长枝木霉菌几丁质酶基因克隆和抑菌活性物质结构鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长枝木霉(Trichoderma longibrachiatum)是生防木霉属真菌中的一种。长枝木霉用于植物病害的生物防治已有报道,但在东北地区对其研究还较少,它的具体的生防机制还未被揭示。几丁质酶是木霉生物防治机制中一种非常重要的胞壁降解酶,在木霉重寄生病原菌菌丝过程中起着重要的作用。同时,木霉菌产生的活性次生代谢产物,是木霉生防机制中另一重要的方面,活性次生代谢产物能够直接抑制植物病害病原菌的生长,并将其瓦解,而且与胞壁降解酶具有一定的协同拮抗作用。因此,对木霉生防机制这两方面的研究,对于进一步揭示长枝木霉的生防机制,具有非常重大的意义。
     本研究首先采用分子系统学方法对1株自我采集的具有潜在生物防治东北地区多种林木、果树皮部病害和农作物病害的木霉菌进行了鉴定;然后采用特异性引物PCR、RT-PCR、RACE方法从几丁质酶诱导培养基培养的长枝木霉菌丝中克隆了几丁质酶基因;采用NCBI、SWISS-MODEL等网络工具及BioEdit、ClustalX2.0、Chimera、Cn3D等软件分析了几丁质酶的基本信息、功能位点、二级结构特征、三维结构特征等生物学特性;同时对长枝木霉菌产生的活性次生代谢产物进行了提取分离纯化与结构鉴定等研究。主要研究结果如下:
     1.针对木霉菌属内不同种之间rDNA的ITS序列的相对特异性的特点,采用通用引物对木霉rDNA的ITS1+5.8S+ITS2区域以及tefl序列进行了扩增、测序,并与NCBI数据库中的木霉菌种类进行序列比对,同时应用木霉在线鉴定工具TrichoKey2.0完成了木霉菌株的鉴定,最终将自我采集分离的木霉菌株鉴定为长枝木霉菌(Trichoderma longibrachiatum T05),这一结果与以前的形态学鉴定结果完全相同。
     2.采用透明圈法和DNS比色法对长枝木霉产生的几丁质酶和p-1,3-葡聚糖酶活性进行了研究,进一步证明了几丁质酶和β-1,3-葡聚糖酶为诱导酶的结论,得出了长枝木霉在诱导液体培养基中的几丁质酶和β-1,3-葡聚糖酶酶活变化曲线,为进一步克隆长枝木霉几丁质酶和β-1,3-葡聚糖酶基因全长奠定了基础,提供了其酶活达到最大表达量所需的最佳时间,为提取含有高丰度mRNA的长枝木霉总RNA做好了准备。
     3.应用特异性引物PCR获得了700bp左右的几丁质酶基因序列片段,并利用获得的序列片段设计了特异性引物用于cDNA片段的扩增,再利用RT-PCR技术扩增到了长枝木霉菌几丁质酶的cDNA基因片段,然后通过RACE技术扩增获得了几丁质酶基因的3’末端及5’末端,通过序列的拼接获得了1080bp的全长cDNA基因序列,命名为TL-ch42。
     4.TL-ch42基因含有1080bp的完整开放阅读框(open reading frame, ORF),起始密码子为ATG,终止密码子为TGA,5’非翻译区(5'UTR)有519bp,3’非翻译区(3'UTR)有221bp共编码359aa (amino acid);碱基组成为A22.22%、C31.76%.、24.72%、T21.30%, G+C含量占56.48%、A+T含量占43.52%。翻译的氨基酸序列组成分析结果为:Ala12.78%、Cys0.28%、Asp7.22%、Glu2.50%、Phe4.17%、Gly7.78%、His1.39%、He4.44%、Lys5.00%、Leu7.50%、Met2.22%、Asn6.67%、Pro3.89%、Gln3.06%、Arg2.50%、Ser8.61%、Thr5.56%、Val6.11%、Trp2.22%、Tyr5.83%,其中丙氨酸(Ala)含量最高,半胱氨酸(Cys)含量最低。利用ExPASy的Proteomics对TL-ch42蛋白基本信息的预测结果为:分子量为38.99kD,pI为5.12,带负电荷残基(Asp+Glu)有35个,带正电荷残基(Arg+Lys)有27个,分子式为C1752H2645N457O537S9,,总原子数为5400个,不稳定指数为28.01,属稳定蛋白,脂肪族指数为77.30,总平均疏水性为-0.192。
     5.预测的TL-ch42蛋白信号肽最可能的剪切位点在22-23aa之间,为TSA-SP;该蛋白在8~27aa、36~56aa、123~141aa和201~223aa间有4个疏水区域,跨膜区预测位置也在8~27aa、36-56aa、123-141aa和201~223aa间,与亲/疏水性预测结果一致;TL-ch42蛋白的二级结构中无规则卷曲、α螺旋和β折叠的比例分别为61.84%、23.96%、14.21%。对该蛋白进行亚细胞定位,发现TL-ch42的蛋白主要位于溶酶体、胞外、过氧化物酶体、内质网隔膜及内质网管腔;用SWISS-MODEL在线三维结构比对预测,用Chimera和Cn3D输出了几丁质酶的三维模型。
     6.运用薄层层析、柱层析、高效液相色谱等分离分析方法对长枝木霉发酵液中的抑菌活性物质进行了分离、纯化,采用生物活性追踪的方法,逐步明确了发酵液中起抑菌作用的成分,并对其化学结构进行了鉴定。试验结果表明,乙酸乙酯为萃取抑菌活性物质的最佳溶剂,乙酸乙酯与石油醚比例达到2:1为最佳薄层层析展开剂。薄层层析展开后利用碘和紫外灯显色,发现共有9个点。以不同配比的石油醚—乙酸乙酯作为洗脱液,经硅胶柱层析分离后得到9个组分,各组分经减压浓缩、挥干溶剂后,分别计算出了各组分的得率,并对各组分的抑菌活性进行了测定。组分Ⅵ的得率较高,为24.76%,且对供试病原菌菌落生长抑制率最高,表明抑菌活性成分主要存在于组分Ⅵ中。将组分Ⅵ上sephadex LH20柱进行纯化,以甲醇、水梯度洗脱,最终得到组分Ⅵ-1纯样品232mg。Ⅵ-1经HPLC检测分析,发现其纯度达到95%以上。通过高分辨质谱分析,推断该化合物的分子式为C28H32O8。经NIST库检查发现此化合物与化合物bislongiquinolide(长枝联喹啉内酯)的质谱图相吻合,丰度达95%。
Trichoderma longibrachiatum is one species of Trichoderma genus that has biocontrol potential. There are some reports on application of Trichoderma longibrachiatum to control plant diseases, but less study in the northeast of china, and the biocontrol mechanism is still not revealed. Chitinase is one important cell wall degrading enzyme in biocontrol mechanism of Trichoderma, plays the important role in the process of hyperparasitism on mycelium of plant pathogen. Meanwhile, the active secondary metabolites produced by Trichoderma is another important part in the biocontrol mechanism, they can inhibit the growth of plant pathogen directly, and make it collapsed, also have the synergetic antagonism with cell wall degrading enzymes. Thus, the study on the two part of Trichoderma biocontrol mechanism has great significance to reveal the biocontrol mechanism of Trichoderma longibrachiatum.
     In this study, molecular phylogenetics was adopted to identify one strain of Trichoderma which has potential ability on biocontrol many plant pathogens in northeast of china. The chitinase cDNA gene was cloned from the Trichoderma longibrachiatum mycelia which cultured with chitinase induction medium by the methods of specific primer PCR, RT-PCR and RACE. The basic information of chitinase, function sites, secondary structure characteristics and3D characteristics were analyzed by the online tools such as NCBI and SWISS-MODEL, the molecular biological software such as BioEdit, ClustalX2.0, Chimera and Cn3D. Meanwhile, the active secondary metabolites produced by Trichoderma longibrachiatum T05were extracted, separated and its chemical structure was identified. The main results as follows:
     1. According to the relative specific rDNA ITS sequences of Trichoderma genus, rDNA ITS1+5.8S+ITS2sequences region and tefl sequence were amplified and sequenced, and aligned with the ITS and tefl sequences of Trichoderma in GenBank of NCBI. Meanwhile, a online Trichoderma identification tool TrichoKey2.0was used for the further identification, the test strain was identified as Trichoderma longibrachiatum. The result was completely same as the morphology identification.
     2. Using transparent circle method and DNS colorimetric method, the chitinase and P-1,3-glucanase activity of Trichoderma longibrachiatum T05were studied, further proved the conclusion of chitinase and P-1,3-glucanase were inducible enzyme, laid the foundation for cloning chitinase and P-1,3-glucanase complete cDNA gene, provided the optimum time that enzyme reaching the maximum expression, got the ready for extracting total RNA contained abundant mRNA.
     3. Firstly, the fragment sequences of chitinase gene was obtained by specific primers PCR, then the specific primer was designed for amplifying the fragment of cDNA gene, the fragment of cDNA gene of chitinase from T. longibrachiatum T05, the3'-end and5'-end of chitinase cDNA gene were amplified by RACE, the complete cDNA gene (1080bp) was obtained by joining together with software ContigExpress, named as TL-ch42.
     4. TL-ch42gene contained a full open reading frame (ORF) of1080bp in length. The start codon was ATG, the stop codon was TGA, endoded a putative protein of359amino acids. The length of5'and3'untranslatin region was519bp and221bp, respectively. The base composition was A22.22%, C31.76%, G24.72%, T21.30%, the G+C content of TL-ch42was56.48%, and the A+T content was43.52%. The analysis result of putative amino acid composition was as follows:Ala12.78%, Cys0.28%, Asp7.22%, Glu2.50%, Phe4.17%, Gly7.78%, His1.39%, Ile4.44%, Lys5.00%, Leu7.50%, Met2.22%, Asn6.67%, Pro3.89%, Gln3.06%, Arg2.50%, Ser8.61%, Thr5.56%, Val6.11%, Trp2.22%, Tyr5.83%, thereinto, the Ala content was highest, and Cys was lowest. The predicted molecular wight of putative protein was38.99kDa, and the pI was5.12. There were35amino acid residues with negative charge (Asp+Glu) and27amino acid residues with positive charge (Arg+Lys). The putative protein contained5400atoms with a molecular formula of C1752H2645N457O537S9. The protein was a stable protein with a instability index of28.01. The aliphatic index was77.30and the total average hydrophobicity is-0.192.
     5. The most probable splice site of signal peptide of TL-ch42was predicted to be located between the22nd and23rd amino acid, which was recognized as TSA-SP. The protein contained4hydrophobic regions which were located between the8th-27th amino acid,36th-56th amino acid,123rd-141st amino acid,201st-223rd amino acid. The transmembrane region was also predicted to be located in these regions. The secondary structure was composed of random coil, a helix and β strands with a percentage of61.84%,23.96%and14.21%, respectively. The result of subcellular location of TL-ch42showed that this protein was mainly located in lysosome (lumen) and in outside, microbody (peroxisome) and endoplasmic reticulum (membrane). The tertiary structure of TL-ch42putative protein was predicted using SWISS-MODEL online and the structure was exported by Chimera and Cn3D.
     6. Using the separation and analysis methods of TLC, column chromotography and HPLC, the antifungal secondary metabolites from the fermentation liquid of Trichoderma longibrachiatum T05. The antifungal part of secondary metabolites was determined and its chemical structure was identified with the method of biological activity tracing. The results showed that ethyl acetate was the optimum solvent to extract the antifungal secondary metabolites, petroleum ether:ethyl acetate=2:1was the optimum developer for TLC. Nine point of samples were observed under UV light and with I2. Nine components were obtained by silica column chromotography, different ratio of petroleum ether and ethyl acetate as eluent, yield rate of different component was calculated after condensing and drying solvent, and the antifungal activity was tested. The yield rate of component VI was higher, that is24.76%, and its inhibition rate on the tested plant pathogen was highest, showed that the main part of antifungal substance was in it. The232mg pure sample of component Ⅵ-1was obtained by sephadex LH20column chromotography with MeOH and water as eluent. The purity of component Ⅵ-1was above95%after HPLC analysis. After High resolution mass spectrometry determination, the deduced formula for this coumpound was C28H32O8. The mass spectrum was same as bislongiquinolide in NIST, the abundant was95%.
引文
[1]文成敬,陶家凤,陈文瑞.中国西南地区木霉属分类研究[J].真菌学报.1993,12(2):118-130
    [2]B isby G R. Trichoderma viride Pers. ex Fr. and not eson Hypocrea[J]. Trans. Br. Mycol. Soc.,1939,23:149-168
    [3]Rifai M A, Webster J. Culture study on Hypocrea and Trichoderma Ⅱ. Hypocrea aureoviridis and Hypocrea rufa f. sterilis f. nov[J]. Trans. Br. Mycol. Soc.,1966,49:289-296
    [4]Rifai M A. A revision of the genus Trichoderma[J].My col. Pap. CM I.,1969,116
    [5]Bissett J. A revision of the genus Trichoderma Ⅰ:section Longibrachiatum soct. nov[J]. Can. J. Bot.,1984,62:924-931
    [6]Bissett J. A revision of the genus Trichoderma Ⅱ:infraspecific classification[J]. Can. J. Bot.,1991a,69:2357-2372
    [7]Bissett J. A revision of the genus Trichoderma Ⅲ:section Pachybasium[J]. Can. J. Bot., 1991b,69:2373-2417
    [8]Bissett J. A revision of the genus Trichoderma Ⅳ:Additional notes on section Longibrachiatum[J]. Can. J. Bot.,1991c,69:2418-2420
    [9]Stasz T E, Weeden N F, Harman G E. Methods of isozyme electrophoresis for Trichoderma and Gliocladium species[J]. Mycologia.1988,80(6):870-874
    [10]Leuchtmann A. Isozyme subgroups in Trichoderma section Longibrachiatum[J]. Mycologia.1988,80(3):384-394
    [11]肖性龙,杨合同,夏贤志等.木霉菌的形态学和可溶性蛋白质电泳鉴定与分类[J].山东科学,2002,15(1):5-12
    [12]Meyer W, Morawetz R, Borner T, Kubicek C P. The use of DNA-fingerprint analysis in the classification of some species of the Trichoderma aggregate[J]. Current Genetics.1992, 27(1):27-30
    [13]Kuhls K, Lieckfeldt E. Revision of Trichoderma sect. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences[J]. Mycologia.1997,89(3):442-460
    [14]Rehner S A, Samuels G J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences[J]. Mycological Research.1994,98(6):625-634
    [15]Kindermann J, El-Ayouti Y, Samuels G J, Kubicek C P. Phylogeny of the Genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster[J]. Fungal Genetics and Biology.1998,24:298-309
    [16]Kuhls K, Lieckfeldt E, Samuels G J et al. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina[J]. Proc. Nat. Acad. Sci. USA.1996,93:7755-7760
    [17]Park D S, Kang H W, Park Y J et al. DNA profiles of Trichoderma spp. in Korea[J]. Mycobiology.2004,32(1):24-34
    [18]Maymon M, Minz D, Barbul O et al. Identification of Trichoderma biocontrol isolates to clades according to ap-PCR and ITS sequence analyses[J]. Phytoparasitica.2004, 32(4):370-375
    [19]Druzhinina I S, Kopchinskiy A G, Komon M et al. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea[J]. Fungal Genetics and Biology.2005, 42:813-828
    [20]Arisan-Atac I, Heidenreich E, Kubicek C P. Randomly amplified polymorphic DNA fingerprinting identifies subgroups of Trichoderma viride and other Trichoderma sp. Capable of chestnut blight biocontrol[J]. FEMS Microbiology Letters.1995,126:249-256
    [21]Goes L B, da Costa A B L, de Carvalho Freire L L et al. Randomly amplified polymorphic DNA of Trichoderma isolates and antagonism against Rhizoctonia solani[J]. Brazilian Archives of Biology and Technology.2002,45(2):151-160
    [22]Chakraborty B N, Chakraborty U, Saha A et al. Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of north Bengal based on rDNA markers and analysis of their PCR-RAPD profiles[J]. Global Journal of Biotechnology & Biochemistry.2010,5(1):55-61
    [23]李梅云,刘开启,李天飞等.木霉的RAPD分析[J].中国烟草学报,2004,10(3):38-41
    [24]Lieckfeldt E, Samuels G J, Nirenberg H I et al. A morphological and molecular perspective of Trichoderma viride:is it one or two species?[J] Applied and Environmental Microbiology.1999,65(6):2418-2428
    [25]Huang H C. Control of sclerolinia wilt of sunflower by hyper parasites[J]. Canadian Journal of Plant Pathology.1980,2(1):26-32
    [26]谭万忠.应用生物菌剂作种子处理防治植物病害的研究进展[J].植物保护,1992,5(2):2-5
    [27]Wells H D, Bell D K, Jaworski C A. Efficacy of Trichoderma harzianum as a biocontrol for Scerotium rolfsii[J]. Phytopathology.1972,62(4):442-447
    [28]Backman P A, Rodriguez-Kabana R. A system for the growth and delivery of biological control agents to the soil[J]. Phytopathology.1975,65(7):819-821
    [29]杨雨环,燕嗣皇,陆德清.木霉防治辣椒白绢病和猝倒病试验研究[J].贵州农业科学,1996,6(2):31-34
    [30]徐同,钟静萍,李德葆.木霉对土传病原真菌的拮抗作用[J].植物病理学报, 1993,23(1):63-66
    [31]杨依军,王勇.拮抗木霉菌在生防中的作用[J].天津农业科学,2000,6(3):29-33
    [32]Elad Y, Chet I, Katan J. Trichoderma harzianum:A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani[J]. Phytopathology.1980,70(2):119-121
    [33]杨依军,陈捷.以色列的生物防治[J].世界农业,2000,(3):11-13
    [34]李宏科,费成煜,金星.拮抗微生物的开发与利用[J].世界农业,1998,(8):28-29
    [35]Harman G E. Myths and dogmas of biocontrol:changes in perceptions derived from research on Trichoderma harzianum T-22[J]. Plant Dis.2000,84:377-393
    [36]Nemec S, Datroff L E, Strandberg J. Efficacy of biocontrol agent in planting mixes to colonize plant roots and control root diseases of vegetables and citrus[J]. Crop Prot.1996, 15:735-742
    [37]马平,沈崇尧.木霉菌和腐霉菌对棉铃疫病菌作用研究[J].生物防治通报,1993,9(3):122-125
    [38]焦琮,路炳声,史步娟.康氏木霉抑菌物质的抑菌效果[J].中国生物防治,1995,11(3):122-124
    [39]田连声,王伟华,石万龙等.利用木霉防治大棚草莓灰霉病[J].植物保护,2000,26(2):47-48
    [40]项存悌,高克祥,何秉章等.杨树烂皮病生物防治的研究[J].东北林业大学学报,1991,19(6):15-25
    [41]周红姿,李宝聚,刘开启等.绿色木霉对黄瓜灰霉病的防治作用[J].北方园艺,2003,(5):64--65
    [42]Elad Y. Reasons for the delay in development of biological control of foliar pathogens[J]. Phytoparasitica.1990,18(2):99-104
    [43]赵蕾.木霉菌的生物防治作用及其应用[J].生态农业研究,1999,7(1):66-68
    [44]陈文瑞,李能芳,文成敬.木霉培养物防治温床蕃茄幼苗猝倒病研究[J].植物保护,1990,16(6):26
    [45]陈文瑞,李能芳,文成敬.用木霉培养物防治温床蕃茄幼苗猝倒病[J].四川农业大学学报,1991,9(1):167-170
    [46]张硕成.木霉菌生态学及其在生防中的应用[J].应用生态学报,1991,2(1):85-88
    [47]Zimand G, Elad Y. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity[J]. Phytopathology.1996,86(11):945-946
    [48]Pristchepa L I, Voitka D V. Effectiveness of Trichoderma in protection of tomato and cucumber diseases[J]. Plant Diseases.1999,47(2-4):179-182
    [49]Haware M P, Mukherjee P K, Lenne J M et al. Integrated biological-chemical control of Botrytis gray mould of chickpea[J]. Indian Phytopathology.1999,52(2):174-176
    [50]童蕴慧,徐敬友.灰葡萄孢对速克灵等药剂的抗性[A].周明国:中国植物病害化学防治研究(第二卷)[C].北京:中国农业科技出版社,1998,278-281
    [51]童蕴慧,徐敬友,陈夕军等.番茄灰霉病菌拮抗菌的筛选和应用[J].江苏农业研究,2001,22(4):25-28
    [52]朱虹,汪章勋,樊美珍,骆绪美.草莓灰霉病拮抗木霉菌株筛选及温室防效测定[J].中国生物防治,2005,21(1):52-54
    [53]Cutler H G, Cutler S J, Ross S A, El Sayed K, Dugan FM, Bartlett M G, Hill A A, Hill R A, Parker S R. Koninginin G, a new metabolite from Trichoderma aureoviride[J]. J Nat Prod. 1999,62:137-139
    [54]Cardoza RE, Hermosa MR, Vizcaino JA, Sanz L, Monte E, Gutierrez S. Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. In: Mellado-Dura'n E, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, India,2005,p207
    [55]于新,田淑慧,徐文星等.木霉菌生防作用的生化机制研究进展[J].中山大学学报(自然科学版),2005,44(2):86-90
    [56]高克祥,刘晓光,郭润芳等.木霉菌对五种植物病原真菌的重寄生作用[J].山东农业大学学报,2002,33(1):37-42
    [57]Harman G E, Howell C R, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts[J]. Nat Rev Microbiol.2004,2:43-56
    [58]Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins[J]. Appl Environ Microbiol.2003,69:7343-7353
    [59]解树涛,宋晓妍,陈彤彤等. 康宁木霉SMF2分生孢子及胞外代谢产物的急性毒理[J].毒性与残留,2006,45(6):410-411
    [60]杨合同,唐文华,M. Ryder.木霉菌与植物病害的生物防治[J].山东科学,1999,12(4):7-15
    [61]Lorito M. Chitinolytic enzymes and their gene [A]. Harman G, Kubicek C P. Trichoderma and Gliocladium. v.2 [M]. London, Bristo 1:Taylo r & F rancis Inc.,1998.73-92
    [62]Schirmb6ck M, Lorito M, Wang Y L et al. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi[J]. Appl. Environ. Microbiol.1994,60(12):4364-4370
    [63]徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用[J].植物病理学报.2002,32(2):97-102
    [64]曾华兰,叶鹏盛,李琼芳等.哈茨木霉T23对花生的促生增产作用[J].云南农业大学学报,2005,20(1):145-146
    [65]Sivasithamparam K, Ghisalberti E L. Secondary metabolism in Trichoderma and Gliocladium[A]. Harman G, Kubicek C P. Trichoderma and Gliocladium. v.1 [M]. London, Bristo 1:Taylor & F rancis Inc.,1998.139-191
    [66]Dennis C, Webster J. Antagonistic properties of species-groups of Trichoderma. I. Production of nonvolatile antibiotics[J]. Trans. Br. Mycol. Soc.1971,57:25-39
    [67]许传坤,莫明和,张克勤.土壤对木霉生防菌株的抑制作用及这种作用的解除[J].南京师大学报(自然科学版),2004,27(2):77-80
    [68]刘任,程东美,卢鹏飞等.哈茨木霉T2菌株提取物对齐整小核菌抑菌活性的测定 [J].仲恺农业技术学院学报,2005,18(4):25-28
    [69]Cooney J M, Lauren D R. Trichoderma/pathogen interactions:measurement of antagonistic chemicals produced at the antagonist/pathogen interface using a tubular bioassay[J]. Applied Microbiology.1998,27:283-286
    [70]Mumpuni A, Sharma H S S, Brown A E. Effect of metabolites produced by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth radii in culture[J]. Applied Environmental Microbiology.1998,64(12):5033-5056
    [71]Nielsen M N, S(?)rensen J, Fels J, et al. Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere[J]. Applied Environmental Microbiology.1998,64(10):3563-3569
    [72]于新,田淑慧,徐文星等.木霉菌生防作用的生化机制研究进展[J].中山大学学报(自然科学版),2005,44(2):86-90
    [73]Thornton C R, Pitt D, Wakley G E, et al. Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts[J]. Microbiology.2002,148:1263-1279
    [74]Cooney J M, Hotter G S, Lauren D R. Biotransformation of the Trichoderma metabolite 6-n-pentyl-2H-pyran-2-one by cell suspension cultures of Pinus radiata[J].Phytochemistry. 2000,53(4):47-50
    [75]Dickinson J M. Microbial pyran-2-ones and dihydropyran-2-ones[J]. Natural Product Reports.1993,10:71-98
    [76]Song Xiao-Yan, Shen Qing-Tao, Xie Shu-Tao, et al. Broad-spectrum Antimicrobial Activity and High Stability of Trichokonins from Trichoderma koningii SMF2 against Plant Pathogens[J]. FEMS Microbiol. Lett.2006,260(1):119-125
    [77]朱天辉,邱德勋.Trichoderma harzianum 对 Rhizoctonia solani的抗生现象[J].四川农业大学学报,1994,12(1):11-15
    [78]Dennis C, Webster J. Antagonistic properties of species-groups of Trichoderma. Ⅱ Production of nonvolatile antibiotics[J]. Trans. Br. Mycol. Soc.1971,57(1):41-48
    [79]Brukner H, Reinecke C, Kripp T et al. Regensburg, Germany:4th International Mycological Congress (Abstracts).1990, p224
    [80]Kubicek C P, Harman G E (eds). Trichoderma and Glioclaudium, vols 1 and 2. Taylor & Francis Ltd, London,1998
    [81]陈凯,杨合同,李纪顺等.绿色木霉菌LTR-2孢子提取物的抑菌活性及化学成分分析[J].微生物学通报,2007,34(3):455-458
    [82]屠艳拉.绿木霉抗真菌代谢物及其对水稻纹枯病菌的抑制作用[D].浙江大学硕士学位论文.2006
    [83]曹翠玲,赵晋铭,赵晓军等.康氏木霉代谢物对植物病原真菌的抗菌活性测定[J].陕西农业科学,2006,38(2):38-40
    [84]谭丽华.木霉菌候选生防菌株植物激素类代谢物质和生物学[D].山东农业大学硕士学位论文.2001
    [85]Weindling, R., Emerson, O. H. The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology.1936,26:1068-1070
    [86]Weindling, R. Experimental consideration of the mold toxins of Gliocladium and Trichoderma[J]. Phytopathology.1941,31:991-1003
    [87]Brian, P. W., McGowan, J. C. Viridin:A highly fungistatic substance produced by Trichoderma viride[J]. Nature,1945,156:144-145
    [88]Webster, J., Lomas, N. Does. Trichoderma viride produce gliotoxin and viridin?[J] Trans. Br. Mycol. Soc. 1964,47:535-540
    [89]Howell, C. R., Stipanovic, R. D. Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum[J] Can. J. Microbiol. 1983,29:321-324
    [90]Stipanovic, R. D., Howell, C. R. The structure of gliovirin, a new antibiotic from Gliocladium virens[i]. J. Antibiot. 1982,35:1326-1330
    [91]Papavizas, G C, Lewis, J. A., Abd-El Moity, T. H. Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities[J]. Phytopathology. 1982,72:126-132
    [92]Godtfredsen W O, Vangedal S. Trichodermin, a new sesquiterpene antibiotic[J]. Acta Chemica Scandinavica. 1965. 19(5):1088
    [93]Fedofinchik, N. S., Tarunina, T. A., Tyutyunnikov, M. G, Kudryavtseva, K. I. Trichodermin-4, a new biological preparation for plant disease control. 8th Int. Congr. Plant Prot. 1975,3:67-72. Moscow: USSR Org. Comm.
    [94]Ghisalberti E L. Anti-infective agents produced by the hyphomycetes general Trichoderma and Gliocladium[J] Curr Med Cem. 2002,1:343-374
    [95]Lynch J M. In vitro identification of Trichoderma harzianum as a potential antagonist of plant pathogens[J]. Current Microbiology. 1987, 16(1): 49-53
    [96]Bruckner H, Maisch J, Reinecke C, Kimonyo A. Use of a-aminoisobutyric acid and isovaline as marker amino acids for the detection of fungal polypeptide antibiotics screening of Hypocrea[J]. Biomedical and Life Sciences. 1991, 1(2):251-257
    [97]Jose Luis Reino, Raul F Guerrero, Rosario Hernandez-Galan, Isidro G Collado. Secondary metabolites from species of the biocontrol agent Trichoderma[J]. Phytochem Rev 2008,7:89-123
    [98]Wu YW, Ouyang J, Xiao X, Gao WY, Liu Y. Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay[J]. Chin J Chem. 2006, 24:45-50
    [99]Huang Q, Shen HM, Shui G, Wenk M, Ong CN. Emodin inhibits tumor cell adhesion through disruption of the membrane lipid raft-associated integrin signaling pathway[J]. Cancer Res. 2006,66:5807-5815
    [100]Ali S, Watson M S, Osborne R H. The stimulant cathartic, emodin, contracts the rat isolated ileum by triggering release of endogenous acetylcholine[J]. Auton Autacoid Pharmacol. 2004,24:103-105
    [101]Chukwujekwu J C, Coombes P H, Mulholland D A,van Staden J. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalism. J. Bot. 2006, 72:295-297
    [102]Watanabe N, Yamagishi M, Mizutani T, Kondoh H, Omura S, Hanada K, Kushida K. CAF-603: a new antifungal carotane sesquiterpene. Isolation and structure elucidation[J]. J Nat Prod. 1990,53:1176-1181
    [103]Kishimoto N, Sugihara S, Mochida K, Fujita T. In vitro antifungal and antiviral activities of c- and dlactone analogs utilized as food fiavoring[J]. Biocontrol Sci. 2005,10:31-36
    [104]Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A. Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride[J]. J Agric Food Chem. 2003,51:6957-6960
    [105]Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J. Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens[J]. J Nat Prod. 2003,66:423-426
    [106]Liu R, Gu QQ, Zhu WM, Cui CB, Fan GT. Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine-derived fungus Spicaria elegans[J]. Arch Pharmacol Res.2005a,28:1042-1046
    [107]Capon RJ, Ratnayake R, Stewart M, Lacey E, Tennant S, Gill JH. Aspergillazines A-E: novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis[J]. Org Biomol Chem.2005,3:123-129
    [108]Berestetskii O A, Patyka V F, Nadkernichnyi S P. Phytotoxic properties of fungi of the Trichoderma Pers. Genus. Vopr. Ekol. Fiziol. Mikroorg., Ispol'z. Sel'sk. Khoz.:1976,56-60(Chem. Abstr.1978,88:148647)
    [109]Singh S, Dureja P, Tanwar RS, Singh A. Production and antifungal activity of secondary metabolites of Trichoderma virens[J]. Pestic Res J.2005,17:26-29
    [110]Harris GH, Jones ETT, Meinz MS, Nallin-Omstead M, Helms GL, Bills GF, Zink D, Wilson KE. Isolation and structure elucidation of viridiofungins A, B and C[J]. Tetrahedron Lett.1993,34:5235-5238
    [111]Mandala SM, Thornton RA, Frommer BR, Dreikorn S, Kurtz MB. Viridiofungins, novel inhibitors of sphingolipid synthesis[J]. J Antibiot.1997,50:339-343
    [112]Shiozawa H, Takahashi M, Takatsu T, Kinoshita T, Tanzawa K, Hosoya T, Furuya K, Takahashi S, Furihata K, Seto H. Trachyspic acid, a new metabolite produced by Talaromyces trachyspermus, that inhibits tumor cell heparanase:taxonomy of the producing strain, fermentation, isolation, structural elucidation, and biological activity[J]. J Antibiot.,1995,48:357-362
    [113]Harris G H, Dufresne C, Joshua H, Koch LA, Zink DL, Salmon PM, Goklen KE, Kurtz MM, Rew DJ, Bergstrom JD, Wilson KE. Isolation, structure determination and squalene synthase activity of L-731,120 and L-731,128, alkyl citrate analogs of zaragozic acids A and B[J]. Bioorg Med Chem Lett.1995,5:2403-2408
    [114]Wilson K E, Burk R M, Biftu T, Ball R G, Hoogsteen K. Zaragozic acid A, a potent inhibitor of squalene synthase:initial chemistry and absolute stereochemistry[J]. J Org Chem.1992,57:7151-7158
    [115]Dickinson J M, Hanson JR, Hitchcock PB, Claydon N. Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum[J]. J Chem Soc Perkin Trans.1989,1(11):1885-1887
    [116]Kawada M, Yoshimoto Y, Kumagai H, Someno T, Momose I, Kawamura N, Isshiki K, Ikeda D. PP2A inhibitors, harzianic acid and related compounds produced by fungal strain F-1531 [J]. J Antibiot.2004,57:235-237
    [117]Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens[J]. Lett Appl Microbiol.2006,43(2):143-148
    [118]Zhu J, Germain AR, Porco JA Jr. Synthesis of azaphilones and related molecules by employing cycloisomerization of o-alkynylbenzaldehydes[J]. Angew Chem Int Ed. 2004,43:1239-1243
    [119]Nielsen K F, Graefenhan T, Zafari D, Thrane U. Trichothecene production by Trichoderma brevicompactum[J]. J Agric Food Chem.2005,53:8190-8196
    [120]Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A. Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus. Z Naturforsch C:J Biosci.2002,57:465-470
    [121]Berg A, Wangun HVK, Nkengfack AE, Schlegel B. Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257[J]. J Basic Microbiol.2004,44:317-319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700