玻璃及其层合材料表面与界面性能评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在玻璃及其层合材料的性能评价领域,常常会遇到常规实验技术和仪器都难以实现的问题,如玻璃材料的残余应力及其均匀性评价、钢化玻璃的自爆风险、表面缺陷的损伤演变等。因此探索新的评价技术和测试仪器是国内外材料科学家和力学工作者的紧迫而重要的任务。也是保障脆性材料工程应用的关键。本论文围绕玻璃和玻璃复合材料的性能评价和仪器研发开展一些工作。
     首先基于模块化设计思想,开发设计了脆性材料表面性能试验仪,其主要包括加载模块、支撑平台、控制模块、软件模块和功能模块等模块,利用模块之间的不同配合实现立式、卧式、现场吸盘、局部加载四种试验模式,可以满足不同的试验需求;试验仪具有测试脆性材料常规力学性能的功能外,还可以配合声发射模块捕捉玻璃材料局部强度,对玻璃构件进行强度保证试验;提高玻璃构件使用的安全可靠性。同时为了得到玻璃材料与不同摩擦副的摩擦系数,开发了与表面试验仪配套摩擦磨损测试装置及其实验软件。
     利用球压法非破坏性地测试玻璃和钢化玻璃的局部强度和残余应力,并利用声发射压头确定裂纹起始的临界载荷。实现了强度的非破坏性测试;采用“十字交叉法”实验装置对层合材料和夹层玻璃的界面拉伸和界面剪切强度进行评价分析,证明这是一种简便精确的界面强度测试方法。
     以该测试装置立式工作模式作为工作平台,考察了不同载荷下钠钙硅玻璃与45钢对磨时的摩擦磨损性能,并利用双环实验测试了不同加载时间的钠钙硅玻璃残余强度,探讨了材料的磨损机理。磨损率随着载荷的增加出现波动,当载荷低于10N时,摩擦系数随载荷增加而明显增大,而当载荷超过10N时,摩擦系数随载荷增加而明显降低,在较低载荷下,钠钙硅玻璃的磨损失效主要源于轻微点蚀,在较高载荷下,其磨损失效主要源于表层塑性变形。
     通过分析脆性材料裂纹扩展的均强度准则和颗粒周边应力分布,证明了玻璃的裂纹扩展受应力作用的空间和时间的影响,即裂纹应力峰值随应力梯度增加而增加,同时也随应力作用的时间减小而增加。并由此分析了引起钢化玻璃自爆的杂质的临界尺寸约为0.2mm。研究表明,玻璃表面钢化应力越大,强度整体越高,但是同时自爆概率也越大。
     通过有限元分析方法与三点弯曲、球-环弯曲方法研究了牙用玻璃-氧化铝复合材料的残余应力与破坏机制。在多功能材料表面试验仪上用小双层盘状样品进行了轴对称的测试。结果表明层间的热膨胀系数差异导致了其间的残余应力,并且应力的分布与厚度比例和温度差有关。
     结合国家863项目和重大国际合作项目,完成多台实验仪器的研发,主要创新点是模块化、多功能、和智能化,并将声发射技术、位移敏感压痕技术、图像监测和常规万能材料试验机的基本功能结合为一体。实现了玻璃及其复合材料的各种表面与界面性能的简单方便检测。
In the field of property evaluation of glass and the glass lamination material, there are lots of questions that are difficult to solve by using the conventional experimental techniques and the instruments, such as the estimation of the residual stress and the uniformity of the glass materials, the spontaneous breakage risk of tempered glass, damage evolution of the surface defect, and so on. Therefore, it was the urgent and vital duty of material scientists and mechanical workers to explore new testing technique and instruments, which was also the key to assure the application of brittle materials in engineering. This work focuses on the property evaluation and the equipments development of the glass and the glass composites.
     Based on the modularization design, a testing machine for surface and interface properties was developed and designed which mainly include the loading system, the supporting platform, the control system, the software module and the functional module, and so on. Four kind of experimental models, namely, vertical type, horizontal type, in-site sucker, local–loading could be realized using the different coordination between the modules which could meet the different experimental need. The tester could test not only the convention mechanical properties of brittle materials, but also the local strength of glass materials and the proof test of the glass component by combining acoustic emission module to improve the reliability of the glass component in service. Simultaneously, the friction and wear testing device and software which supported the surface tester was developed to obtain the friction coefficients of glass materials to different materials.
     Spherical-indentation method was used for non-destructive test of the local strength and residual stress of the glass and tempered glass. And the critical cracking load was determined using indenter containing acoustic emission sensor which was successful in non-destructive testing strength. "Cross-sample" experimental device was proven as a simple and accurate testing method for evaluation and analysis of the interface tensile and shear strength of laminated materials and laminated glass.
     Vertical working pattern of the device being as the working platform, the friction and wear properties of the soda-lime glass abrasion with 45 steel was investigated under the different load. And the residual strength of the soda-lime glass samples after the wear tests were measured with double-ring tests. It was indicated that the rate of wear fluctuates with the increasing normal pressure. The friction coefficient increased largely with the increase of load when the load was lower than 10N. The wear-out failure of the soda-lime glass resulted mainly from the spot corrosion under the low load whereas it was from the surface plastic deformation under the high load.
     Through the analysis in Mean-stress criterion of the crack growth of brittle material and the stress distribution of particle, it was proven that crack growth of glass was influenced by the space and the time of applied stress, i.e., the peak value of cracking stress increases with the increasing of stress gradient, and with the decreasing of stressing time. According to this analysis, it was predicted that the critical size of impurity which caused the spontaneous breakage in tempered glass was approximately 0.2 mm. The research indicated that the residual stress in the tempered glass make the bending strength higher, but also make the probability of the spontaneous breakage higher.
     The residual stress and failure mechanism of the glass-alumina laminated materials for teeth were studied through the finite element method and three-spot bending tests, and ball-on -ring tests. The axial symmetry test was carried out with the small bi-layer disc sample using the self-made mini-tester. The result indicated that thermal coefficient of expansion between layers resulted in the residual stress. Meanwhile the stress distribution was related to the thickness ratio and the temperature difference.
     Based on the national 863 projects and the international cooperation projects, many test instruments were successfully devised. The main innovations of these instruments laid in modulation, multi-function, intellectualization, and they also integrated the fundamental function of the acoustic emission, depth-sensing indentation、visual monitoring and general universal material testing machine. The study provides a simple and convenient way and equipment to test the surface properties and interfacial behavior of the glass and laminated galss.
引文
[1]张景焘,张佰恒.中国平板玻璃工业发展现状、未来走势及对策[J]玻璃, 2008, 04:47-51
    [2]黎阳.金属玻璃的应用[J].上海钢研, 2004,03:27
    [3]冯江.浅谈防火玻璃的分类与应用[J].消防技术与产品信息, 2005,06:34-35
    [4]余海湖.汽车玻璃研究的进展[J].汽车工艺与材料, 1997,08:25-26
    [5]刘金彩,曾利群.建筑微晶玻璃的应用与发展[J].山东建材, 2005,01:30-32
    [6]林亢.普通工业玻璃退火与应力的几个问题.玻璃,2000,(2):8
    [7]王承遇,陶瑛编著.玻璃表面与表面处理.北京:中国建材工业出版社,1993
    [8]亢一澜,界面力学若干问题的实验研究,力学与实践,1999,21(3):9一15
    [9]王承遇,陶瑛.平板玻璃表面的研究.硅酸盐通报,1987,6(l):12一19
    [10]王承遇,陶瑛.玻璃表面结构与性质.硅酸盐通报,1982,1(ll):24一34
    [11]邵韦平.首都机场T3航站楼设计.建筑学报,2008, 05:1-13
    [12] UhlmannDR,KreilledNJ主编,王西成,梁淑妍译.玻璃的弹性与强度.北京:轻工业出版社,1988.
    [13]王晓宾,黄婕,蒋幼梅.夹层玻璃脱胶及其防止途径.上海建材.1989(5):11一13
    [14] F.V.托利主编.玻璃制造手册.刘时衡译.北京:建工出版社,1983:55
    [15]杨宏、金宗哲,压痕法测定钢化玻璃表面应力,硅酸盐通报,1987(6),4:55-57
    [16]李庆阳.玻璃摩擦磨损性能测试及其装置的研制.哈尔滨工业大学硕士学位论文。2007
    [17] UhlmannDR,KreilledNJ主编,王西成,梁淑妍译.玻璃的弹性与强度.北京:轻工业出版社,1988.
    [18] GBJC/T676一997,玻璃材料弯曲强度试验方法。
    [19] EN1288-5:2000 GLASS IN BUILDING-DETERMINATION OF THE BENDING STRENGTH OF GLASS- PART 5: COAXIAL DOUBLE RING TEST ON FLAT SPECIMENS WITH SMAL TEST SURFACE AREAS
    [20]俄罗斯标准,双环试验方法1.232.46一87
    [21] Hu X Z, Lawn B R. A simple indentation stress-strain relation for contacts with spheres on bilayer structures [J]. Thin Solid Films, 1998,322(1-2):225~232
    [22] Lawn B R. Indentation of Ceramics with Spheres. A Century after Hertz[J]. J Am Ceram Soc, 1998, 81(8): 1977~1994
    [23] Jung Y G, Lawn B R, Martyniuk M et al. Evaluation of Elastic Modulus and Hardness of Thin Films by Nanoindentation[J]. J Mater Res, 2004,19(10):3076~3080
    [24] Taylor C A, Wayne M F et al. Residual Stress Measurement inThin Carbon Filmsby Raman Spectroscopy and Nanoindentation[J]. Thin Solid Films, 2003,429(1-2):199~200
    [25] Yeo J G, Lee K S, Lawn B R. Role of Microstructure in Dynamic Fatigue of Gglass-ceramics after Contact with Spheres[J]. J Am Ceram Soc, 2000,83(6):1545~1547
    [26] Hertz H. Hertz’s Miscellaneous Papers: London U.K: Macmillan, 1896
    [27] Latella B A, OConnor B H, Padture N P et al. Hertzian Contact Damage in Porous Alumina Ceramics[J]. J Am Ceram Soc, 1997, 80(4):1027~1031
    [28] Bao Yiwang, Jin Zongzhe. Evaluation of Impact Resistance and Brittleness of structural Ceramics[J]. Nuclear Engineering and Design, 1994, 150 (2-3):323~328
    [29] Guiberteau F,Padture Np,Cai H ,Lawn BR Indentation Fatigue-a Simple Cycylic Hertzian Test for Measuring Damage Accumulation in Polycrystalline Ceramics Philos Mag A 68 (5): 1003-1016 Nov 1993
    [30] Lawn BR, Dabbs TP, Fairbanks CJ Kinetics of Shear-activated Indentation Crack Initiation in Soda-lime Glass
    [31] Herzl Chai and Lawn BR Cracking in Brittle Laminates From Concentrated Loads, Acta Materialia, Volume 50, Issue 10, 12 June 2002, Pages 2613-2625
    [32] Wiederhorn SM, Lawn BR Strength Degradation of Glass Resulting from Impact with Spheres Journal of the American Ceramic Society 60 (9-10): 451-458 1977
    [33] Peterson IM, Pajares A, Lawn BR Mechanical characterization of dental ceramics by hertzian contacts J DENT RES 77 (4): 589-602 APR 1998
    [34] Y.W. Bao, Z.Z. Jin. Size effects and a mean-strength criterion for ceramics. Fatigue Frac Eng Mater Struc. 1993, 16(8): 829-835
    [35]苏盛彪.预应力陶瓷与层状陶瓷复合材料应力分析与设计.中国建筑材料科学研究院博士学位论文.2002
    [36]卜晓雪.相对法及其在脆性材料力学性能评价中的应用.中国建筑材料科学研究总院硕士学位论文。2007
    [37]包亦望,陈志城,苏盛彪.球压法在线评价脆性材料的强度特性和残余应力.无机材料学报.2002,17(4): 833-840
    [38] Y.W. Bao, Y.F. Han and F.T. Gong. Stress relaxation and reliability evaluation of soda-lime glass. Acta Metallurgica Sinica. 2004, 17(4): 460-464
    [39]包亦望,吕学良,J. Jimmy Yang,结构玻璃的强度特征和可靠性,All in Glass广州,2007,11
    [40]卜晓雪,包亦望.表面残余应力对玻璃压痕参数的影响,特陶年会,洛阳2006, 10,
    [41]陈志城.混凝土材料的接触损伤及球压法无损评价研究.中国建筑材料科学研究院硕士学位论文.2001
    [42]金宗哲、包亦望,脆性材料力学性能评价与设计,中国铁道出版社,1996
    [43]包亦望,邱岩,卜晓雪,陶瓷材料的力学性能评价新方法,稀有金属材料与工程,2007,36:348-349
    [44] Y. Wang, D. Raabe, C. Klüber, F. Roters. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Materialia. 2004, 52 : 2229–2238
    [45]张泰华,杨业敏.纳米硬度技术在表面工程力学性能检测中的应用.中国机械工程.2002, 13(24): 2148-2151
    [46]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展.2002, 32(3): 349-364
    [47]金宗哲、刘忠伟、马眷荣,玻璃微裂纹强度评价,硅酸盐学报,1987,3(6):115
    [48]郑英焕主编,安全玻璃,中国建筑玻璃与工业玻璃协会安全玻璃专业委员会,1993。
    [49]亚历克西斯,平卡斯等.玻璃的退火和钢化.张玉智译.北京:中国建筑工业出版社,1989:112
    [50]西北轻工业学院.玻璃工艺学.中国轻工业出版社,1982
    [51] Yang, J. Destructive test of cast stainless steel fixing assemblies for glazing units. Report, CWCT, 2004.
    [52] Yang, J. Stress analysis of the insulated glazing units under the thermal loading using finite element method: Part I and II. Report, CWCT, 2004.
    [53] Yang, J. Impact resistance of structural glass. Proceedings of ICBEST’07, Bath, U.K., 28-30 March, 2007, 75-86.
    [54] Yang, J. Impact response of the pointed supported toughen glass panels. International Journal of Impact Engineering, 2007 (under review).
    [55] Yang, J. Common properties of glass in buildings. Chapter for The ICE Manual of Construction Materials. Tomas Telford Publishing, London, UK, 2007.
    [56] Hill, G.R. Proposed demountable squash courts with glass walls. The structural Engineer, 78-85, 60A (3) 1982.
    [57] Stephen, R.L. Walker, A.R. and Keiller, A.P. Structural use of glass. Journal of Architectural Engineering, 137-149, 12(3), 2006.
    [58] Rice, P. and Dutton, H. Structural Glass. E & FN Spon, 1985, UK.CWCT. Safety and fragility of glazed roofing– guidance on specification and testing. TN42, CWCT, Bath, 2004.
    [59] Bennison, S.J., Smith, C.A. Van Duser, A. and Jagota, A. Structural performance of laminated glass made with a‘stiff’interlayer.
    [60] Proceedings of the seventh international conference on architectural and automotive glass Glass Processing Days 2001, Tampere (Finland), published byTamglass Ltd. Oy, Vehmaistenkatu 5, Tampere (Finland).
    [61] Sedlacek, G. Blank, K. and Gusgen, J. Glass in structural engineering. The Structural Engineer, 73(2), 1995, 17-22.
    [62] Minor, J. E. 1997. New philosophy guides design of the building envelope. Proc. Struct. Congr. XV, Sturctural Engineering Institute ASCE, Reston, Va., 1-5.
    [63] Kaiser, N.D. et al. 2000. Impact resistance of laminated glass using“sacrificial ply”design concept. Journal of Architectural Engineering, 6(1), 24-34. 2000.
    [64] Saxe, T. J. et al. 2002. Effects of missile size and glass type on impact resistance of“sacrificial ply”laminated glass. Journal of Architectural Engineering 8(1), 24- 39. 2002.
    [65] Pantelides, C.P. et al. Post-breakage behavior of architectural glazing in windstorms. Journal of Wind Engineering and Industrial Aerodynamics, 41-44 1992, 2425-2435.
    [66] Y. W. Bao, S. B. Su, J. J. Yang, L. Sun, and J. H. Gong. Nondestructively determining local strength and residual stress of glass by Hertzian indentation. Acta Materialia 50 (18):4659-4666, 2002.
    [67] Bao Yiwang, Liu Lizhong, Han Song, Shi Xinyong, Yang Jianjun. New mechanism of spontaneous breakage of tempered glass– monolithic silicon particle. J. of Chinese Ceramic Society. 2007, 5[9]: 1273-1276
    [68] Bao,Y.W.; Hu,C.F.; Zhou,Y.C. Damage tolerance of nanolayer grained ceramics and quantitative estimation, Materials Science and Technology, 2006, 22: 227-230
    [69]包亦望.陶瓷及玻璃力学性能评价的一些非常规技术.硅酸盐学报, 2007,S1:118-124
    [70]黄白.玻璃幕墙的隐患堪忧.北京观察. 2005(12):40~44
    [71]赵西安.幕墙玻璃的安全选用.中国建筑金属结构, 2007,10:1-4
    [72]刘军进,冯丽娟,张涛,李耀庭.北京天文馆新馆玻璃幕墙支承钢结构复核分析.第十一届空间结构学术会议论文集, 2005
    [73]郭彦林,刘涛,张婀娜,王高宁等.金字塔结构建筑典范—天津泰达市民文化广场玻璃幕墙及钢结构设计与研究.建设科技,2004,07:34-35
    [74]马赢,石永久,王元清.点支承中空玻璃板孔边应力的有限元分析.建筑科学, 2005,04
    [75]马赢,王元清,石永久,杨威.三点支承中空玻璃抗弯性能试验与数值分析.建筑科学与工程学报, 2005,02
    [76]刘丹梅,曲伟,杨为奉,张瑞平,夏月波.玻璃纤维-Al混杂复合层板的疲劳裂缝扩展行为.材料研究学报, 1992,05
    [77]史宝军,尹晓江,张瑞军,宋世军.玻璃幕墙结构力学性能试验分析与数值模拟.山东建筑大学学报, 2006,06
    [78]李创第,李桂青,黄任常.高层建筑玻璃幕墙线性和非线性抗风动力可靠性分析(1).工业建筑, 1999,05:40-45
    [79]张元发,陆津龙.玻璃幕墙安全性能现场检测评估技术探讨.新型建筑材料, 2002,05:49-52
    [80]杨晓喻,刘长虹,廖运茂,鲜苏琴,高文峰.玻璃着色剂对可切削渗透陶瓷复合体颜色影响的研究.华西口腔医学杂志2006;3:221-224.
    [81]王广奎,康宏,包广洁,吕晋军,高飞.纳米氧化锆的含量对纳米氧化锆增韧氧化铝陶瓷力学性能和显微结构的影响.华西口腔医学杂志. 2006;24(5):404-406.
    [82]伊元夫,温宁,王忠义,田杰谟.渗透玻璃对牙科CAD /CAM用氧化铝玻璃复合体颜色的影响.实用口腔医学杂志2005;21(2):183-186.
    [83]张斌,陈吉华,孙连军.烧结温度对牙科氧化锆增韧陶瓷性能的影响.中华口腔医学杂志2003;38(4):304-305.
    [84]刘伟才,张志升,黄承敏,巢永烈,万乾炳.牙科Vita markⅡ可切削陶瓷赫兹触压循环疲劳研究.华西口腔医学杂志.2006;24(4):306-308.
    [85] Abousheliba MN, Jagera N, Kleverlaana CJ, Feilzer AJ. Effect of loading method on the fracture mechanics of two layered all-ceramic restorative systems. Dent Mater 2007;23:952–959.
    [86] Fleming GJP, El-Lakwah SFA, Harris JJ, Marquis PM. The effect of core:dentin thickness ratio on the bi-axial flexure strength and fracture mode and origin of belayed dental ceramic composites. Dent Mater 2005;21:164-171.
    [87] White,-S-N; Miklus,-V-G; McLaren,-E-A; Lang,-L-A; Caputo,-A-A Flexural strength of a layered zirconia and porcelain dental all-ceramic system. J-Prosthet-Dent. 2005 Aug; 94(2): 125-31.
    [88] Mitova G, Lohbauerb U, Rabboa MA, PetscheltA,Pospiecha P.Investigations of subcritical crack propagation of theEmpress 2 all-ceramic system. Dent Mater 2008;24:267-273.
    [89] Curtis,-A-R; Wright,-A-J; Fleming,-G-J The influence of simulated masticatory loading regimes on the bi-axial flexure strength and reliability of a Y-TZP dental ceramic. J-Dent. 2006 May; 34(5): 317-25
    [90] Lawn BR. Deng Y, Lloyd IK, Janal MN, Rekow ED, Thompson VP. Materials design of ceramic-based layer structures for crowns. J Dent Res. 2002;81(6):433-438.
    [91] Pittayachawana P, McDonald A, Petrie A, Knowles JC.The biaxial flexural strength and fatigue property of LavaTM Y-TZP dental ceramic. Dent Mater 2007;23:1018–1029.
    [1]杨泽勇.电子万能试验机测控系统的研究.北方工业大学硕士学位论文. 2005:1~7
    [2]陈华.多功能材料试验机的测力计和测试软件的研究..哈尔滨工业大学硕士学位论文, 2003:2~6
    [3]宋波,杨乐民,柳立红.脆性材料试验机机械传动机构的设计.机械工程师, 2004(8):69~71
    [4] Gopalaratnam. V. S, Shah. S. P. Instrumented Impact Testing of Brittle Materials. ASCE 1984, 1:635~639
    [5]杨宗英.万能材料试验机测量系统分析和设计.航空制造工程, 1997(11):37~38
    [6]张小建.单片机在自动加载试验机控制系统中的运用.武汉科技学院学报,2005 18(11):39~41
    [7]邓其源.力学性能测试软件的设计原则和实践.理化检验~物理分册, 2002(2):83~85
    [8]谭孟曦.利用纳米压痕加载曲线计算硬度—压入深度关系及弹性模量.金属学报, 2005 41(10):1020~1024
    [9] Landis, Eric N, Baillon, Lucie. Experiments to elate acoustic emission energy to fracture energy of concrete. Journal of Engineering Mechanics, 2002, 128(6):698-702
    [10]秦国栋,刘志明.声发射测试系统的发展.测试技术学报, 2004 18(3):274~279
    [11]侯珍秀.机械系统设计.哈尔滨工业大学出版社,2000
    [12]张健民.机电一体化系统设计.北京理工大学出版社,1995
    [1]包亦望,陈志诚,苏盛彪.球压法在线评价脆性材料的强度特征和残余应力.无机材料学报,2002,17(4):833-840.
    [2] Lawn B R. Fracture of Brittle Solid, 2nd Edition. London, UK: Cambridge University Press, 1993.
    [3] Lee S K, Lawn B R, Kim D K. J. Am. Ceram. Soc., 1998, 81(8): 2061-2071.
    [4] Timoshenko S, Goodier J N. Theory of Elasticity. New York: McGrawHill, 1951.
    [5] Johnson K L, Contact Mechanics. London, UK: Cambridge University Press,1985.
    [6] Bao Y W, Jin Z Z. Mater. Struct., 1993, 16(8): 829-835.
    [7] Bao Y W, Su S B, Yang J J, Sun L, Gong J H. Nondestructively determining local strength and residual stress of glass by hertzian indentation. Acta Materialia, 2002, 50(18):4659-4666.
    [8] Robert S G, Lawrence C W, Bisrat Y, et al. J. Am. Ceram.Soc., 1999, 82(7): 1809-1816.
    [9]宁莉萍,王齐华,简令奇.微晶玻璃的摩擦学特性研究进展.材料科学与工程学报. 2005,23(2): 306-309。
    [10]赵运才,肖汉宁,张力军.转速对铝硅酸盐玻璃陶瓷摩擦磨损特性的影响.硅酸盐通报. 2003,(6): 20-23。
    [11] K Komeropoulos, Suh N P, Saka N. Wear of Boundary Lubricated Surfaces. Wear. 1986,107: 107-132.
    [12]陈卓君,张祖立,贾春德,袁伟东.钢/玻璃的摩擦磨损性能动态观测研究.润滑与密封. 2005,(4): 88-90。
    [13] Luo Jianbin, Liu Shan, Pan Guoshun, Wen Shizhu. Study on Nano Mixed Lubrication. Journal of Mechanical Engineering. 2003,39(2): 2-7.
    [14] XIA Yan-qiu, WANG Shi-jie, XUE Qun-ji. Friction and Wear Proper of Electron Beam Irradiated Boron Permeated Carbon Steel under Lubrication. Tribology. 2003,23 (6): 485-489.
    [1] Foss, R.V. Safety glass test developments. Proc. of 5th Glass Processing Days. 1997, Vol.1, pp.96-100.
    [2] Hattis, D. Role and significance of human requirements and architecture in application of the performance concept in building. 1996, In Proc. 3rd CIB-ASTM-ISO-RILEM International Symposium, Tel Aviv, Israel, Becker. R. and Paciuk. M. (Eds). Vol. 1. 1-3.
    [3] Ballantyne E.R., C.S.I.R.O. Fracture of toughened glass wall cladding. Division of Building Research, Melbourne Australia Report, No. 061-5, 1961.
    [4] Brungs M.P. , Sugeng X.Y. Some solutions to the nickel sulfide problem in toughened glass. Glass Technology, 1995; 36(4):107-110.
    [5] Swain M.V. A fracture mechanism description of the microcracking about NiS inclusions in glass. J. Non Crystalline Solids, 1980;38-39:451-456.
    [6] Swain M.V. Nickel sulfide inclusions in glass: an example of microcracking induced by a volumetric expanding phase change.J Mat Science, 1981; 16:151-158.
    [7] Jacob L. A review of the nickel sulphide induced fracture in tempered glass.Proceeding on Glass Processing Days, 18-21 June 2001; 108-110.
    [8] Bao Yiwang, Liu Lizhong, Han Song, Shi Xinyong, Yang Jianjun. New mechanism of spontaneous breakage of tempered glass– monolithic silicon particle. J. of Chinese Ceramic Society. 2007, 5[9]: 1273-1276
    [9] Bao,Y.W.; Liu,C.C.; Huang,J.L. Effects of residual stresses on strength and toughness of particle-reinforced TiN/Si3N4 composite: Theoretical investigation and FEM simulation,Materials Science and Engineering A,2006,434:250-258
    [10] Bao Yiwang, Jin Zongzhe, Size Effects and a Mean-Strength Criterion For Ceramics, J. Fatigue & Fracture of Engineering Materials & Structure, 1993, 16
    [8] 829-835
    [11] Bao Y.W. and Jin Z.Z., Evaluation on Brittleness and Impact Resistance of Structural Ceramics, J. Nuclear Engineering and Design. 150 ,323-328, 1994
    [12] Mencik J. Strength and Fracture of Glass and Ceramics, Elsevier, New York, 1992
    [13] Young W.C., Budynas R. G., Roark’s Formulas for Stress and Strength -7th edition, International Edition 2002, ISBN 0-07-072542X, Singapore. P.428,
    [1] H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler and C.H.F. Hammerle: Dental Materials, Vol. 21(2005), p. 930-937.
    [2] R. Studart, F. Filser, P. Kocher, et al: Dental Materials, Vol. 23 (2007), p. 177-180.
    [3] Y. Qiu, Y.W. Bao and Y.H. Liu: Key Eng. Mat. Vol. 324-325(2006), p. 367-370.
    [4] D. B. Marshall: Am. Ceram. Soc. Bull. Vol. 71 [6] (1992), p. 969-973.
    [5] B. R. Lawn and E. R. Fuller: J. Mat. Sci. Vol. 19 (1984), p. 4061-4067.
    [6] W. J. Clegg: Acta Metall. Mater. Vol. 40 [11] (1992), p. 3085-3093.
    [7] H.Luthy, F.Filser, O.Loeffel, M.Schumacher, L. J. Gauckler and C.H.F. Hammerle: Dental Materials, Vol. 21(2005), p. 930-937.
    [8] Suzuki, H. Baba: Materials Science Research International, 2003, 9, 160-166
    [9] Z. J. Shen, Z. Zhao, H. Peng, M. Nygren: Nature, 2002, 417, 266-269
    [10] J. Y. Kim, H.G. An, Y.W. Kim, M. J..Mitomo: Mater. Sci, 2000, 35, 3693-3697
    [11] Y.W.Bao, L.Z. Liu, & Y.C. Zhou, Acta Materialia 2005, 53, 4857-4862
    [12] ISO 6872:1995 E, Dental ceramics
    [13] Bao Yiwang, Wang Wei,Zhou Yanchun.Investigation of the Relationship Between Elastic Modulus and Hardness Based on Depth-sensing Indentation Measurements[J]. Acta Mater. 2004, 52: 5397~5404
    [14] Oliver WC, Pharr GM. J Mater Res 1992; 7: 1564.
    [15] Fischer-Cripps AC, Nanoindentation. Springer-Verlag, New York; 2002.
    [16] Y. W. Bao, S. B. Su and J. L. Huang: J. Composite Materials Vol. 36 [14] (2002), p. 1769-1778.
    [17] Y. W. Bao, S. B. Su and J. L. Huang: J. Chinese Ceramic Society, Vol. 30
    [6](2002), p. 579-584.
    [18] Y. W. Bao, C. F. Hu and Y. C. Zhou: Mat. Sci. & Tech. Vol. 22 [2] (2006), p.227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700