鹿茸归经靶向调控骨关节炎TGF-β/Smads信号通路机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     “归经”理论是中医药学理论体系中的重要组成部分,也是我们认识疾病和临证运药的基础,在“归经”理论的指导下,目前治疗骨关节炎多运用归肝、肾经的药物组方,为了进一步研究“归经”的本质,及“归经”理论与现代生物分子信号通路的相关性,选取归肝、肾经的代表中药“鹿茸”,对其“归经”本质进行相关研究,并探讨该药调控骨关节炎软骨中TGF-β/Smads信号通路的机制。
     方法:
     1文献研究
     借助“电子版《中华医典》数据库”,分别以骨痹、膝痛、膝痹、痛痹、鹤膝风、关节疼痛、屈伸不利等为关键词检索,并用Excel表格建立数据库,用SPSS18.0软件进行统计,通过对方剂中药物的功效和归经进行频数分析,从而分析不同种类药物的运用情况,同时,采用系统聚类分析对药物进行样本聚类统计,并运用中医药理论对结果进行分析。
     2归经研究
     采用Hulth方法建立大鼠骨关节炎模型,随机分为鹿茸组、模型组和正常组,采用鹿茸水溶液进行灌胃,基于环核苷酸观测和受体观测理论,采用ELISA法检测不同组软骨中cAMP、cGMP含量,荧光定量PCR和蛋白免疫印迹杂交方法检测大鼠软骨TGF-βI型、TGF-βII型受体基因和蛋白的表达。
     3软骨组织总RNA提取研究
     选取3月龄SD大鼠9只,采用Rneasy Lipid Tissue Kit、RNAout试剂盒和经典Trizol三种方法对大鼠软骨组织进行总RNA提取,通过RNA琼脂糖凝胶电泳检测RNA的完整性,并进行普通PCR扩增,以研究软骨总RNA最佳提取方案。4鹿茸靶向调控TGF-β/Smads信号通路的研究
     选取3月龄SPF级健康雌性SD大鼠100只,按体重分层随机选取20只作为正常组,余者行Hulth方法造模,病理组织切片验证造模成功后,按体重分层随机数字表法分成4组:鹿茸低剂量组、鹿茸高剂量组、盐水组、模型组,于灌胃后2周、4周、6周,分别取各组大鼠膝关节软骨,采用免疫组织化学法检测软骨II型胶原的表达,荧光定量PCR和蛋白免疫印迹杂交方法分别检钡TGF-β1、Smad2、 Smad3、 Smad4基因和蛋白的表达。
     结果:
     1药物功效使用频率分析结果显示,补虚药、解表药、活血化瘀药、祛风湿药、温里药和祛湿药的总使用频率达到79.2%,是构成治疗骨痹的常用药物;归经药物使用频率分析结果显示,入肾经的药物最多,频率为21.4%,其次是归肝经和脾经的药物分别占17.9%;根据高频数使用药物的样本聚类分析结果,并结合其功效,可以将这些药物聚为6类,多以滋补肝肾、活血通络、温里散寒等为法进行药物组合。
     2ELISA法检测软骨组织中cAMP、cGMP结果显示,鹿茸组cAMP和cGMP值均高于模型组,模型组cAMP和cGMP值低于正常组,三组cAMP (F=10351.408, P=0.000)、cGMP (F=63032.016,P=0.000)、cAMP/cGMP (F=6530.879,P=O.000)之间比较均有显著性差异(P<0.01);荧光定量-PCR和蛋白免疫印迹杂交方法检测各组大鼠软骨TGF-βI型、TGF-βII型受体表达结果显示,鹿茸低剂量、高剂量组在灌胃后随时间的延长,TGF-β RImRNA, TGF-β RIImRNA和蛋白的表达量逐步增加,经重复测量方差分析,三个时间段间总体差异有显著性意义(F=161.672,P=0.000)。
     3Rneasy Lipid Tissue Kit法获得的总RNA纯度高、完整性和稳定性好,能成功逆转录合成双链cDNA,普通PCR扩增能够得到我们所需要的基因产物,而RNAout试剂盒和经典Trizol法获得的总RNA纯度低,不能满足后续PCR实验需要。
     4软骨组织病理学观察显示,模型组2周时,光镜下可见表层软骨细胞肿胀变圆,扁平的软骨细胞减少,软骨细胞簇集,4周时,表层及中层细胞收缩,细胞数量弥漫性增多,出现大量簇集细胞团,6周后,大部分软骨的表层细胞消失,软骨表面出现溃烂缺损,软骨细胞数量减少,可见坏死崩解细胞,潮线紊乱甚至消失;灌胃6周后,软骨切片Mankin's评分结果显示,鹿茸高剂量、低剂量组Mankin's得分小于模型组和盐水组,单因素方差分析显示,组间比较差异显著,有统计学意义(F=87.840,P=0.000);免疫组织化学检测软骨II型胶原蛋白表达,可见鹿茸低剂量和高剂量组的软骨层有广泛的棕褐色细胞,数量明显高于盐水组和模型组;荧光定量PCR和蛋白免疫印迹杂交方法分别检测TGF-β1、Smad2、 Smad3、Smad4表达结果显示,TGF-β1mRNA和蛋白表达量随灌胃时间延长逐步增加,且表达量均高于其它组,经重复测量方差分析,三个时间段间总体差异有显著性意义(F=408.841, P=0.000), Smad2、Smad3mRNA和蛋白检测可见,鹿茸低剂量、高剂量组在灌胃后2、4周时,关节软骨组织中的Smad2.Smad3mRNA和蛋白的表达增高,6周时,其表达量没有继续增高反而降低,但与其他组比较,经重复测量方差分析,三个时间段间总体差异有显著性意义(F=240.511,P=0.000, F=1325.174, P=0.000), Smad4mRNA和蛋白的表达随灌胃时间的延长逐步增加,经重复测量方差分析,三个时间段间总体差异有显著性意义(F=197.035,P=0.000)。
     结论:
     1古人在临证运药治疗“骨痹”时,始终以肝肾亏虚为“骨痹”的发病根本原则为指导,多选用归肝、肾、脾经的药物,以滋阴补肾、活血化瘀、温里除湿、补虚活络等为法进行药物组合,在治疗“肝肾亏虚”之本时,兼以活血、温里、通络、祛湿以治其标。
     2实验结果证实鹿茸能够影响软骨内环核苷酸的变化,而且鹿茸能够上调软骨细胞膜上TGF-βRI、TGF-RII受体的表达,由此推断软骨可能是鹿茸归经选择性作用的靶组织之一,并且软骨细胞膜上的TGF-β I型、TGF-βII受体可能是鹿茸归经选择性作用于软骨的靶点之一。
     3基于软骨组织的特异性,Trizol法不适合用于大鼠关节软骨组织总RNA的提取,而采用RNeasy Lipid Tissue Mini Kit法提取的软骨总RNA纯度较高,能够保证后续实验的实施。
     4鹿茸能够调控软骨组织中TGF-β1Smad2、 Smad3、 Smad4基因和蛋白的表达,而且软骨病理切片Mankin's评分和软骨II型胶原表达检测提示,鹿茸能够促进软骨细胞增殖、分化,延缓软骨的退变,由此推论,鹿茸提高了TGF-β/Smads信号通路中TGF-β1、Smad2、Smad3、Smad4分子的表达,从而促进该信号通路的转导,起到促进软骨形成的作用,而且,软骨细胞内的Smad2、Smad3、 Smad4基因和蛋白的变化可能是骨性关节炎发病的重要机制之一。
Objective:
     The Chinese medicinal'channel tropism'theory is an important part of the theories of TCM, and is the basis of disease which we know and treat. Under the guidance of the'channel tropism'theory, we formulate prescription to treat osteoarthritis by applying to liver and kidney. In order to further research'channel tropism'nature, and the relevance of'channel tropism'theory and signaling pathways. We select pilos antler of applying to liver and kidney to research its nature as the representative of Chinese traditional medicine, to explore the mechanism of pilos antler regulate TGF beta/Smads signal pathway in the osteoarthritic cartilage.
     Methods:
     1Literature resaerch
     By means of'The Chinese medical database',Some medicine cases about Arthralgia Syndrome will be analyzed and imported into database, and using of herbs will be analyzed through mathematics and physics Statistieal methods of SPSS18.0saftware. We will concluded the regulation of different kinds of drugs by analysis frequency of efficacy and'channel tropism'of drugs. At the same time, the system clustering analysis is adopted to clustering statistics on drugs, and using traditional Chinese medicine theory to analyze the results.
     2Channel tropism research
     Hulth method is adopted to establish the rat model of osteoarthritis. Twenty four healthy female SD rats were selected and randomly divided into3groups:group of the pilose antler, model group and control group. Animals in each of group after treatment, the expressions of cAMP, cGMP, TGF-βRI, TGF-β RII were measured by ELISA, Quantitative PCR, Western blot to observe the curative effects.
     3Explore the different methods to extract total RNA from cartilage tissue of SD rats
     Select9SD rats of3-month-old, respectively Rneasy Lipid Tissue Kit, RNAout kit and classic Trizol method of total RNA was extracted, and Agarose gel electrophoresis was included to detect RNA integrity and quality. In order to explore best extraction scheme of total RNA.
     4Research mechanism of Hairy Deerhorn regulate TGF-beta/Smad signalling pathways
     One hundred healthy female SD rats of3months old were selected and subjected to classic Hulth modeling. Knees were harvested to observe the pathologic change of cartilage macroscopically and microscopically, and randomly were divided into5groups:low-dose group of the pilose antler, high-dose group of the pilose antler, saline control group, model group and control group. Animals in each of group at2,4,6weeks after treatment, the expressions of collagen type II, TGF-β1, Smad2, Smad3, Smad4were measured by Immunohistochemistry, Quantitative PCR, Western blot to observe the curative effects.
     Rusult:
     1According to the results of frequency analysis, Chinese herb reaches79.2%which are for restoratives Chinese Medicinal Herbs. Diaphoretics or exterior syndrome relieving Chinese Medicinal Herbs, Chinese Medicinal Herbs for invigorating the blood and removing blood stasis, Antirheumatic Chinese Medicinal Herbs and Warming the internal are the main treatment drugs for osteoarthritis. Frequency of kidney is21.4%which is more than others, Frequency of liver and spleen is17.9%which account for second. According to the results of hierarchical cluster analysis, the herbs for treatment could be divided into six cluster,with nourishing liver and kidney, promoting blood circulation to remove meridian obstruction, temperature in the cold,etc as a method for drug combination.
     2According to the results ELISA method to detect cAMP and cGMP in cartilage tissue, group of Velvet antler of cAMP and cGMP were higher than model group,model group of cAMP and cGMP were lower than normal group. Comparison of three groups had significant difference(cAMP F=10351.408, P=0.000, cGMP F=63032.016, P=0.000, cAMP/cGMP F=6530.879, P=0.000). The expression of TGF-β RImRNA, TGF-β RIImRNA and proteins were increased gradually in low-dose group and high dose group by quantitative PCR and Western blot hybridization assay. By repeated measures analysis of variance, the difference is significant compare to other groups (F=161.672, P=0.000)
     3Total RNA of Rneasy Lipid Tissue Kit was obtained high purity, integrity and stability, and can successfully reverse transcriptase synthesize double-stranded cDNA. PCR amplification can get gene product what we need. Methods of RNAout kit and classic Trizol can not meet the need.
     4We prepared successfully osteoarthritis model in the athology. After two week, the surface of chondrocyte were swelling, the flat chondrocyte reduced and clusted through optical microscope. After four week, the surface and middle cell were shrinkage, diffuse, cluster to group. After six week, the most of the surface layer of chondrocyte were disappear, decay defects, chondrocytes disintegration, necrosis, and tidal line disorder or even disappear. According to the results of Mankin's score of cartilage slice, Mankin's score of low-dose and high-dose group of the pilose antler was less than the model group and saline group, the difference is significant compare to other groups(P=87.840, P=0.000). The expression of collagen type II by detection of immunohistochemical, chondrocyte layer of low-dose and high-dose group of the pilose antler had a wide range of tan cells, the number was significantly higher than that of saline group and model group, the expression by quantitative PCR and Western blot hybridization assay of TGF-β1was increased gradually in low-dose group and high dose group, the difference is significant compare to other groups by repeated measures analysis of
     variance(F=408.841,P=0.000).Smad2,Smad3gene and proteins were increased gradually after2,4weeks, and reduced after6weeks, the difference is significant compare to other groups by repeated measures analysis of variance(F=240.511, P=0.000,F=1325.174, P=0.000). The expression of Smad4was increased gradually in low-dose group and high dose group, the difference is significant compare to other groups by repeated measures analysis of variance (F=197.035, P=0.000).
     Conclusion:
     1The ancients treat'GUBI'under the onset of liver and kidney deficiency as the fundamental principle in clinical, they choose drugs to liver, kidney, spleen. Enriching yin and nourishing kidney, promoting blood circulation to remove blood stasis, etc. is a method for drug combination. In the treatment of liver and kidney deficiency, invigorate the circulation, temperature, Tongluo, dampness to treat the symptoms.
     2Experimental results demonstrate that pilos antler can influence the changes of cAMP and cGMP, pilos antler can increase the expression of TGF-beta RI,TGF-beta RII on the chondrocyte membrane,so we consider the cartilage may be one of the target tissue which pilos antler select, and TGF-betaRI, TGF-RII of chondrocyte membrane may be one of the targets which pilos antler via selective effect on cartilage.
     3Based on the specificity of the cartilage, we think Trizol method is not suitable for total RNA extraction of articular cartilage tissue in rat. While using RNeasy Lipid Tissue Mini Kit can guarantee the implementation of the follow-up study.
     4Pilos antler can influence the expression of TGF-betal, Smad2,3,4genes and proteins in cartilage, and promote chondrocyte proliferation, differentiation, delay the degeneration of cartilage. So we can concluded that pilos antler can regulate the expression of difference molecularof TGF-beta/Smad signaling pathways, thus promotes the signal transduction pathways, play the role of promoting chondrogenesis.And the changes of Smad2,3,4may is one of the important mechanisms of the pathogenesis of osteoarthritis.
引文
[1]刘献祥,林燕萍.中西医结合治疗骨性关节炎[M].北京:人民卫生出版社,2009:12.
    [2]Arden N, Nevitt MC. Osteoarthritis:Epidemiology[J]. Arthritis Rheum,2006,20(1): 3-25.
    [3]陈百成,张静.骨关节炎[M].北京:人民卫生出版社,2004,56.
    [4]李儒军,林剑浩.骨关节炎流行病学的研究进展[J].中国临床医生,2010,38(7):6-10.
    [5]高学敏,中药学[M].北京:中国中医药出版社,2007.
    [6]国家药典委员会,中华人民共和国药典[M].机械工业出版社,2005.
    [7]中华本草编委会,中华本草[M].上海科学技术出版社,1999:第1-10册.
    [8]郑广华.阴阳学说与环核苷酸[J].自然杂志,1979,2(4):208-209.
    [9]李振华,赵文海,赵长伟等.鹿茸多肽对兔骨性关节炎软骨细胞增殖及凋亡调节作用的实验研究[J].世界中西医结合杂志,2009,4(10):701-703.
    [10]翟吉良,翁习生,邱贵兴.骨关节炎动物模型的建立及选择[J].中国矫形外科杂志,2007,15(11):843-845.
    [11]刘萍,王平,陈刚等.中药归经理论的研究与思考[J].辽宁中医杂志,2010,37(12):2339-2341.
    [12]康汇婷,王朝伟.中药归经理论现代研究进展[J].2010,30(4):413-415.
    [13]沈金鳌.要药分剂[M],北京:上海卫生出版社,1958.
    [14]张吉仲.藏药余甘子、诃子和毛诃子对实验动物脏腑cAMP、cGMP含量的影响[J].云南中医中药杂志,2009,30(6):53-55.
    [15]王树荣,翟继伟,盖英臣,等.天麻、桔梗、元胡归经的实验研究[J].上海中医药杂志,1995,1:44-46.
    [16]刘人树,李焕德.对中药归经理论的认识与其现代研究的看法[J].中国药师,2006,9(3):268-269.
    [17]武密山,李恩,赵素芝.补肾复方对骨质疏松大鼠细胞内信息调节的影响及其与药物归经相关性的实验研究[J].上海中医药杂志,2000,2:44-46.
    [18]翁梁,秋丽,王丽娟等.鹿茸多肽促进表皮和成纤维细胞增殖及皮肤创伤愈合[J].药理学报,2001,36(11):817-820.
    [19]中华医学会编著.临床技术操作规范-病理学分册[M].北京:人民军医出,2004:37-41.
    [20]柴立.从微量元素及其配位化合物对组织器官的富集、亲合探讨“归经”实质[J].微量元素,1984,(试刊号):24.
    [21]朱梅年.试论中医“肾”的物质基础—有关微量元素锌、锰的的探讨[J].中医杂志,1983,(5):66-68.
    [22]俞仲毅,王博,陆敏.中药归经的形态学基础研究(二)[J].上海中医药大学学报,2006,20 (3): 32.
    [23]龚跃新,张根海.中药归经理论与微量元素的关系探讨[J].中医药研究,1990,16(5):23-25.
    [24]郭顺根,牛建昭,贲长恩.3H-川芎嗪在动物体内分布的放射自显影研究[J].中国医药学报,1989,4(3):17-21.
    [25]陆光伟.中药归经及其成分在体内的分布[J].中成药研究,1984,(5):38-39.
    [26]刘群,朱子凤,杨晓农.中药归经理论的现代认识[J].西南民族大学学报·自然科学版,2007,33(6):1334-1339.
    [27]党琳,张旭晨.受体学说在中药归经理论研究中的运用[J].陕西中医,2004,25(10):929-930.
    [28]杨藻宸.药理学总论[M].北京:人民卫生出版社,1991,9.
    [29]王海东,陈文垲.归经研究与受体学说的思考[J].湖北中医学院学报,2001,3(3):8-10.
    [30]武密山,李恩,赵素芝等.补肾方药归经与实验性骨质疏松靶器官信号转导分子Smad2的表达[J].中国组织工程研究与临床康复,2007,11(14):2691-2701.
    [31]武密山,李恩,赵素芝,等.补肾方药归经与靶器官雌激素受体的相关性[J].中国临床康复,2006,10(35):38-41.
    [32]Konig HG, Kogel D, Rami A, et al. TGFβ 1 activates tWo distinct type I receptors in neurons:implications for neuronal NF-κB signaling[J]. J Cell Biol 2005,168(7): 1077-1086.
    [33]Finnson KW, Parker WL, ten DP, et al. ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes[J]. J Bone Miner Res,2008,23(6): 896-906.
    [34]Chockalingam PS, Varadarajan U, Sheldon R, et al. Involvement of protein kinase Czeta ininterleukin-lbeta induction of ADAMTS-4 and type 2 nitric oxide synthase via NF-kappaB signaling in primary human osteoarthritic chondrocytes[J]. Arthritis Rheum,2007,56(12): 4074-4083.
    [35]Ruettger A, Schueler S, Mollenhauer JA, et al. Cathepsins B, K, and L are regulated by a defined collagen type II peptide via activation of classical protein kinase C and p38 MAP kinase in articular chondrocytes[J]. J Biol Chem 2008,283(2):1043-1051.
    [36]张磊,陆小军,应斌武.昆明小鼠不同组织RNA提取方法的比较[J].中华医院感染学杂志,2009,19(22):3027-3029.
    [37]郭俊良,胡靖扬,高顺玉.昆明小鼠不同组织RNA提取方法的比较[J].楚雄师范学院学报,2011,26(3):84-88.
    [38]张宏山,许明,张阳,等.小鼠心肌组织3种总RNA提取方法比较[J].临床心血管病杂志,2010,26(2):149-150.
    [39]刘玉刚,胡旭,付建军,等.一种富含多糖的关节软骨组织总RNA提取方法初探[J].第三军医大学学报,2009,31(24):2495-2497.
    [40]McKenna LA, Gehrsitz A, Soder S, et al. Effective isolation of high-quality total RNA from human adult articular cartilage[J]. Anal Biochem,2000,286(1):80-85.
    [41]Smale G, Sasse J. RNA isolation from cartilage using density gradient centrifugation in cesium trifluoroacetate:an RNA preparation technique effective in the presence of high proteoglycan content[J]. Anal Biochem,1992,203(2):352-356.
    [42]Thorp BH, Armstrong DG, Hogg CO, et al. Type II collagen expression in small, biopsy-sized samples of cartilage using a new method of RNA extraction[J]. Clin Exp Rheumatol,1994,12(2):169-173.
    [43]Geyer M, Grassel S, Straub RH, et al. Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology[J]. Osteoarthritis Cartilage,2009,17(3):328-335.
    [44]Remy I, Montmarquette A, Michnick SW. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3[J]. Nat Cell Biol,2004,6(4):358-365.
    [45]Keller B, Yang T, Chen Y, et al. Interaction of TGFβ and BMP signaling pathways during chondrogenesis[J]. PLoS One,2011,6(1):1-9.
    [46]Sakimura K, Matsumoto T, Miyamoto C, et al. Effects of insulin-like growth factor I on transforming growth factor betal induced chondrogenesis of synovium-derived mesenchymal stem cells cultrued in a polyglycolic acid scaffold[J]. Celles Tissues Organs, 2006,183(2):55-61.
    [47]Roman-Blas JA, Stokes DG, Jimenez SA. Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes[J]. Osteoarthritis and Cartilage, 2007,15(12):1367-1377.
    [48]Mankin HJ, Dorfman H, Lippiello L, et al. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II Correlation of morphology with biochemical and metabolic data[J]. J Bone Joint Surg Am,1971,53(3):523-537.
    [49]Rosenbeg L. Chemical basis for the histological use of safranin 0 in the study of articular cartilage[J]. J Bone Joint Surg Am,1971,53(1):69-82.
    [50]高改霞,卫小春,李凯等.大鼠膝关节软骨不同染色方法的差异[J].中国组织工程研究与临床康复,2010,14(24):4385-4389.
    [51]陈连旭,余家阔,于长隆,等.大鼠、兔和人关节软骨组织形态学的比较[J].中国组织工程研究与临床康复,2007,11(41):8230-8233.
    [52]Galera P, Redini F, Vivien D, et al. Effect of transforming growth factor-beta 1 (TGF-β1) on matrix synthesis by monolayer cultures of rabbit articular chondrocytes during the dedifferentiation process[J]. Exp Cell Res,1992,200(2):379-392.
    [53]Van der Kraan PM, Vitters E, Van den BW. Differential effect of transforming growth factor beta on freshly isolated and cultured articular chondrocytes[J]. J Rheumatol,1992, 19(1):140-145.
    [54]龙华,袁华,马保安,等.腺病毒介导TGF-β1基因感染兔软骨细胞修复关节软骨缺损[J].中国矫形外科杂志,2006,14(16):1239-1242.
    [55]龙华,袁华,马保安,等.腺病毒介导TGF-β1及BMP-7基因共表达感染骨髓基质干细胞修复兔关节软骨缺损[J].中国骨与关节损伤杂志,2008,23(6):471-474.
    [56]王利刚,李勇,陈伟高.鹿茸生长素对家兔关节软骨细胞代谢的影响[J].江西医学院学报,2004,44(2):23-25.
    [57]李银清,赵雨,范冬艳,等.鹿茸胶原促进大鼠成骨细胞生长的实验研究[J].吉林中医药,2009,29(12):1089-1090.
    [58]王华,林喆,刘强,等.鹿茸寡肽的制备及其促成骨细胞的增殖作用[J].高等学校化学学报,2008,29:1791-1796.
    [59]赵文海,赵长伟,闻辉,等.鹿茸多肽对兔骨性关节炎软骨细胞的影响[J].中国中医骨伤科杂志,2010,18(3):1-3.
    [60]曲兆海,侯晓峰,刘景生.鹿茸对实验型骨折愈合过程中TGF-β1和BMP-2的表达影响[J].中医药学刊,2004,22(6):1076-1078.
    [61]Wang H, Zhang J, Sun Q, et al. Altered gene expression in articular Chondrocytes of Smad3(exS/ex8) mice, revealed by gene profiling using microarrays[J]. J Genet Genomics, 2007,34(8):698-708.
    [62]Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases[J]. Expert Opin Ther Targets,2009,13(4):485-496.
    [63]Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell,1982,31(1):99-109.
    [64]许兵,刘慧,许应星.成骨细胞中经典Wnt/β-catenin通路研究进展[J].生命科学,2011,23(5):478-481.
    [65]高宁阳,曹月龙,刘婷,等.Wnt信号通路与骨关节炎[J].中国骨伤,2010,23(4):320-323
    [66]贾瑞平,徐宏光,张小海.WNT信号通路对软骨细胞影响研究进展[J].国际骨科学杂志,2010,31(4):200-202.
    [67]Piters E, Boudin E, Van Hul W. Wnt signaling:a win for bone [J]. Arch Biochem Biophys, 2008,473(2):112-116.
    [68]Wodarz A, Nusse R. Mechanisms of Wnt signaling in development [J]. Annu Rev Cell Dev Biol,1998,14:59-88.
    [69]张志奇,廖成明,傅明.骨关节炎信号通路及其治疗靶点[J].国际骨科学杂志,2008,29(5):324-326.
    [70]Zhu M, Tang D, Wu Q, et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice[J]. J Bone Miner Res,2009,24(1):12-21.
    [71]Mak KK, Chen MH, Day TF, et al. Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation[J]. Development,2006,133(18):3695-3707.
    [72]Elke P, Eveline B, Win VH. Wnt signaling:a win for bone[J]. Arch Biochem Biophy, 2008,2:112-116.
    [73]Dell'accio F, De Bari C, Eltawil NM, et al. Identification of the molecular response of articular cartilage to injury, by microarray screening:Wnt-16 expression and signaling after injury and in osteoarthritis[J]. Arthritis Rheum,2008,58(5):1410-1421.
    [74]Ryu JH, Kim SJ, Kim SH, et al. Regulation of the chondrocyte phenotype by beta-catenin[J]. Development,2002,129(23):5541-5550.
    [75]Church V, Nohno T, Linker C, et al. Wnt regulation of chondrocyte differentiation [J]. J Cell Sci,2002,115(Pt24):4809-4818.
    [76]Yang Y, Topol L, Lee H, et al. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation[J]. Development,2003, 130(5):1003-1015.
    [77]Daumer KM, Tufan AC, Tuan RS. Long-term in vitro analysis of limb cartilage development:involvement of Wnt signaling[J]. J Cell Biochem,2004,93(3):526-541.
    [78]Hartmann C. Skeletal development--Wnts are in control[J]. Mol Cells,2007,24(2): 177-184.
    [79]Hartmann C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb[J]. Development,2000,127(14):3141-3159.
    [80]Wang L, Shao YY, Ballock RT. Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes [J]. J Bone Miner Res,2007,22(12):1988-1995.
    [81]Tufan AC, Tuan RS. Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling[J]. J Cell Biochem,2004,93(3):526-541.
    [82]Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton[J]. Cell,2001,104(3):341-351.
    [83]Hwang SG, Yu SS, Lee SW, et al. Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway[J]. FEBS Lett,2005,579(21):4837-4842.
    [84]Hwang SG, Ryu JH, Kim IC, et al. Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms[J]. J Biol Chem, 2004,279(25):26597-26604.
    [85]Yuasa T, Otani T, Koike T, et al. Wnt/beta-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes:its possible role in joint degeneration[J]. Lab Invest,2008,88(3):264-274.
    [86]Dong Y, Drissi H, Chen M, et al. Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta[J]. J Cell Biochem,2005,95(5):1057-1068.
    [87]Dong YF, Soung do Y, Schwarz EM, et al. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor[J]. J Cell Physiol,2006,208(1):77-86.
    [88]高宁阳,曹月龙,刘婷,等.Wnt信号通路与骨关节炎[J].中国骨伤,2010,23(4):320-323.
    [89]Artavanis-Tsakonas S, Rand MD, et al. Notch signaling:cell fate control and signal integration in development[J]. Science,1999,284(5415):770-776.
    [90]付亚娟,叶枫,吕卫国,等.Notch信号通路的研究现状[J].医学分子生物学杂志,2007,4(5):447-450.
    [91]D'Souza B, Miyamoto A, Weinmaster G. The many facets of Notch ligands[J]. Oncogene, 2008,27(38):5148-5167.
    [92]Lavoie MJ, Selkoe DJ. The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments[J]. J Biol Chem,2003,278(36):34427-34437.
    [93]王颖,于洁,张芳婷.Notch信号通路与细胞的增殖分化[J].广东医学,2009,30(7):1181-1183.
    [94]Karlsson C, Jonsson M, Asp J. Notch and HES5 are regulated during human cartilage differentiation[J]. Cell Tissue Res,2007,327(3):539-551.
    [95]Karlsson C, Brantsing C, Egell S, et al. Notchl, Jaggedl, and HES5 are abundantly expressed in osteoarthritis[J]. Cells Tissues Organs,2008,188(3):287-298.
    [96]Zanotti S, Canalis E. Notch and the skeleton[J].Mol Cell Biol,2010,30(4):886-896.
    [97]Watanabe N, Tezuka Y.Matsuno K, et al. Suppression of differentiation and proliferation of early chondrogenic cells by Notch[J]. J Bone Miner Metab,2003,21(6): 344-352.
    [98]Karlsson C, Stenhamre H, Sandstedt J, et al. Neither Notchl expression nor cellular size correlate with mesenchymal stem cell properties of adult articular chondrocytes [J]. Cells Tissues Organs,2008,187(4):275-285.
    [99]Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways[J]. Cell Res,2009,19:71-88.
    [100]Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease [J]. Biochim Biophys Acta,2008,1782(4):197-228.
    [101]Centrella M, Mocarthy TL, Canalis E, et al. Transforming growth factor beta and remodeling of bone[J]. J Bone J Bont Surg Am,1991,73(9):1418-1428.
    [102]Sporn MB, Roberts AB. The transforming growth factor-betas:past, present, and future[J]. Ann N Y Acad Sci,1990,593:1-6.
    [103]吴巍,姚欣欣,朱辛奕TGF-B在骨组织中作用的研究进展[J].吉林医药学院学报,2009,30(1):45-47.
    [104]Urist MR. Bone:formation by autoinduction[J]. Science,1965,150:893-899.
    [105]李林,罗进勇.骨形成蛋白的信号通路及其与骨形成的关系[J].临床和实验医学杂志,2010,9(17):1341-1343.
    [106]Kessler E, Takahara K, Biniaminov L, et al. Bone morphogenetic protein-l:the type I procollagen Cproteinase[J]. Science,1996,271:360-362.
    [107]Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction[J]. J Bioch,2010,147:35-51.
    [108]张勇,秦娜,于斌.TGF-β/Smads信号转导通路的研究进展[J].广西医科大学学报,2009,26(1):155-157.
    [109]Mishra L, Shetty K, Tang Y, et al. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer[J]. Oncogene,2005,24(37):5775-5789.
    [110]Alvarez J, Serra R. Unique and redundant roles of Smad3 in TGF-beta-mediated regulation of long bone development in organ culture[J]. Dev Dyn,2004,230:685-699.
    [111]Liu T, Feng XH. Regulation of TGF-β signaling by protein phosphatases[J].2010, 430(2):191-198.
    [112]Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily[J]. Science, 2002,296(5573):1646-1647.
    [113]Rahimi RA, Leof EB. TGF-beta signaling:a tale of two responses [J]. J Cell Biochem, 2007,102:593-608.
    [114]Chen W, Fu X, Sheng Z. Review of current progress in the structure and function of Smad proteins[J]. Chin Med J(Engl),2002,115(3):446-450.
    [115]Ross S, Hill CS. How the Smads regulate transcription[J]. Int J Biochem Cell Biol, 2008,40(3):383-408.
    [116]Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7[J]. Acta Biochim Biophys Sin,2009,41(4):263-272.
    [117]Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily[J]. Science, 2002,296(5573):1646-1647.
    [118]Kawamura K, Chu CR, Sobajima S, et al. Adenoviral-mediated transfer of TGF-betal but not IGFl-induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures[J]. Exp Hematol,2005,33(8):865-872.
    [119]Worster AA, Nixon AJ, Brower-Toland BD, et al. Effect of transforming growth factor betal on chondrogenic differentiation of cultured equine mesenchymal stem cells[J]. Am J Vet Res,2000,61 (9):1003-1010.
    [120]Frenkel SR, Saadeh PB, Mehrara BJ, et al. Transforming growth factor beta superfamily members:roleincartilage modeling[J]. Plast Reconstr Surg,2000,105(3): 980-900.
    [121]Stewart K, Pabbruwe M, Dickinson S, et al. The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds[J]. Tissue Eng,2007,13(2):271-280.
    [122]Steinert AF, Palmer GD, Capito R, et al. Genetieally enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-betal complementary deoxyribonucleic acid[J]. Tissue Eng,2007,13(9):2227-2237.
    [123]Miyamoto C, Matsumoto T, Sakimura K, et al. Osteogenic protein-1 with transforming growth factor-betal:potent inducer of chondrogenesis of synovial mesenchymal stem cells in vitro[J]. J Orthop Sci,2007,12(6):555-561.
    [124]James AW, Xu Y, Lee JK, et al. Differential effects of TGF-betal and TGF-beta3 on chondrogenesis in posterofrontal cranial suture-derived mesenchymal cells in vitro[J]. Plast Reconstr Surq,2009,123(1):31-43.
    [125]Hao J, Varshney RR, Wang DA. TGF-beta3:a promising growth factor in engineered organogenesis[J], Expert Opin Biol Ther,2008,8(10):1485-1493.
    [126]Yao YF, Zhang R, Zhou M, et al. Continuous supply of TGFbeta3 via adenoviral vectorpromotes type I collagen and viability of fibroblasts in alginate hydrogel[J]. J Tissue Eng Regen Med,2010,4(7):497-504.
    [127]Yun K, Moon HT. Inducing chondrogenic differentiation in injectable hydrogels embedded with rabbit chondrocytes and growth factor for neocartilage formation[J]. J Biosci Bioeng,2008,105(2):122-126.
    [128]Park KH, Na K. Effect of growth factors on chondrogenic differentiation of rabbit mesenchymal cells embedded in injectable hydrogels[J]. J Biosci ioeng,2008,106(1): 74-79.
    [129]SerraR, Johnson M, Filvaroff EH, et al. Expression of a truncated, kinase defective TGF-beta type Ⅱ receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis[J]. J Cell Biol,1997,139:541-552.
    [130]Yang X, Chen L, Xu X, et al. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage[J]. J Cell Biol, 2001,153:35-46.
    [131]Van Beuningen HM, Van der Kraan PM, Arntz OJ, et al. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint[J]. Lab Invest,1994,71:279-290.
    [132]Van Beuningen HM, Glansbeek HL, Van der Kraan PM, et al. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation[J]. Osteoarthritis Cartilage,1998,6:306-317.
    [133]Van Beuningen HM, Glansbeek HL, Van der Kraan PM, et al. Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections[J]. Osteoarthritis Cartilage,2000,8:25-33.
    [134]Zhang X, Ziran N, Goater JJ, et al. Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation:TGF-beta delays hypertrophy and PGE2 inhibits terminal differentiation[J]. Bone,2004,34:809-817.
    [135]Kramer J, Hegert C, Guan K, et al. Embryonic stem cell-derived chondrogenic differentiation in vitro:activation by BMP-2 and BMP-4[J]. Mech Dev,2000,2(2):193-205.
    [136]Steinert AF, Prof fen B, Kunz M, et al. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer [J]. Arthritis Research & Therapy, 2009,11(5):R148.
    [137]Shintani N, Hunziker EB. Chondrogenic differentiation of bovine synovium:Bone morphogenetic proteins 2 and 7 and transforming growth factor P 1 induce the formation of different types of cartilaginous tissue[J]. Arthritis & Rheumatism,2007,56(6): 1869-1879.
    [138]Loeser RF, Pacione CA, Chubinskaya S. The combination of insulin-like growth factorl and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes[J]. Aithritis Rheum,2003,48(8): 2188-2196
    [139]Kataqiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast diferentiation[J]. Oral Dis,2002,8(3):147-159.
    [140]Blunk T, Sieminski AL, Appel B, et al. Bone morphogenetic Protein 9:a potent modulator of cartilage development in vitro[J]. Growth Factors,2003,21(2):71-77.
    [141]Schmal H, Niemeyer P, Zwingmann J, et al. Association between expression of the bone morphogenetic proteins 2 and 7 in the repair circumscribed cartilage lesions with clinical outcome[J]. BMC Musculoskelet Disord,2010,11:170.
    [142]Keller B, Yang T, Chen Y, et al. Interaction of TGF-β and BMP signaling pathways during chondrogenesis[J]. PLoS ONE,2011,6(1):e16421.
    [143]盛晓簧,夏亚一.MAPK家族ERK5信号通路的研究进展[J].医学综述,2012,18(19):3145-3147.
    [144]Brewster J L, Valoir T, Dwyer ND, et al. An osmosensing signal transduction pathway in yeast[J]. Science,1993,259(5102):1760-1763
    [145]Han J, Lee JD, Bibbs I, et al. A MAP kinase targeted by endotoxin and hypeosmolarity in mammalian cells[J]. seience,1994,265(5173):808-811.
    [146]成翕悦,李玉坤.p38丝裂原活化蛋白激酶与骨代谢[J].国际药学研究杂志.2010,37(2):114-117.
    [147]张奇,白晓东,付小兵.p38MAPK信号通路研究进展[J].感染、炎症、修复,2005,6(2):121-123.
    [148]陈建勇,王聪,王娟,等.MAPK信号通路研究进展[J].中国医药科学,2011,1(8):32-34.
    [149]Kim SJ, Ju JW, Oh CD, et al. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis in chondrocytes in association with p53, caspase-3, and differentiation status[J]. Biol Chem,2002,277(2):1332-1339.
    [150]Wei L, Sun XJ, Wang Z, et al. CD95-induced osteoarthritic chondrocyte apoptosis and necrosis:dependency on p38 mitogen-activated pro tein kinase [J]. Arthritis Res Ther, 2006,8(2):R37.
    [151]Rasheed Z, Akhtar N, Haqqi TM. Pomegranate extract inhibits the interleukin-1 β-induced activation of MKK-3, p38-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes[J]. Arthritis Res Ther,2010,12(5):R195.
    [152]Fan Z, Soder S, Oehler S, et al. Activation of interleukin-1 signaling cascades in normal and osteoarthritic articular cartilage[J]. Am J Pathol,2007,171(3):938-946.
    [153]Menqshol JA, Vincenti MP, Coon CI, et al. Interleukin-1 induction of collagenase 3(matrix metall oproteinase 13)gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB:differential regulation of collagenase 1 and collagenase3[J]. Arthritis Rheum,2000,43(4):801-811.
    [154]Stanton LA, Sabari S, Sampaio AV, et al. p38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation[J]. Biolchem J,2004,378(Pt 1):53-62.
    [155]Wada Y, Shimada K, Sugimoto K, et al. Novel p38 mitogen-activated protein kinase inhibitor R-130823 protects cartilage by down-regulating matrix metalloproteinase-1,-13 and prostaglandin E2 production in human chondrocytes [J]. Int Immunopharmacol,2006,6(2): 144-155.
    [156]Joos H, Hogrefe C, Rieger L, et al. Single impact trauma in human early-stage osteoarthritic cartilage:implication of prostaglandin D2 but no additive effect of IL-1 β on cell survival[J]. Int J Mol Med,2011,28(2):271-277.
    [157]Robbins JR, Thomas B, Tan L, et al. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-lbeta[J]. Arthritis Rheum,2000,43(10):2189-2201.
    [158]Yagi K, Goto D, Hamamoto T, et al. Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3[J]. J Biol Chem,1999,274(2):703-709.
    [159]闫继东.Smad4在肿瘤中的研究进展[J].中外医疗,2010,19:186-187.
    [160]Yao JY, Wang Y, An J, et al. Mutation analysis of the Smad3 gene in human osteoarthritis[J]. Eur J Human Genet,2003,11(9):714-717.
    [161]Ito Y, Bringas P Jr, Mogharei A, et al. Receptor-regulated and inhibitory Smads are critical in regulating transforming growth factor beta-mediated Meckel's cartilage development[J]. Dev Dyn,2002,224(1):69-78.
    [162]Furumatsu T, Tsuda M, Taniguchi N, et al. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment[J]. J Biol Chem,2005, 280(9):8343-8350.
    [163]Li TF, Darowish M, Zuscik MJ, et al. Smad3-deicient chondrocytes have enhanced BMP signaling and accelerated differentiation[J]. J Bone Miner Res,2006,21(1):4-16.
    [164]Zhang YE. Non-Smad pathways in TGF-β signal ing [J]. Cell Res,2009,19(1):128-139.
    [165]Hopwood B, Tsykin A, Findlay DM, et al. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signaling[J]. Arthritis Res Ther,2007,9(5):100.
    [166]Mailhot G, Yang M, Mason-Savas A, et al. BMP-5 expression increases during chondrocyte differentiation in vivo and in vitro and promotes proliferation and cartilage matrix synthesis in primary chondrocyte cultures[J]. J Cell Physiol,2008,214(1):56-64.
    [167]Zuscik MJ, Baden JF, Wu Q, et al.5-azacytidine alters TGF-β and BMP signaling and induces maturation in articular chondrocytes [J]. J Cell Biochem,2004,92(2):316-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700