利用DREB转录因子改良小麦耐盐性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐害是小麦生产的重要胁迫因素,我国一些地区土壤盐碱化严重,所以通过基因工程方法提高小麦的耐盐性具有重要的理论意义和应用价值。
     本研究利用分子生物学的实验手段,构建了包括来源于植物拟南芥的DREB1A(Dehydration Responsive Element Binding protein,一种逆境诱导转录因子,诱导相关抗逆基因的表达)基因和用于筛选转化植株的Bar基因(编码除草剂抗性)的表达载体。
     以综合农艺性状较好的小麦品种H6756的932块幼穗愈伤组织为受体,用高压氦气基因枪(PDS1000/He)将DREB1A基因导入小麦,经愈伤及分化筛选成功获得了205株再生植株。经除草剂Basta抗性筛选,其中有89株植株表现除草剂抗性。89株抗性植株再经PCR扩增和Southern杂交鉴定,其中50株植株的基因组中整合有外源基因DREB1A,转化频率达到5.36%。取31株转基因小麦的后代种子继续种植,获得的T_1代植株经分子鉴定,结果显示20个后代株系的基因组中整合有DREB1A基因,证明DREB1A基因可以在转基因后代植株中相对稳定遗传。T_1代转基因植株后代种子继续种植,获得的T_2代植株经PCR扩增和Southern杂交鉴定,4个株系中没有检测到DREB1A基因,而4个株系中DREB1A基因没有发生遗传分离,其它各株系表现不同的分离比例,进一步证明了DREB1A基因在后代中可以相对稳定遗传,并且以显性形式遗传给后代。转DREB1A基因的小麦植株经初步耐盐试验表明,其耐盐性明显高于对照植株。在盐胁迫条件下,转DREB1A基因小麦植株叶片的细胞表面糖蛋白层较为致密,而对照植株叶片的细胞表面糖蛋白层出现细胞壁外缘脱落现象。
     将DREB1A基因利用农杆菌介导法导入小麦H6756中。以小麦幼苗的茎尖分生组织为转化受体,与农杆菌共培养后共获得247棵转化幼苗,经除草剂初步筛选,有66棵转化幼苗存活。经PCR扩增鉴定,其中30棵幼苗证明整合有DREB1A基因,转化率达到12.1%。
     本研究利用优化的基因枪和农杆菌介导两种基因转化体系,较好地克服了小麦转化受体的基因型障碍,提高了小麦的基因转化效率,获得了耐盐性增强的转DREB1A基因小麦。
The salt stress is an important factor influencing production of wheat. The soil of some areas of our country salinizes seriously, so it is very significance to improve the wheat's salt tolerance by genetic engineering.
    The plasmid expression vector including DREB1A gene and bar gene was constructed. DREB1A (dehydration responsive element binding) is a transcription factor and introduced the expression of a series of stress-related genes. The bar gene encodes the resistance to herbicide and is used to select the transgenic plants.
    The DREB1A gene in the plasmid pAHC25-DREB1A was transferred into 932 calli induced by young spikes of wheat cultivar H6756 by microprojectile bombardment, and 205 plantiets were regenerated through screening on the medium containing Basta. According to the resistance test by daubing with 100mg/l Basta solution on the seedling leaves 89 transformed plants survived. By PCR amplification and Southern Blotting, 50 plants were identified to be the transgenic ones containing the target gene of transcription factor DREB1A gene, and the frequency of transformation reached 6.72%. Seeds from 31 transgenic plants were planted and selected for molecular characterization (PCR and Southern Blotting), it was found that progeny of 20 plants integrated DREB1A gene. The results showed that the DREB1A gene can be transmitted to the next generation relatively steadly. Further molecular characterization in Ta generation showed that DREB1A gene wasn't monitored in progeny of 4 TI plants, while it existed in all progeny of 4 T1 plants and segregated in different rates in progny of other T1 plants, which comfirmed that DREB1A gene can be dominantly inherited. Germination tests in 2.0% NaCl concentration showed that the salt tolerance of transgenic wheat was higher than the controls. In addition, the glycoproteins layer at the cell surface of transgenic wheat became more compact in the condition of 2.0% NaCI salt stress, while those of control plants were destroyed or dropped.
    The DREB1A gene in the plasmid pC3300IS-DREB1A was also transferred into the wheat cultivar H6756 by Agrobacterium-mediated transformation. The stem apical meristem of wheat seedling was cultured together with Agrobacterium, and 247 seedlings were obtained. While 66 plants survived by selection with 100mg/l Basta. Monitoring the target gene amplified by PCR, 30 plants integrated the DREB1A gene, the frequency of transformation reached 12.1%
    The transformation systems of microprojectile bombardment and Agrobacterium-mediated were perfected and used to produce wheat lines with salt tolerance in this study. Transgenic wheat lines with DREB1A gene were obtained succesfully in an improved transformation efficiency.
引文
[1] 陈梁鸿.中国农业大学博士学位论文.1997
    [2] 陈梁鸿,等.抗除草剂草甘瞵EPSPs基因在小麦中的转化.遗传学报。1999.26(3):239-243
    [3] 程在全.黄兴奇,Ray WU.基因枪法和农杆菌介导法对水稻转基因拷贝数和基因重排概率的影响.植物学报,2001,43(8):826-833
    [4] 成卓敏,何小源,等.大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植物.自然科学进展-国家重点实验室通讯,1993,3(6):560-564
    [5] 楚秀生,黄承彦,等.耐盐基因AtNHXI转化普通小麦的研究.植物细胞工程与分子育种技术研究,354-361
    [6] 崔欣,陈庆山,等.植物转基因沉默与消除.植物学通报,2002,19(3):374-379
    [7] 雷振生.世界小麦生产近况[J].作物杂志,1996,2:36-38.
    [8] 李宗智,孙馥事,张彩英,等.不同小麦品种品质特性极其相关性的初步研究[J].中国农业科学,1990,3(6):35-41.
    [9] 李艳,李毅,陈章良.转基因植物内源基因与外源基因共抑制问题研究进展[J].生物工程学报,1999,15(1):1-4.
    [10] 傅荣昭,曹光诚,等.用基因枪将人工雄性不育基因导入小麦的研究初报.遗传学报,1997,24(4):358-36
    [11] 顾德兴,蔡庆生.植物学与植物生理学.南京大学出版社,2000,344-347
    [12] 郭北海,张艳敏,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,2000,42(3):279-283
    [13] 郭文泌,许智宏,卫志明,等.用PEG法向小麦原生质体导入外源基因获得转基因植株.科学通报,1993,38(13):1227-123121(6):463-467
    [14] 刘录祥,郑企成,赵林姝,等.小麦遗传转化无基因型障碍受体系统的研究.核农学报,2001,15(5):308~310
    [15] 郭岩,张莉,肖岗,等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学(C辑),1997,27(2):151-155
    [16] 黄承彦,等.外源DNA导入技术培育抗旱耐盐小麦新品种.山东农业科学,2000,4:4-6
    [17] 黄粤,柯遐义,李宝健.通过基因枪轰击转化获得转基因小麦植株的研究.西北植物学报,1997,17(2):142-146
    [18] 侯文胜,郭三堆,路明.基因枪法获得转基因小麦植株.中国农业科学,2003,36(5):469-472
    [19] 华志华,黄大年.转基因植物中外源基因的遗传学行为.植物学报,1999,41(1):1-5
    [20] 黄益洪,周淼平,等.农杆菌介导法获得小麦转基因植株的研究.作物学报,2002,28(4):510-515
    [21] 李秋莉,刘大伟,等.辽宁碱蓬胆碱单加氧酶基因克隆及转基因烟草的耐盐性.植物学报,2003,Vol 45 No.2P.242-247
    [22] 李晓东,等.用天花粉蛋白基因转化小麦获得转基因植株.遗传,2001,23(2):135-137
    [23] 李艳红,肖兴国,赵广荣,等.将新的人工雄性不育基因导入小麦栽培品种的研究初报.农业生物技术学报,1999,7(3):255-258
    [24] 李艳红,张爱民,肖兴国.小麦基因转移研究进展.中国青年农业科学学术年报,1997,B卷,p551-556
    [25] 刘凤华,郭岩,谷冬梅,等.甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(1):54-58
    [26] 刘根齐,张孔怡,等,外源DNA直接导入小麦及其在育种上的应用.遗传学报,1994,21(6):463-467
    
    
    [27] 刘强,赵南明.DREB转录因子在提高植物抗逆中的作用.科学通报,2000,Vol.45 No.1:11-16
    [28] 刘伟华,李文雄,刘绵红,等.菜豆几丁质酶基因转化小麦研究[J].东北农业大学学报,2001,32(2):111-116.
    [29] 刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16(5):540-546
    [30] 秦峰,李洁,等.玉米中与DRE元件结合的转录因子的克隆和结构分析.植物学报,2003,Vol.45 No.3 P331-339
    [31] 沈义国,陈受宜.植物盐胁迫应受的分子机制.遗传.2001,23(4):365-369
    [32] 沈义国,闫冬青,等.山菠菜EREBP/AP2类DNA结合蛋白基因的克隆及其耐逆性研究.植物学报,2003Vol.45 No.1 P.82-87
    [33] 王关林,方宏筠,那杰.外源基因在转基因植物中的遗传特性.遗传(Beijing),18(6):37-41
    [34] 王慧中,黄大年,鲁瑞芳,等.mtID/gutD双价基因水稻的耐盐性[J].科学通报,2000,45(7):724-728
    [35] 玉兰岚,傅荣昭,宋桂英,等.利用激光微束穿刺法将外源基因导入小麦的研究.遗传学报,1995,22(5):394-399
    [36] 王小军,刘玉乐,Huang Yong,等.可育的抗除草剂溴苯腈转基因小麦[J].植物学报,1996,38(12):942-948.
    [37] 武丽敏,郑有良,等.小麦转基因研究进展.四川农业大学学报,2003,21(2):176-181
    [38] 向旭,缚家瑞.脱落酸应答基因的表达调控及其与逆境胁迫的关系.植物学通报,1998,15(3):11-16
    [39] 肖兴国,张爱民,聂秀玲.转基因小麦的研究进展与展望.农业生物技术学报,2000,8(2):111-116
    [40] 徐琼芳,李连城,马有志,等.用天花粉蛋白几因转化小麦获得转基因植株.遗传,2001,23(2):135-137
    [41] 叶兴国,Shirley sato,徐惠君,等.小麦农杆菌介导转基因植株的稳定获得和检测[J].中国农业科学,2001,34(5):469-474.
    [42] 俞嘉宁,山仑.LEA蛋白与植物的抗旱性.生物工程进展,2002,Vol.22,No.2:10-14
    [43] 于洪欣 柳建军,冯兆礼等,通过花粉管通道法将抗虫基因(Cp TI)导入小麦的研究[J],山东农业科学,1999,(1):5-8
    [44] 曾君祉,等.用花粉管途径获得小麦转基因植株.中国科学(B辑),1993,23(3):256-261
    [45] 张晓东,等.高压氦气基因枪轰击小麦花药、幼穗、幼胚、和胚性愈伤组织将除草剂Basra抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株.中国生物工程学会第二届学术讨论会论文集,1997:pp 85
    [46] 郑企成,等.应用花药培养途径筛选小麦耐盐突变体.植物学报,1993,35(2):121-128
    [47] 周文麟,倪建福,等.外源C4作物DNA导入小麦的研究.作物学报,1992,18(6)):18-423
    [48] Aldemita R. R.. Factors influencing gene expression and T-DNA transfer in Agrobacterium tumefaciens-mediated transformation of rice. Philippine Journal of Crop Science, 1998, 21:1-9
    [49] Altpeter F, Vasii V, Srivastava V, et al.Integration and expression of the high2molecular2weight glutenin subunit IAxl gene into wheat [J]. Nature Biotechnology, 1996, 14: 1155-1159.
    [50] Ann E.Blechl, Olin D.Anderson. Expression of a novel high-molecular-weight glutenin Subunit gene in transgenic wheat, Nature Biotechnology, 1996, 14:875-879
    [51] Aono M..Paraquat tolerance of glutathione reductase and superoxide dismutase. Plant Cell Physiol, 1995,36:1687
    [52] A Pellegrineschi, J.-M.Ribant, R.Trethowan, et al. Progress in the genetic engineering of wheat for water-limited conditions. JIRCAS Working Report, 2002,55-60
    [53] Baker S S, Wilhelm K S, Thomasshow M E The 5'region of Arabidopsis thaliana corl 5a has cis-acting elements
    
    that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol, 1994, 24:701-713
    [54] Becher D., Brettschneider R. and Lorz H.,.Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J., 1994,5(3):299-307
    [55] Bieri S, Potrykus I, Futterer J. Expression of active barley seed ribosome-inactivating protein in transgenic wheat [J]. Theor Appl Genet, 2000, 100:755-763.
    [56] Block M. D., Debrouwer D. Moens T. The development of a nuclear male sterility systerm in wheat, Expression of the barnase gene under the control of tapetum specific promoters. Theor., Appl. Genet., 1997, 95:125-131
    [57] Bohnert HJ, Sheveleva E. Plant stress adaptations-making metabolism move. Curr Opin Plant Biol, 1998, 1:267
    [58] Brat D. S., Ohtani T., Uchimign H.. Genetically engineered plants for Quality improvement. Biotechnology and genetic engineering review, 1995, 13:167-179
    [59] Bular F, Thia-Toogl, et al. Agrobncterium-Mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a simple Mendelian factor. Genetics, 1986, 114:303-313
    [60] Casas A M, Komonowicz A K, et al. Cereal transformtion through particle bombardment. Plant Breed Rev, 1995, 13:235-264
    [61] Chandler p m, Robertson M. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Mol. Biol., 1994, 45:113-141
    [62] Chan M., Chang H., Tong W., et al. Agrobacterium-modiated production of transgenic rice plants expressing a chimaeric a-amylase promoter/B-glucuronidase gene. Plant Mol. Biol., 1993,22:491-506
    [63] Cheng M., Fry J. E., Pang S.,et al. Genetic transformation of wheat mediated by Agrobaterium tumefaciens. Plant Physiol., 1997, 115:971-980
    [64] Chibbar RN, et al. Transient expression of marker genes in immature zygotic embryos of spring what (Triticum aestivum) through microprojectile bombardment. Genome, 1991, 34: 453-460
    [65] Clausen M, Krauter R, Schachermayer G, et al. Antifungal activity of a virally encoded gene in transgenic wheat [J]. Nature Biotech, 2000, 18: 446-449.
    [66] Deping Xu, Xiao Lan Duan, Baiyang Wang, et al. Expression of a Late Embryogenesis Abundant Protein Gene, HAV1, from Barley Confers Tolerancce to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol, 1996, 110:249-257
    [67] Elizabeth A.Bray. Molecular Responses to Water Deficit. Plant Physiol., 1993, 103:1035-1040
    [68] Elizabeth A. H. Pilon-Smits, Michel J. M. Ebskamp, Mattew J.Paul, et al. Improved Performance of Transgenic Fructan-Accumulating Tabacco under Drought Stress. Plant Physiol., 1995, 107: 125-130
    [69] Finnegan J., McElroy D., Transgene inactivation :plants fight back ! Bio/Technology, 1994,12:883-888
    [70] Handson A D, May A M, Grumet R, Bode J, Jamieson G C. Betnine synthesis in chenopods: location in chloroplasts. Proc Natl Acad Sci Usa, 985, 82:3678-3682
    [71] Hayashi H. A., Mustardy L., Deshnittm P., et al. Transformation of Arabidosis thaliana with coda gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12:133-142
    [72] Hess D., et al. Transformation experiments by peptting Agrobacterium into the spikelets of wheat (triticum aestivum L.). Plant Sci., 1990, 72:233-244
    [73] Hiei Y., Komari T., Kubo T.. Transformation of rice mediated by Agrobacterium tumefaciens. Plant mol. Boil.,
    
    1997, 35:205-218
    [74] Holmberg N.. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat. Biotechnol., 1997,15:244
    [75] Holmstrom KO. Drought tolerance in tabacco. Nature, 1996,379:683
    [76] Huang D N Li J Y Zhang S Q et al. New technology to examine and improve the purity of hybrid rice with herbicide resis2tant gene[J]. Chin Sci Bull, 1998,43: 784-786.
    [77] Integration and expression of the high-molecular-weight glutenin subunit IAXl gene into wheat, Nat Biotechnol, 1996, 24(4):358-361
    [78] Ishida Y., Saito H.. High efficiency transformation of maize(zea mays L.) mediated by Agrobacterium tumefaciens,. Nat. Biotechnol., 1996, 14:745-750
    [79] Ishizaki-Nishiznwa O.. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaaturnsse. Nat Biotechnol, 1996, 14:1003
    [80] Ishizaki T, Kiyosue T, Yamaguchi-shinozaki K, et al. The dehydration-inducible rd17(cor47)gene and its promoter region in Arobidopsis thaliana Plant Physiol, 1997,115:1287
    [81] Jaglo-Ottosen KR, Glimour SJ, Zarka DG, et al..Arabidipsis CBFI overexpression induces cor genes and enhances freezing tolerance. Science, 1998, 280:104-106
    [82] JIA Wen-Suo, XING YU, et al. Signal Transduction from Water Stress Perception to ABA Accumulation, Acta Botanica Sinica. 2002,44(10) :1135-1141
    [83] J. Ingram, D. Bartels. The Molecular Basis of Dehydration Tolerance in Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47:377-403
    [84] KAI Gao-Yin, Zhang lei, ect al. Marker-free:a novel Tedency of Transgenic Plants. Acta Botanica Sinica, 2002, 44(8): 883-888
    [85] Karunaratne S, Sohn. A,Mourueloy A, et al. Transformation of wheat with the gene Encoding the Coat Protein of Barley Yellow Mosaic Virus. Aust. J. Plant Physiol, 1996, 23:429-435
    [86] Kazuo Shinozaki, Kazuko Yamaguchi-Shinozaki. Molecular responses to drought and cold stress. Current Opinion in Biotechnology, 1996, 7:161-167
    [87] Kazuo Shinozaki, Knzuko Ynmaguchi-Shinoznki. Gene Expression and Signal Transduction in Water Stress Response. The Plant Cell, 1998, 110:1391-1406
    [88] Kenward KD. Accumulation of type 1 fish antifreeze protein in transgeic tobacco is cold specific. Plant Mol. Bio., 1993, 23:377
    [89] kodama H.. Genetic enhancement of cold tolerance by expression of a gene for chliroplast w-3 fatty acid desaturase in transgenic tobacco. Plant Physiol., 1994,105:601
    [90] Langridge P., Brettschneider R., Lazzeri P., et al. Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J., 1992,2(4):631-638
    [91] Last D I, Bretell R I, Chamberlian D A, et al.. pEmu: an im2proved promoter for gene expression in cereal cells[J]. Theor Appl Genct, 1991,81(5): 581-588
    [92] Liang H, Zheng J, Duan X Y, et al. A transgenic wheat with astilbene synthase gene resistant to powdery mildew obtained bbiolistic method[J]. Chin Sci Bull, 2000,45: 634-637.
    
    
    [93] Lilius G, Holmberg N., Bulow L. Enhanced NaCl stress tolannce in transgenic tabacco expressing baterial choline dehydrogenasse. Biotechnology, 1996,14:177
    [94] Lonsdale D. Et al. Transient expression of exogenous DNA in intact, viable wheat embryos following partical bombardment. J. Exp. Bot., 1990,41(230):1161-1165
    [95] Mccormac et al. The use of visual marker genes as cell-specific reporters of Agrobncterium-mediated T-DNA delivery to wheat(Triticum nestivum L.) and barley(hordeum vulgare L.). Euphytica, 1998, 99(1), 17
    [96] McCue K F, Hanson A D. Drought and Salt Tolerance: towards understanding and application. Trends Biotech., 1990, 8:358-362
    [97] Mckersie BD. Water-deficit tolerance and field performance of transfenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 1996,111:1177
    [98] Mie Kasugn, Qiang Liu et al. Improving plant draught, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 1999 vol. 17,287-291
    [99] M.Uze, I.Potrykus, C.cautter. Single-stranded DNA in the genetic transformation of wheat:transformation frequency and integration pattern.Theor APPL Genet, 1999,99:487-495
    [100] Nehra N. S., Chibber R. N.. Wheat Transformation: Methods and Prospects. Plant Breeding Abstracts, 1995, 65(6): 803-808
    [101] Nehra N S, Chibbar R N, Leung N, et al. Self-fertile transgenicwheat plants regenerated from isolated scutcllar tissues followingmicroprojectile bombardment with two distant gene constmcts[J]. Plant J, 1994,5: 285-297.
    [102] Nehra N. S., Chibber R. N.,Leung N., et al. Self-fertile transgenic wheat plants regenerated from isolated scutellum tissues following microprojectile bombardment with two distinct gene constructs. Plant J.,1994, 5(2): 285-297
    [103] Ortiz JPA, et al. Hygromycin resistance as an efficient selectable marker forwheat stable transformation. Plant Cell Reports, 1996, 15:877-881
    [104] P. B. Kavi Kishor, Zonici Hong, Guo-Hua Miao, et al. Overexpression of △'-Pyrrolinc-5-carboxylatc Synthetase increase Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol., 1995, 108:1387-1394
    [105] Perl, A, et al. Improment of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA microprogectile delivery procedures. Mol. Gen. Genet., 1992, 235:279-284,
    [106] Pilon-Smits EAH. Improved performance of tansgenic fructan-accumulating tobacco under drought stress, Plant Physiol. 1995, 107:125
    [107] Potrycas Ⅰ.. Gene transfer to cereal:an assessment. Bio/Technology, 1990,535-542
    [108] Qing Liu, Mie Kasuga, Yh Sakuma, et al. Two Transcription Factors,DREBIA and DREB2A, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought-and Low-Temperature-Reesponsive Gene Expression,Respectively, in Arabidopsis. The Plant Cell, 1998,10:1391-1406
    [109] Richard G F V., Evert J. Towards modifying plants for altered starch content and composition. Trenchs Biotechnol., 1993, 11: 63-69
    [110] Shwn Q Hothd. Functional dissection of an abiscisic acid(ABA)-inducible Gene Reveals Two Independent ABA-responsive Complexes each Containing a G-box and a novel cis-acting element. Plant Cell, 1995, 7:295-307
    [111] Shinozaki K., Yamaguchi-shinozaki. Molecular Reaponses to Drought and Cold stress. Curr Opin Biotechnol,
    
    1996,7:161-167
    [112] Simmonds J., Et al. Regeneration of Triticum aestivum apitical explants after microinjection of germ line progenitor cells with DNA. Physioiogia Piantarum, 1992,85
    [113] Smith R H, Hood E E. Agrobacterium tumefaciens transformation of monocotyledoms. Crop Science, 1995, 35:301-309
    [114] Tarezynski M., Bohnert H.. Stress protection of thansgenic tobacco by productin of the osmolyte mannitol. Science., 1993,259:508
    [115] Thomas JC.. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ, 1995,18:801
    [116] Van Camp W.. enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe.superoxide dismutnse in chloroplasts. Plant Physiol., 1996, 112: 1703
    [117] VasilV, Brown S. M., VasilⅠ. K., et al. Stable transformed callus lines from microprojective bombardment of cell suspension cultures of wbeat. Bio/Technology, 1991, 9:743-747
    [118] Vasil I K, Bean S, Zhno J, et al. Evaluation of baking propertiesand gluten protein composition of field grown transgenic wheatlines expressing high molecular weight glutenin gene IAx[J]. J Plant Physiol, 2001,158: 521-528.
    [119] Vasil I. K., Vasii V.. Gene transfer for the improvement of cereal crops. Plant Biotechno. Sustainable Development of Agriculture, 1996, pp1-4
    [120] Vasil V, Castillo A. M., Fromm M.E., and Vasil I.K.. Herbicide resistant fertile transgenetic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology, 1992,10:667-674
    [121] Vasil V., Srivastava O. D., Castillo A. M., et al. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology, 1993,11:1553-1558
    [122] Wang M M, Reed R R. Molecular cloning of the olfactory neuronal transcription factor OLF-1 by genetic selection in yeast. Nature, 1993,364:121-126
    [123] Wang YC et al. Transient expression of foreign genes in rice, wheat and soybeen cells following particle bombardment. Plant Mol. Biol., 1988, 11:433-439,
    [124] Weeks I. T., Anderson O. D., Belchl A. E.. Rapid production of multiple independent line of fertile thransgenic wheat (triticum aestivum). Plant Physiol., 1993, 102:1077-1084
    [125] Weig A, Deswarte C., Chrispeels MJ.. The major intrinsic protein family of Arabidopsis has 23 members from three distinct groups with functional aquaporins in each group. Plant Physiol, 1997, 144:1347
    [126] Xiao G, zhang G-Y, Liu F-H, Wang J, Chen S-Y, Li C,,Geng H-Z. Study on BADH gene of A triplex hortensis L. Chin Sci Bull 1995,40:741-745
    [127] Xia G M, Li Z Y, He C X, et al. Transgenic plant regenerationfrom wheat(Triticum aestiv um L.) mediated by A grobacteri2um t umef aciens[J]. Acta Phytophologica Sinica, 1999,25(1) :22-28.
    [128] Xu D, Expression of a late embryogenesis abundant protein gene. HVAI, from barley confers tolerance to water deficit and salt stress in rice. Plant Physiol., 1996, 110:249
    [129] Yamaguchi-shinozaki K, Koizumi M, Urao S, et al. Molecular cloning and characterization of nine cDNAs for genes that are responsive to dessiccation in Arabidopsis thalianaaaaa: Sequence analysis of one cDNA clone that
    
    encodes a putative transmembrane channel protein. Plant Cell Physiol, 1992, 33:217-224
    [130] Yamaguchi-shinozaki K, Shinozaki K. A novel cis-acting elemcnt in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress. Plant Cell, 1994,6:251-264
    [131] Zhou H, Arrowsmith J W, Fromm M E, et al. Glyphosate-tolerant CP4 and GOX genes as a selectabie marker in wheat transformation[J]. Plant Cell Reports, 1995, 15: 159-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700