应用电动压气机减少柴油机加速烟度排放的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于柴油机具有的高燃油经济性,车用柴油机的数量越来越多。但是柴油车在起动和加速易于冒烟的现象,正随着公交汽车迅速向柴油化过渡而在城市里日渐突出。柴油机碳烟形成的根本原因是在加速或加载过程中,进入气缸中的空气量跟不上加油量的变化速率,使瞬态过量空气系数以及混合气形成质量下降,进而导致燃烧质量下降,柴油机排放烟度恶化。所以改善加速烟度必须首先缓解加速初期的供油量和供气量的矛盾。
     为解决柴油机在加速时带来的加速冒烟问题,提出了采用电动压气机在柴油机加速时进行补气的技术路线,并设计一套在柴油机加速工况下能够快速响应的智能补气系统,包括发动机进气气路的快速切换系统,自动识别发动机工况的识别系统,以及补气的执行装置——电动压气机。通过对柴油机在加速时进行快速补气,来降低柴油机的排放烟度。
     为了研究电动压气机对于柴油机加速补气减少碳烟排放这一方法的可行性,将初步研制的电动压气机样机应用到试验台架中去。在发动机试验台架装置研究中,改造了发动机进气布置,并开发了补气系统的控制单元。控制单元通过发动机工况识别系统来检测到油门传感器输送的油门踏板变化速率信号,控制电动压气机快速实施补气,并同时控制进气气路在补气时和补气结束后能够按照需求自动快速的切换。同时基于普通电涡流测功机,设计了柴油机瞬态工况的控制以及重要参数的数据采集系统。
     利用开发的加速补气系统以及发动机瞬态工况的控制及数据采集系统,研究了电动压气机快速补气对于柴油机的加速过程中的烟度排放的影响。研究表明,无论是恒扭矩加速试验还是从恒转速加载试验,电动压气机对柴油机加速补气都能明显降低柴油机的烟度,而且在大扭矩加速和低转速加载工况下其动力性也有所提高。所以这表明利用电动压气机对柴油机加速补气的方案是可行的。
     在试验中所应用的加速补气用的电动压气机系J80废气涡轮增压器改制而成,该增压器的在正常工作时最高转速超过100,000 r/min。由于电动机最高转速的限制,尽管试验中工作在其低效率的区域内,但是其补气后降低烟度排放的效果还是非常显著的。研究表明,欲提高进气压力和补气量,瞬态过量空气系数应超过2.0,会更有效的达到降低烟度并提高瞬态动力性的目标。
     为了进一步优化电动压气机以提高瞬态响应的能力,利用热线风速仪和fluent流体动力学软件从实验方法和计算方法两方面对研制的电动压气机流量特性以及瞬态响应特性进行了研究。研究结果发现现用电动压气机的出口速度分布不均匀,这对于压气机的效率是不利的,从压气机内部流场数值分析可知造成压气机的出口速度不均是由于涡壳结构设计不当造成,通过优化涡壳结构可以改善出口速度分布。另外,测量结果显示,在电动压气机的工作范围内,流量随着转速的增加基本呈线性增加。提高电动压气机的转速不仅可以提高电动压气机能够提供的补气量,还可以提高其瞬态响应特性。通过研究得知,由于电动压气机的响应时间是由变频器设定时间以及设定转速所决定,所以提高变频器启动时间也是加快电动压气机流量的重要方面。
The diesel engine for vehicle is increasing because of its high fuel economy, but most vehicles with diesel engine frequently produce black smoke when starting up and accelerating on the road. With dieselization of automobiles which make the number of diesel engines increase, this problem becomes serious in cities.
     The essential reason producing smoke is that the air-fuel ratio declines at the transient process during the sharp acceleration and load changing operations, i.e. the mass rate of the air flow into the engine don’t match with the variation of fuel flow rate, which makes the quality of mixture poor and combustion insufficient. Consequently, to ameliorate the smoke emission in acceleration, the transient excess air coefficient must be boosted up during period of acceleration.
     To solve this problem, the method was presented to inject air into engine in acceleration with an electric supercharger. In this desertation the air injection system in fast response was designed, which consisted of the air intake shifting system of engine, and the automatic recognization system for engine operation, and the air injection unit—the electric supercharger (ES).
     To illustrate this method feasibility to reduction the smoke emission, the air injection system developed was applied to the naturally aspirated engine experimental station. A test bench was set up for verification of the system feasible. The air intake duct was modified, and an electrically controlled unit (ECU) for the air injection system was developed. The ECU controlled the ES and the air intake switch system through detecting change rate of the accelerator pedal position with a sensor at same time. An eddy current dynamometer was modified to meet the demand of the control system of transient operation conditions and data aquasition system.
     By the air injection system and the control of transient operation conditions as well as data aquasition system, the tests were conducted to study the influence on smoke emission in engine acceleration with electric supercharger injecting air. Testingl results showed that ES injecting air into engine at the acceleration or load increasing operation conditions could remarkably reduce the smoke emission, and improve the transient performance at the high load and low speed conditions. Consequently, using electric supercharger to inject air to reduce the smoke emission was feasible.
     Although the ES used was rebuilt from the type of J80 turbocharger of which rating speed usually is at or over the speed 100,000 r/min, it ran at the low efficiency region, however,the effects of air injection on the engine to reduce smoke emission were prominent. Testing results also showed that if the transient excess air coefficient was boosted up to 2.0 by enhancing the pressure and flux of the air intake, the higher aim to reduce the smoke and improve the transient power of engine in acceleration could be achieved.
     For the sake of further optimizing ES and improving the transient response performance, ES’s flux and transient response characteristics were studied in experiment and numerical simulation methods respectively by the hot-wire anemometry system and computational fluid dynamic software of fluent. The research results showed that the distribution of outlet’s velocity was not symmetrical, which was disadvantageous to the compressor’s efficiency. According to the numerical analysis, the symmetrical distribution of outlet’s velocity was caused by the inappropriate structure design of the house, and could be improved by optimizing the structure of the house. In addition, the measurement result showed that the flux was basically linear increased along with speed in the work range of ES. Upgrading the speed of ES could not only increase air injection to engine, but enhance its transient response characteristics. Research indicated that the respond time of ES was depended on the initialization set of start time and speed of the transducer, so it was important to improve the flux response of ES by advancing the start time of transducer.
引文
[1] 赵三明,从 2004 到 2005:倪宏杰谈内燃机行业的现状与趋势,中国工业报,2004.12.31
    [2] 张少华,欧洲柴油轿车的发展情况,汽车情报,2004,35:32~35
    [3] 柴油机技术的现状与发展方向,中国传动机械网
    [4] 苏万华,“先进柴油机技术的进步与未来展望”,国际车用柴油机技术研讨会,北京,2000
    [5] Automotive Industry Data Ltd., “AID diesel car prospects to 2008”, 2002
    [6] 维柴动力,国内外柴油机技术的现状与发展,设备润滑网,2006
    [7] Buchholz, K., Why diesel, why now? SAE Automotive Engineering International, August 2003
    [8] 李兴虎,汽车环境保护技术,北京航空航天大学出版社,2004:265~268
    [9] Michel p., Guillemin, Health effects of diesel emission, British Occupational Hygiene Society, 1998
    [10] 刘文彪,董胜璋,机动车尾气慢性毒性效应的研究进展,环境与健康杂志,2002 ,19(5)413~416
    [11] http://env.people.com.cn/GB/46856/50510/4592643.html
    [12] Z. N. Begum, Scattering of solar radiation by aerosol particulates in the atmosphere: a theoretical approach validated with pre-INDOEX, Journal of Atmosphere and Solar-terrestrial Physics, 1998, 60: 1751~1754
    [13] 邵龙义,时宗波,黄勤,都市大气环境中可吸入颗粒物的研究,环境保护,2001,1:24-29
    [14] 刘巽俊,内燃机的排放控制,北京:机械工业出版社,2002:299~304
    [15] Steve Arnold, Craig Balis, Pierre Barthelet etc, Garrett Electric Boosting Systems (EBS) Program Federal Grant DE-FC05-00OR22809, Final report, 2005
    [16] Colin RF, Allen TK. Internal combustion engine. New York: John Wiley & Sons; 2001.
    [17] Heywood JB. Internal combustion engine fundamentals. NewYork: McGraw-Hill; 1988.
    [18] Tan PQ, Deng KY, Lu JX. Analysis of particulate matter compositionfrom a heavy-duty diesel engine. Proc Inst Mech Eng, Part D, J Automobile Eng 2004, 218 (11):1325~1331
    [19] 程至远,解建光,内燃机排放与净化,北京:北京理工大学出版社,2000: 131~135
    [20] 李约上,内燃机排放与净化,大连:大连理工出版社,1990:41~50
    [21] 周龙保,内燃机学,北京:机械工业出版社,1999:198-199
    [22] 隆江,陈国需, 柴油机碳烟排放控制技术, 润滑油与燃料,2005,15 (75):19~23
    [23] Helmut Melde-Tuczai, Light duty truck and bus-diesel engines for future Chinese market, AVL List Gmbh, 97 中国国际汽车排放控制技术研讨会,1997年,北京
    [24] S. M. Shahed, Chris Middlemass, Craig Balis, Design & development of e-TurboTM for SUV and light truck applications, Diesel Engine Emissions Reduction Conference, 2003, 8
    [25] 朱大鑫,涡轮增压与涡轮增压器,北京:机械工业出版社,1992:411~420
    [26] Chang Sik Lee, Nag Jung Choi, Effect of air injection on the characteristics of transient response in a turbocharged diesel engine, International journal of thermal sciences,2002 (41):63~71
    [27] J.-D. Ledger, R.-S. Benson, H. Furukawa, Improvement in transient performance of a turbocharged diesel engine by air injection into the compressor, SAE Paper 730665 (1973) 2412~2423.
    [28] N.J. Choi, C.S. Lee, A study on the effects of injected air into the compressor exit for the performance of a turbocharged diesel engine, ASME J. 19 (3) (1995) 796~805.
    [29] Hiromu Furukawa. Reliability on VGT turbocharger, SAE 930194
    [30] Maktoto Hagashi. Development of a turbocharging system with variable area turbine nozzle for HD trucks, SAE 920045
    [31] P.C.Franklin, Performance development of the holset VGT, SAE 890426
    [32] Akiko Kawamoto,Variable geometry system turbocharger for passenger car diesel engine, SAE 2001-01-0273
    [33] J.Bates M.Zehnder 可变涡轮几何形状的涡轮增压器.国外内燃机车,1998,10:17~18
    [34] C. J. Brace,Transient investigation of two variable geometry turbochargers for passenger vehicle diesel engines,SAE 1999-01-1241
    [35] Ken Yamane.A Study of a Resonance Charging System. JSAE. Review. 1987, 96: 33~42
    [36] 薄清荣,樊久明,孙绍重等,利用谐振进气改善柴油机的性能,哈尔滨工业大学学报,1998,30 (1):125~128
    [37] Winterbone D. E., Benson R. S., Transient response of turbocharged diesel engines (Part 1 and Part 2), SAE, 770122: 465~489
    [38] Ledger J. D., etc., Performance characteristics of a centrifugal compressor withair injection, proceedings of institution of mechanical engineers, 1973 187 (35): 425~434
    [39] Ledger J. D., Benson R. S., etc., Improvement in transient performance of a turbocharge diesel engine by air injection into the compressor, SAE 730665, 1973.
    [40] [德]Harndorf H,向涡轮增压器补充喷气以改善增压柴油机的瞬态响应,国外内燃机,1996.2:53~63
    [41] 陈怡 黄佑生,利用空气引射方案改善涡轮发动机的加速性的研究,大功率柴油机学术年会论文,1983
    [42] 张雨松,用补气方法改善车用柴油机加速烟度研究,[硕士学位论文],上海:上海交通大学,2001
    [43] 韩永强,刘忠长,王忠恕等,HPAS控制策略对柴油机瞬态烟度影响,内燃机学报,2006,11(6):513~517
    [44] 杨策,马朝臣,沈宏继,大型柴油机可变几何涡轮增压器的研制及试验研究,内燃机学报,2002,20(6):551~554
    [45] Nobuyuki I., Tetsuya T. Variable Geometry Turbocharger with Electronic Control. SAE Paper 890645, 1989
    [46] M assaki K., M asayuki W., Katsuhiro H. New Turbocharged Diesel Engine.SAE Paper 930718, 1993
    [47] 张汝坤,双叶片整体式轴向移动可变喷嘴增压器的研究,云南农业大学学报,1999,14(1): 66~71
    [48] 陆家祥等. 舌形挡板变截面涡轮(VGT)的研究,内燃机学报,1994(2):145~150
    [49] 陆家祥等. 双舌形挡板变截面涡轮(VGT)的研究,内燃机学报,1999(2):75~78
    [50] 王仁人 刘云岗 张锡朝等,舌形挡板变截面涡轮增压器涡轮涡壳内气体流动的研究,内燃机学报,1993,11(4):320~327
    [51] 姚春德,高等内燃机学及内燃机排放控制技术,天津大学研究生课程讲义。
    [52] 马 捷,顾宏中,复合增压切换系统对柴油机瞬态特性的改善,内燃机学报,1989,7(2):111~116
    [53] 张玉花,大众公司的机械涡轮复合增压系统,车用发动机,2005,5:20~20
    [54] 方祖华,涡轮增压器的改进对发动机排放和性能的改善,黄河汽车,1991,2:60~63
    [55] http://www.turbos.bwauto.com/en/products/r2s.asp
    [56] Patrick Sweetland, Frank Schmitt, Regulated 2-Stage (R2S) Charging Systems for Future Diesel Applications, 2004 Diesel Engine Emissions Reduction (DEER) Conference, 2004, Coronado, California
    [57] I.Kolmanovsky, A. G.. Stefanopoulou, B. K. Powell, Improve turbocharged diesel Engine operation with turbo power assist system. In: International Conference on Control Applications,Hawai’i. 1999, 6: 454~459.
    [58] T. Katrasnik, S. Rodman, F. Trenc, Improvement of the dynamic characteristic of an automotive engine by a turbocharger assisted by an electric motor, Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2003, 125: 590~595.
    [59] T. Katra?nik, V. Medica, F. Trenc, Analysis of the dynamic response improvement of a turbocharged diesel engine driven alternating current generating set, Energy Conversion and Management, 2005, 46: 2838~2855
    [60] T. Katra?nik, F. Trenc, V. Medica, etc, An analysis of turbocharged diesel engine dynamic response improvement by electric assisting systems, Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2005,127: 918~926
    [61] Algrain, M. , Controlling an electric turbo compound system for exhaust gas energy recovery in a diesel engine, 2005 IEEE International Conference on Electro Information Technology
    [62] S. M. Shahed, Chris Middlemass, Craig Balis, Design & Development of e-TurboTM for SUV and Light Truck Applications, Diesel Engine Emissions Reduction Conference, 2003, 8
    [63] T. Kattwinkel, R. Weiss, J.-P. Boeschlin, Mechatronic solution for electronic turbocharger, SAE, 2003010712
    [64] 姚春德,周红秀,柴油机加速过程快速补气的电动增压器设计及其特性,机械工程学报,2006,42(6):184~187
    [65] 居钰生,王天雄,王鑫泽等,影响车用直喷式柴油机自由加速烟度的因素与对策,内燃机燃油喷射和控制,2001,3:9~15
    [66] 刘江唯,车用柴油机瞬态工况排放特性研究,博士论文,吉林工业大学,2003
    [67] 乔渭阳,敬睿,叶轮机动态参数测试技术,北京 国防工业出版社,2004
    [68] 阎超,流体机械内部流动数值计算方法的新进展(一),流体机械,1994,22(8):35~38
    [69] 阎超,流体机械内部流动数值计算方法的新进展(二),流体机械,1994,22(9):33~37
    [70] Lakshminarayana B. An assessment of computational fluid dynamic techniques in the analysis and design of turbomachinery-The 1990 Freeman Scholar Lecture, Jourhal of Fluids Engineering, 1991, 113: 315~352
    [71] 刘瑞韬,徐忠离心叶轮机械内部流动的研究进展,力学进展,2003,33(4):518~532
    [72] 陈倩,章本照,崔良成,离心风机三元流场的准正交面法计算,杭州应用工程技术学院学报,2000(增刊),l2:21~23
    [73] 陈德江,王尚锦,应用有限元法计算离心式叶轮内部流场,应用力学学报,1999,16(1):27~32
    [74] Epureanu B I, Hall K C, Dowell E H, Reduced-order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling, Journal of Fluids and Structures, 2001, 15: 255~273.
    [75] 袁卫星,张克危,贾宗谟,离心泵射流一尾迹模型的三元流动计算,水泵技术,1990,(1):12~18
    [76] 陈乃兴,黄伟光,周倩.跨音速单转子压气机三维湍流流场的数值计算,航空动力学报,1995,10(2):109~113
    [77] Oh K-J, Kang S-H, A numerical investigation of the dual performance characteristics of a small propeller fan using viscous flow calculation, Computers&Fluids, 1999, 28: 815~823
    [78] Seo S-J, Kim K-Y, Kang S-H, Calculations of three-dimensional viscous flow in a multiblade centrifugal fan by modeling blade forces. Proceedings of the Institution of Mechanical Engineer-Part A-Power& Energy, 2003, 217(3): 287~297.
    [79] Chima RodrickV, Inviscid and Viscous Flows in Cascades with an Explicit Multiple-Grid Atgorithm, AIAA Jourhal, 1985, 23(10): 1556~1563
    [80] Chima RodrickV, Yokota Jeffrey W., Numerical analysisof three-dimensional viscous internal flows, AIAA Journal, 1990, 28(5): 798~806
    [81] Giangiacomo P , Michelassi V . An efficient parallel ADI algorithm for turbomachinery flows, International Journal of Computational Fluid Dynarnics, 2003, 17(1): l5~26
    [82] Hah C, Wennerstorm A J, Dimensional flowfields inside a transonic compressor with swept blades, Journal of Turbomachinery, 1991, 113: 241~250
    [83] He L, Sato K, Numerical solution of incompressible unsteady flows in turbomachinery. Journal of FluidsEngineering, 2001, 123: 680~685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700