of TAED faults by using the fault tree analysis, the quantitative analysis of TAED faults are carried out with technical means by combining the simulation analysis and experimental research, and some important performance curves are obtained, which is very important to understand the exchange speed, action time, some parameters changes of hydraulic system pressure and flow, and even mutual influence among various hydraulic components of hydraulic system, and which provide some theoretical basis for hydraulic system optimal design, thus which lay a solid foundation to further enhance and improve the exchange smoothly, lightweight, accurate and reliable, and which can provide operators and debugging personnel with some quantitative references.
引文
[1]李永堂,雷步芳,高雨茁编著.液压系统建模与仿真[M].北京:冶金工业出版社,2003,2.
    [2]柴大勇译.应用交换托盘提高生产效率[J].产品与技术,2000(3):57-59.
    [3]尤国强.TH67100/2双工作台卧式加工中心简介[J].设备管理与维护,2003(3):23-24.
    [4]王海.μ1000/630H卧式加工中心双工位交换台的改进[J].机械工程师, 2009 (3):40-41.
    [5]杜永峰,徐增豪,施文军等.卧式加工中心托盘自动交换装置的驱动机构[J].机械制造,2010(550):7-9.
    [6]沙永柏.JFK-15型非开挖导向钻机的研制及其液压系统动态特性仿真研究[D].吉林:吉林大学,2007,4.
    [7]康凤举.现代仿真技术与应用[M].北京:国防上业出版社,2001.
    [8]刘能宏,田树军编著.液压系统动态特性数字仿真[M].大连:大连理工大学出版社,1993.
    [9]雷天觉主编.液压工程手册[M].北京:机械工业出版社,1990.
    [10]张泰.汽车起重机起升机构动态研究[J].工程机械,1998(6):8-10.
    [11]王帮峰、张国忠、张瑞芳.起重机液压提升机构提升过程的仿真研究[J].工程机械.1998(10):9-10.
    [12]齐威、苗明.汽车起重机起升机构的优化设计[J].起重运输械,2003(8):27-29.
    [13]大连工学院液压科研组.键合图和状态空间分析法在液压系统动态特性研究中的应用[J].大连工学院学报,1981(2):69-77.
    [14]田树军.液压系统动态建模与仿真方法研究及通用仿真软件包开发[D].大连:大连理工大学,1991.
    [15]刘能宏.液压管道动态特性的计算机数字仿真[J].全国液压CAD与计算机控制学术讨论会,1986.
    [16]田树军,刘能宏.SIM-1液压系统动态仿真软件包的开发与应用[J].机床与液压,1987(4):1-6.
    [17]田树军,刘能宏.液压系统动态仿真建模方法研究及软件实现[J].机床与液压,1988(6):2-6.
    [18]李永堂.下锤头微动型液压锤设计理论及性能分析研究[D].北京:清华大学,1994.
    [19]雷步芳,李永堂.液压锤液压驱动部分CAD系统[J].太原重型机械学院学报,1997(3).
    [20]雷步芳,李永堂.液压锤液压系统CAD图形库的建立和原理图的自动生成[J].锻压机械,1998(2).
    [21]雷步芳,李永堂.电液锤液压系统CAD软件研制[J].太原重型机械学院学报,1999(3).
    [22]孙培军.液压系统自动建模与仿真方法研究[D].太原:太原重型机械学院,1998.
    [23] Lei Bufang, Li Yongtang . Research on the economization of electro-hydraulic hammer[J].Chinese Journal of Mechanical Engineering, 2000, (1).
    [24]李永堂,雷步芳.液压系统自动建模与仿真软件的研制[J].太原重型机械学院学报,2002(1).
    [25] Yang H Y, Yang Jian,Xu Bing. Computational simulation and experiment research on speed control of VVVF hydraulic elevator[J]. Control Engineering Practice, 2004(12):563-568.
    [26]廖小波.机床故障率浴盆曲线定量化建模及应用研究[D].重庆:重庆大学,2010,6.
    [27]龚庆祥主编.型号可靠性工程手册.北京:国防工业出版社,2007,4.
    [28]《可靠性设计大全》编撰委员会编.可靠性设计大全.北京:中国标准出版社,2006.
    [29]刘海丽.基于AMESim的液压系统建模与仿真技术研究[D].西安:西北工业大学,2006,3.
    [30]孙有权.AMESim系统建模和仿真[M].北京:化学工业出版社,2007,5:5-9.
    [31]何衍庆,姜捷等.控制系统分析、设计和应用AMESim的应用[M].北京:化学工业出版社,2003:23-26.
    [32]王正林,王胜开,陈国顺等.AMESim与控制系统仿真[M].北京:电子工业出版社,2008:30-33.
    [33] Wilfrid Marquis-Favre, Eric Bideaux, Serge Scavarda. A planar mechanical library in the AMESim simulation software[J]. Simulation Modeling Practice and Theory, Volume 14, Issue2, February 2006, Pages 95-111.
    [34]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用.液压气动与密封.2005(3):28-31.
    [35] Richards CW. Numerical challenges posed by modeling hydraulic systems. Forum on design languages 98, Lausanne Switzerland[J]. AMESim Technical Bulletin, No.114.Imagine, France 1998:14.
    [36] N.Janse van Rensburg, J.L.Steyn, P.S.Els. Time delay in a semi-active damper: modeling the bypass valve[J]. Journal of Terramechanics, Volume 39, Issue 1, January 2002, Pages 35-45.
    [37] Bideaux,E, Scavarda, S. Pneumatic library for AMESim[J]. Fluid power system and technology, 1998:185-195.
    [38] M.Vugdelija, Z.Stojanovic. Determination of a time step interval in hydraulic systems transients simulation[J]. Advances in Engineering Software, 2000.
    [39]付永领,祁晓野.AMESim系统建模和仿真——从入门到精通[M].北京:北京航空航天大学出版社,2006,1-20.
    [40] AMESim4.0用户手册[M].
    [41]郝桐生编.理论力学第3版[M].北京:高等教育出版社,2003.9.
    [42]袁子荣主编.液气压传动与控制[M].重庆:重庆大学出版社,2002.3.
    [43]李兴华.WL3200T压机液压系统的动态仿真研究[D].湘潭:湘潭大学,2009,5.
    [44]李家柱.基于AMESim的车辆关键点振动仿真及分析[D].合肥:合肥工业大学,2009,4.
    [45]杨武双.基于AMESim的车辆防抱死制动系统的仿真研究[D].长沙:湖南大学,2008,5.
    [46]刘宝龙.液压支架推移装置参数优化与移架速度研究[D].太原:太原理工大学,2010,5.
    [47] Palm W.J., Modeling, Analysis and Control of Dynamic Systems, 2nd Edition, 1999, John Wiley & Sons, Inc.
    [48] Karnopp D.C., D.L. Margolis & R.C. Rosenberg, Systems Dynamics: Modeling and Simulation of Mechatronics Systems, 3rd Edition, 2000, John Wiley &Sons, Inc.
    [49]侯顺强,程居山,张丽丽.液压缸冲击现象的机理分析及其预防措施[J].煤矿机械,2005(5):133-135.
    [50]郑首忠.C25型液压缸液压冲击值计算[J].山东冶金,2004,10(26):247-248.
    [51]江晓明.液压冲击的物理本质、产生原因及其改善措施[J].工业技术,2009(10):59-60.
    [52]李岚,蒋德云.液压缸冲击现象的机理分析及其预防措施[J].机床与液压,2004(10):264-265.
    [53]张明辉.大型履带起重机回转液压系统仿真研究[D].大连:大连理工大学,2006,12.
    [54]成大先主编.机械设计手册(第五版):单行本.液压控制[M].北京:化学工业出版社,2010,1.
    [55]苏东海,孙占文.AMESim仿真技术在液压位置同步系统中的应用[J].液压气动与密封,2007(6):13-15.
    [56]刘海丽,李华聪.液压机械系统建模仿真软件AMESim及其应用[J].机床与液压,2006(7).
    [57] XU Xiaoqing;QUAN Long;LI Bin; and GUO Jibao. Modeling, Simulation and Experiment of Electro-hydraulic Screw Down Servo System of Seamless Tube Rolling Mill [J]. Chinese Journal of Mechanical Engineering, 2011(1).
    [58] ANG HuaYong, SHI Hu, GONG GuoFang, HU GuoLiang. Earth pressure balance control for EPB shield [J]. Science in China(Series E:Technological Sciences), 2009(10)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700