基于CAX的陶瓷摇臂设计和量产化制造关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高动力特性,现代高速发动机一般都采用了顶置凸轮轴(OHC)式配气机构。在这种配气机构中,摇臂是一个对发动机整体性能影响较大的重要零件。由于摇臂的工作条件恶劣、综合性能要求复杂,因而其新产品的开发成为近年来国内外研究的热点。本文以TJ370Q发动机摇臂新产品的研制过程为例,运用现代新产品开发理论和CAI、CAD、CARE、CAE等技术对目前最新一代的高性能摇臂—铝合金陶瓷镶块摇臂的设计技术和关键制造工艺进行了深入的研究。全文的主要内容可概括如下:
     1在分析摇臂的性能要求、国内外研究现状及其设计技术发展趋势的基础上,提出了课题研究的主要内容和意义。
     2运用计算机辅助产品创新(CAI)软件工具TechOptimizerTM?提出了铝合金陶瓷镶块摇臂的技术原理方案,进行了陶瓷镶块与铝合金摇臂基体之间“全包容”的创新连接结构初步设计,制定了具有创新性的陶瓷摇臂“反向定位加工”总体制造工艺方案。在此基础上,运用统筹方法制定了陶瓷摇臂新产品的研制计划。
     3阐明了陶瓷摇臂的设计属于反设计,并详细描述了运用计算机辅助反向工程(CARE)技术替代传统的分析计算模型对气门摇臂的工况载荷和设计参数进行反求的一般方法。
     4提出了陶瓷摇臂的设计原则、参数化CAD建模方法和基于有限元分析的形体结构优化设计方法。根据“全包容”的创新思想和陶瓷与金属的连接技术研究现状,详细设计了用材少、成本低、联接可靠、容易制造的倒楔角陶瓷镶块结构,并提供了相应的经验数据。介绍了运用快速原型制造(RPM)技术和金属模具翻铸技术相结合来进行陶瓷摇臂功能原型快速试制的方法。根据制造工艺的研究结果,提出了陶瓷摇臂面向制造(DFM)的结构设计要求。
     5阐述了陶瓷摇臂量产化对生产效率、生产成本和产品质量的要求,并在此基础上分别对陶瓷镶块毛坯制备、陶瓷镶块圆弧工作面加工、陶瓷摇臂毛坯压铸和机械加工等制造过程中的关键工艺难点进行了攻关,取得了多项研究成果,为实现陶瓷摇臂的批量化生产奠定了基础。
     6根据系统化设计的原理,对采用陶瓷摇臂后的气门弹簧匹配性优化设计方法进行了研究。建立了气门弹簧改进设计的约束条件,提出了以配气机构受力峰值最小作为气门弹簧优化设计的目标,介绍了通过虚拟配气机构动力学仿真确定最佳气门弹簧特性的方法和基于计算机辅助螺旋压簧设计的气门弹簧尺寸参数确定方法。
Overhead cam (OHC) valve train has been widely adopted in modern high-speed internal-combustion engines for better dynamic characteristics. In this kind of valve train, the rocker arm is an important part that has great influence on the overall performance of the engine. For such reasons as severe working conditions and comprehensive overall properties requirements, new product development of rocker arm has been becoming the focus of research abroad and domestic in recent years. This paper is centered on the development of a new rocker arm for the TJ370Q engine. Taking it as an example, the design techniques and key manufacturing process of the up-to-date high-performance rocker arm: the aluminum die-cast rocker arm with a ceramic insert (called“ceramic rocker arm”for short below) were studied in depth using such methods as the theory of new product development, CAI, CAD, CARE, CAE etc. The main research works of this paper are summarized as follows:
     1. On the basis of analyzing the properties requirements of rocker arm together with giving an overview of its present research state and future trend of development both at home and abroad, the contents and great significance of this research has been set forth.
     2. By utilizing the Computer Aided Innovation software TechOptimizerTM?, the technical principle of the ceramic rocker arm has been put forward, and then the so-called“fully wrapped”joining structure between the ceramic insert and the aluminum rocker arm base has been invented preliminarily as well as the innovative overall process flow called“reverse-locating machining”has been laid down. Based on the work aforementioned, the whole development plan of the new ceramic rocker arm has been constituted by means of PERT-CPM method.
     3. It has been clarified that the design of ceramic rocker arm pertains to reverse design. With this understanding, this paper expatiated in detail on how to seek out the working loads and design parameters of the rocker arm in reverse order by employing computer aided reverse engineering (CARE) technology in place of the conventional calculation model.
     4. Research continued on advancing the design principles of ceramic rocker arm together with its parametric CAD modeling and FEA-based shape optimization methods. In terms of the innovative idea of“fully wrapped joining”and the status in quo of recent research on the joining techniques of ceramics and metals, an inverse-wedge-shaped ceramic insert was designed with such strong points as saving material, low cost, reliable joint and easy to manufacture, and some experiential data about it were provided accordingly. Moreover, A method of rapid function prototype trial producing of the ceramic rocker arm was recommended by a combination of two techniques, namely rapid prototype manufacturing (RPM) and metal mould inverse casting. Withal, the structural design
引文
【1】 赵鸿. 铝在汽车上的应用. 汽车工艺与材料,1997(1):19~24.
    【2】 松井利治 セラミクタペット(ァルミナ鑄ぐるタィプ)の耐磨耗性能.自動車技術.平成 7 年:716~722.
    【3】 松本敏.窒化けい素セラミックを用ぃた低価格、高耐磨耗性カムフォロヮの開發.自技会学技講演会 1993.
    【4】 浦耿强,蒋国英,白羽. 高速发动机配气机构凸轮设计. 汽车科技,1998(4):1~5.
    【5】 廖晓山. 汽车发动机配气机构. 吉林人民出版社,1981.
    【6】 董锡明,李圣华,罗杰敏,王阁顺. 内燃机配气机构动力学的研究. 内燃机结构强度研究专集. 内燃机杂志编辑部,1977.
    【7】 吴兆汉等. 内燃机设计. 北京理工大学出版社,1990.
    【8】 杨连生. 内燃机设计. 中国农业机械出版社,1981.
    【9】 尚汉冀. 内燃机配气凸轮机构——设计与计算. 复旦大学出版社,1988.
    【10】 倪计民. 汽车内燃机原理. 同济大学出版社,1997.
    【11】 谢东升等. 夏利汽车构造与原理. 天津科学技术出版社,1993.
    【12】 Shunsaku Komatsu, Shigeo Yahata, Kazuhiro Fukui, Teruhiko Tokoshima. Development of Aluminum Alloy Roller Type Valve Rocker Arm by Casting and Forging Technique. SAE, 890554: 500~505.
    【13】 白清祥. 锻坯型镶块气门摇臂的研制. 内燃机,1998(1):24~25.
    【14】 Yutaka Ogawa,Minoru Machida,Noriyuki Miyamura,Keisuke Tashiro,Mutsuhiko Sugano. Ceramic Rocker Arm Insert for Internal Combustion Engines. SAE, 860397: 2.848~2.857.
    【15】 吕冰. 发动机铝合金摇臂的研究. 浙江大学金属材料系硕士学位论文,1992.
    【16】 Yutaka Ikenoue, Tadao Hayasaka, Hiroyuki Endoh. Sintered Rocker Arm Tips with Dispersed Hard Spots for Internal Combustion Engines. SAE, 850457: 3.431~3.448.
    【17】 M.Kano, I.Tanimoto. Wear Resistance Properties of Ceramic Rocker Arm Pads. Wear, 145(1991): 153~165.
    【18】 浅野谦一等.セラミクローカアーム.内燃機関.1986,4.
    【19】 裘孔光. 往复式内燃机应用陶瓷材料的回顾和展望. 国外内燃机. 1992(6),24:2~15.
    【20】 陆克久. 工程陶瓷材料在内燃机上的应用. 世界汽车,1999(1):12~14.
    【21】 鲁光祖等. 陶瓷配气机构的研制. 高性能陶瓷论文集,1998:473~477.
    【22】 沈冰,李亚平,吴云鹏.氮化硅陶瓷摇臂镶块及气门弹簧座研制.高性能陶瓷论文集,1998:334~339.
    【23】 范云,张世程,张南林. 6105 无水冷陶瓷发动机研制.高性能陶瓷论文集,1998:400~404.
    【24】 詹樟松. 内燃机技术的发展过程和趋势. 内燃机,1999(5):3~7.
    【25】 阎国刚. 戴姆勒—克莱斯勒新成果. 轻型汽车技术,2000(2):84~85.
    【26】 叶元烈. 机械现代设计方法学. 中国计量出版社,2000.
    【27】 Nagel R N. 21st century manufacturing strategy. ADA257032,1991.
    【28】 Lee J. Overview of advanced manufacturing initiatives in the US and future challenges in manufacturing globalization. National Science Foundation,1994.
    【29】 Dowlatshahi S. A comparision of approaches to concurrent engineer. Int. J.Advanced Manufacturing Technology,1994,9:106~113.
    【30】 Meerkamm H,Dr-Ing P. Design system mfk-an important step towards an engineering workbench. J .of Engineering Manufaturing, Part B 1993,207:105~116.
    【31】 国家统计局编译. 技术创新统计手册. 北京:中国统计出版社,1993.
    【32】 Thomas P Hustad. The Journal of Product Innovation Manangement, Volumell, 1994.
    【33】 Bullinger H J, Warschat J. Concurrent simultaneous engineering systems. London: Springer~Verlag, 1996.
    【34】 Sad M,Maher M L. Shared understanding in computer~supported collaborative design. Computer~Aided Design, 1996, 28(3): 27~36.
    【35】 Sycara K P. In: Sriram D, Logcher R, Fukuda S eds. Computer-Aided Cooperative Product Development. New York: Springer-Verlag, 1991, 269~297.
    【36】 G Sohlenius. Concurrent Engineering. Annals of the CIRP,41(2),1992.
    【37】 Harvey M,Ray G.The reality of concurrent new product development. Integrated Manufacturing System, 1998,2:69~76.
    【38】 Booth R. Agile Manufacturing. Engineering Management Journal, 1996(4).
    【39】 吴卫东,闵新力,万德安等. 敏捷制造的实现手段. 电加工,1999(1):38~40.
    【40】 Wang Z. Y., et al. Architecture for Agile Manufacturing and Its Interface with Computer Integrated Manufacturing. Journal of Materials Processing Technology, 1996, 61.
    【41】 Beckert A. Venturing into virtual product development. Computer Aided Engineering, 1996(5):45~50.
    【42】 Kimura F. Product and process modelling as a kernel for virtual manufacturing environment. Annals of CIRP, 1993, 42(1): 147~150.
    【43】 Lee K I, Noh S D. Virtual manufacturing system — a test-bed of engineering activities. Annals of CIRP, 1997, 46(1): 347~350.
    【44】 Asthetmer P,Felger W,Miller S. Virtual design: a generic VR system industrial application. Computer & Graphics,1993,17(6):671~677.
    【45】 Suh, N., The Principles of Design, Oxford Univ. Press, 1990.
    【46】 Zwicky, P., Discovery, Invention, Research through the morphological analysis, McMillan, New York, 1969.
    【47】 MIT Axiomatic Design Group Home Page, http://axiom.mit.edu/
    【48】 Huang, Chun-Che,Overview of modular product development,Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering ,2000.3,p 149-165.
    【49】 Blackenfelt M. & Stake R.B.,Modularity in the context of product structuring –a survey, the Second NordDesign Seminar,P26-28,Aug. 1998,KTH,Stockholm,Sweden.
    【50】 Kusiak, Andrew,Development of modular products,IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A v 19 n 4 Dec 1996 IEEE p 523-538.
    【51】 贾延林,模块化设计,机械工业出版社,1993.9.
    【52】 童时中,模块化设计的技术经济价值,机械制造与自动化,1995-6 期,pp11-12,1996-1期,pp12-13.
    【53】 劳俊、伍世虔等,模块化与现代制造技术,制造技术与机床,1994.9, pp40-42.
    【54】 玉井正寿编,赵恩武译,价值分析,机械工业出版社,1981.
    【55】 刘吉昆,产品价值分析,黑龙江科学技术出版社,1997.
    【56】 Sosale, Swaroop, Product modularization for reuse and recycling, American Society of Mechanical Engineers, Design Engineering Division (Publication) DE v 94 Nov 16-21, 1997 ASME p 195-206.
    【57】 史清琪,肖德明. 实现集约型经济增长途径研究. 北京:经济管理出版社,1997.
    【58】 M J Fench. Conceptual Design for Engineers. Design Council. London. 1985.
    【59】 Tushar H Dani, Rajit Gadh. Ceration of Concept Shap Designs via a Virtual Reality Interface. Computer-Aided Design, 1997, 29(8): 555~563.
    【60】 Adrien Presley, Joseph Sarkis, Donald H. Liles. A Soft-Systems Methodology Approach for Product and Process Innovation. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL.47, NO.3, AUGUST, 2000, 379~392.
    【61】 Q. C. Dang, T. Baylis, and Patel, “Modeling business through soft systems methodology in end-user development: A claim and an approach”. Presented at the Proc. 7th Int. Conf. Adv. Inform. Syst. Eng. 1995(CaiSE*95), Jyvaskyla, Finland, 1995.
    【62】 A. Platt and S.Warwick, “Review of soft systems methodology”. Ind. Manage. Data Syst., vol. 95, no. 4, pp. 19~21, 1995.
    【63】 S. J. Kline, “Innovation is not a linear process”, Res. Policy, vol. 14, no. 4, pp. 36~54, 1985.
    【64】 刘之生,黄纯颖. 反求工程技术. 机械工业出版社,1993.
    【65】 刘影,杭九全,万耀青. 反求工程与现代设计. 机械设计,1998(12):1~4.
    【66】 Spur,G., Krause,F.L.(著),宁汝新等(译). 虚拟产品开发技术. 机械工业出版社,2000.
    【67】 Ross,D.T. :Computer Aided Design: A Statement of Objectives. M.I.T. Electronic Systems Lab. Report No. 8436, Technical Memorandum 4, Cambridge, Massachusetts 1960.
    【68】 N.N.: Stand der C-Technik-Anwendung in Deutschland. Studie des Instituts f ü r Management-Praxis im Auftrag des CADCIRCLE, Winterthur 1996.
    【69】 Schmidt, G.R.: Mission: Zu neuen Ufern! In: VDI-Gesellschaft Entwicklung, Konstruktion und Vertrieb(Hrsg.): Jahrbuch 1995, VDI-Verlag, Düsseldorf 1996.
    【70】 Pahl, G. and Beitz, W. Konstruktionslehre. 3. Auflage, Springer-Verlag, Berlin, Heidelberg 1993.
    【71】 Knothe,K., Wessels,H. Finite Elemente. Springer-Verlag, Berlin, Heidelberg 1992.
    【72】 Spur,G., Krause,F.-L., Mertins,K. Simulationstechnik f ü r Produktentwicklung und Fabrikplanung. ZwF CIM 88(1993)7-8, S. 295~301.
    【73】 Jean, Owen V. Making virtual manufacturing real. Manufaturing Engineering, 1994(11).
    【74】 Iwata K, Onosato M, Teram oto K, et al. Virtual manufacturing systems as advanced information infrastructure for integrating manufacturing resources and activities. CIRP Annals-Manufacturing Technology, 1997, 46(1): 335~338.
    【75】 Onosato M, Iwata K. Development of a virtual manufacturing system by integrating product models and factory models. CIRP Annals, 1993, 42(1): 475~478.
    【76】 Hitchcock M F. Role of hybrid system theory in virtual manufacturing. Proceedings of the IEEE/IFAC, 1994.
    【77】 高广达. 虚拟模块化设计技术的研究及其在数控机床中的应用. 天津大学博士学位论文,2000.
    【78】 钟廷修. 快速响应工程和快速产品设计策略. 机械设计与研究,1999(1):9~12.
    【79】 Pahl, G. and Beitz, W. Engineerign Design. Spring-Verlag, 1977.
    【80】 Pahl, G., Beitz, W.“Engineering Design” A systematic approach. Springer, 1988.
    【81】 Verein Deutscher Ingenieure: VDI Guidelines - Systematic approach to the design of technical systems and products, VDI 2221, 1987.
    【82】 傅家骥. 技术创新. 北京:企业管理出版社,1990.
    【83】 本项目组. 汽车用陶瓷镶块摇臂和陶瓷离合器摩擦片量产化关键技术研究与开发. 陶瓷部件在汽车上的应用研究与开发.“九五”《轿车新材料技术开发》项目专题可行性论证报告,1998(2).
    【84】 甘华鸣等. 新产品开发. 中国国际广播出版社,2000.
    【85】 林岳. 基于 TRIZ 的计算机辅助机械产品创新方案设计. 天津大学硕士学位论文,2000.
    【86】 Glenn Mazur G. 超发明术“TRIZ”の实像(上). Nikkel Mechanical,1996,477(4):38~47.
    【87】 Glenn Mazur G. 超发明术“TRIZ”の实像(下). Nikkel Mechanical,1996,478(4):47~54.
    【88】 Fey V S, Rivin E I, Vertkin I M. Application of the Theory of Inventive Problem Solving to Design and Manufacturing Systems. Annals of CIRP, 1994, 43(1): 107~110.
    【89】 G. Erixon, A. Yxkull, A. Arnstrom, Modularity—the Basis for Product and Factory Reengineering. Annals of CIRP, 1996, 45(2): 1~4.
    【90】 Semyon D. Savransky. HUMAN-AND TECHNIQUE-LIKE CONTRADICTIONS IN TRIZ. The TRIZ Journal, May, 1998.
    【91】 Ellen Domb. Finding the Zones of Conflict: Tutorial. The TRIZ Journal, June, 1997.
    【92】 Zinovy Royzen. SOLVING CONTRADICTIONS IN DEVELOPMENT OF NEW GENERATION PRODUCTS USING TRIZ. The TRIZ Jouranl, Jan 1998.
    【93】 Altshuller, G. S. Creativity as an Exact Science. New York: Gordon and Breach, 1984.
    【94】 Ellen Domb. Contradictions: Air Bag Applications. The TRIZ Journal, July, 1997.
    【95】 刘思平. 创造方法学. 哈尔滨工业大学出版社,1998.
    【96】 Ellen Domb. The 39 Features of Altshuller’s Contradiction Matrix. The TRIZ Journal, Dec, 1997.
    【97】 G. Altshuller. Creativity as an Exact Science, Translated by Anthony Williams. Gordon & Breach.NY. 1998.
    【98】 H. Altov(G. Altshuller pseudonym). And Suddenly the Inventor Appeared, Translated by Lev Shulyak, Technical Innovation Center, Worcester, MA, 1995.
    【99】 G. S. Altshuller. “Najti Ideyu” (in Russian) Novosibirsk. Nauka, 1991.
    【100】 S. D. Savransky. “A Few Words about the Altshuller’s Contradiction Matrix”. The TRIZ Journal, August, 1997.
    【101】 “TRIZ” (in English) TTE, 1998, 454PP.
    【102】 Additional Articles on Contradictions Have Appeared in the July, 1997 and November, 1996 Issues of The TRIZ Journal.
    【103】 G.帕尔,W.拜茨著. 张直明等译. 工程设计学学习与实践手册. 北京:机械工业出版社,1992(6):35~36.
    【104】 姜慧. 计算机辅助机床模块化方案设计的理论和实践. 天津大学博士论文,1998.
    【105】 董仲元,蒋克铸. 设计方法学. 高等教育出版社,1991.
    【106】 黄纯颖. 设计方法学. 机械工业出版社,1992.
    【107】 刘寅东,李树范等. 船型技术经济综合评价的 DEA 方法. 大连理工大学学报,Vol.35,No.6,pp873~878,1995.12.
    【108】 许树柏. 层次分析法原理. 天津大学出版社,1998.
    【109】 张跃,邹寿平,宿芬. 模糊数学方法及其应用. 煤炭工业出版社,1992.
    【110】 王彩华,宋连天. 模糊论方法学. 中国建筑工业出版社,1995.
    【111】 张秀春,王本民等.国外发动机用陶瓷部件的开发与应用.上海硅酸盐.1995,4:203~211.
    【112】 C. C. J. French. Ceramics in Reciprocating Internal Combustion Engines. SAE, 841135: 5.105~5.118.
    【113】 河村英男(日),郭占哲译. 发动机零件的陶瓷化现状与未来. 自動車技術,1986(8).
    【114】 符锡仁. 美国的热机用低成本陶瓷计划. 高性能陶瓷论文集,1998:15~41.
    【115】 刘静安. 汽车工业用铝材的开发及其应用(1). 轻合金加工技术,1997(2):1~4.
    【116】 刘静安. 汽车工业用铝材的开发及其应用(2). 轻合金加工技术,1997(3):8~12.
    【117】 钱颂迪等. 运筹学. 清华大学出版社,1990.
    【118】 王众讬,张军. 网络计划技术. 辽宁人民出版社,1984.
    【119】 万耀青. 反求工程在内燃机中的应用. 内燃机工程,1993.
    【120】 袁银南. 顶置凸轮轴式配气机构设计的若干问题. 内燃机工程,1996(2):39~45.
    【121】 付光琦,康秀玲,郭凌崧等. 高速柴油机顶置式配气凸轮机构的动力学计算. 内燃机学报,2000(2):113~116.
    【122】 PHLIPS P J, SCHAMEL A R, MEYER J. An Efficient Model for Valve train and Spring Dynamics. SAE, 890619:1~15.
    【123】 樊久铭,徐斌,程东明等. 配气机构多质量动力学模拟. 哈尔滨工业大学学报,1999(4):52~54.
    【124】 袁兆成,王建华. 用多质量模型研究配气机构的动态特性. 农业工程学报,1998(9):48~51.
    【125】 袁兆成,李惠珍. 用有限元法研究配气机构动力学. 内燃机学报,1986,4(3):260~270.
    【126】 龙连春,梅甫良,黄金运. 叉型摇臂双气门配气机构的有限元分析. 内燃机学报,1998(1):82~87.
    【127】 隋允康,滕弘飞,韦日钰. 柴油机配气机构有限元动力分析. 内燃机学报,1988:6(3).
    【128】 丁鸣朝等. 大发夏利微型汽车使用与维修手册. 北京:北京理工大学出版社,1996.
    【129】 Mechanical Dynamics, Inc. Road Map to Adams Documentation. Product Guides. Using ADAMS/Solver: 48~61
    【130】 邱宣怀等. 机械设计. 高等教育出版社,1989.
    【131】 Pahl, G., Beitz, W. 工程设计学. 机械工业出版社,1984.
    【132】 万耀青,阮宝湘. 机电工程现代设计方法. 北京理工大学出版社,1994.
    【133】 吴祚宝. 并行工程与敏捷制造. 清华大学博士后研究报告,1997(6).
    【134】 龙连春,刘仁桓,彭健. 摇臂参数设计方法. 内燃机工程,1996(4):39~42.
    【135】 刘会杰,冯吉才. 陶瓷与金属的连接方法及应用. 焊接,1996(6):5~9.
    【136】 曲仕尧,邹增大,尹衍升等. 陶瓷与金属的连接. 焊接研究与生产,1998(3):20~23.
    【137】 杨伟群,李树杰. 陶瓷/金属的连接工艺. 航空制造工程,1998(1):17~19.
    【138】 Fernie J A. Joining Ceramic Materials. Welding and Metal Fabrication, 1990(6): 320~325.
    【139】 Fernie J A et al. Progress in Joining of Advanced Materials. Welding and Metal Fabrication, 1991(5): 179~184.
    【140】 冼爱平等. Sialon陶瓷与40Cr钢连接中缓冲层的作用. 金属学报,1991(6):B421~B425.
    【141】 Bucklow I A. Development of a Brazed Ceramic – Faced Steel Tappet. The TWI Journal, 1995(2): 260~308.
    【142】 浩宏奇,金志浩,王笑天. 陶瓷和金属的钳焊. 稀有金属材料与工程,1993,22(6):1~12.
    【143】 Akselsen O M. Diffusion Bonding of Ceramics. Journal of Materials Science, 1992, 27: 569~579.
    【144】 Novikov V G. Diffusion Bonding Dissimilar Materials in Aerospace Technology. Welding International, 1995(6): 477~478.
    【145】 Maloletov M P. Theoretical Fundamentals and Technology of Electron Beem Welding Ceramics to Metals. Welding International, 1995(3): 237~239.
    【146】 Colombo P et al. Joining of Reaction – Bonded Silicon Carbide Using a Preceramic Polymer. Journal of Materials Science, 1998: 2405~2412.
    【147】 Suga T et al. Structure of Al - Al and Al - Si3N4 Interfaces Bonded at Room Temperature by Means of Surface Activation Method. Acta Metallurgical Materials, 1992: S133~S137.
    【148】 Miyamoto Y et al. Ceramics – to – Metal Welding by a Pressurized Combustion Reaction. Journal of Materials Research, 1986(1): 7~9.
    【149】 Su M Y et al. Eutectic Bonding of Metal to Ceramic. United States Patent, 1992: No. 5108026.
    【150】 Kim S T et al. The Direct Bonding between Copper and MgO – Doped Si3N4. Journal of Materials Science, 1990: 5185~5191.
    【151】 Shalz M L et al. Ceramic Joining - III Bonding of Alumina via Cu/Nb/Cu Interlayers. Journal of Materials Science, 1994: 3678~3690.
    【152】 Matsuoka S. Ultrasonic Welding of Ceramics/Metals Using Inserts. Journal of Materials Processing Technology, 1998: 259~265.
    【153】 Siores E et al. Microwave Applications in Materials Joining. Journal of Materials Processing Technology, 1995: 619~625.
    【154】 Robert N. Rapid Prototyping Techniques to Produce Net – Shape Investment Cast Tooling. 9th World Conference on Investment Casting, San Francisco, U S A, 1996, 18: 1~7.
    【155】 Riek T. Comparing Rapid Prototyping Patterns for Investment Casting An Australian Experience. 9th World Conference on Investment Casting, San Francisco, U S A, 1996, 20: 1~11.
    【156】 Li Ma. Rapid Tooling is Developing Rapidly. Progress in Rapid Prototyping Manufacturing and Rapid Tooling: ICRPM’98. Beijing, 1998, 363~366.
    【157】 沈国强,施云生,覃建荣. 几种常用快速原型制造技术的分析与比较. 现代机械,1998(3):14~18.
    【158】 姜不居,闫双景,崔战良等. 快速金属模具制造. 特种铸造及有色金属,1999(1):44~47.
    【159】 一汽流速箱厂编. 准时化生产. 长春:吉林人民出版社,1992.
    【160】 Womack J, Jones D, Roos D. The machine that changed the world. New York: Harper Perennial, 1990.
    【161】 河春英男【日】.发动机用陶瓷材料的现状.国外内燃机,1992(6):33~40.
    【162】 冯志峰,徐政,张培志. 气压烧结氮化硅陶瓷致密化研究. 建筑材料学报,1999(9):241~244.
    【163】 李文兰,庄汉锐,符锡仁等. 以 YAG 为添加剂的气压烧结氮化硅. 无机材料学报,1996(3):175~178.
    【164】 Greskovich C. J. Am. Ceram. Soc., 1981, 64(12): 725.
    【165】 Klemm H, Herrmann M, Reich T, et al. J. Europ. Ceram. Soc., 1991, 7: 315.
    【166】 王红洁,颜峰等.烧结工艺对 Si3N4 陶瓷显微结构及性能的影响.西安交通大学学报,1996(30),2:82~85.
    【167】 Jack K H. Review silicon and related nitrogen ceramics. J Mater Sci, 1976; 11(6): 1135.
    【168】 陈源,黄莉萍,孙兴伟等. 烧结助剂对氮化硅陶瓷高温性能的影响. 硅酸盐学报,1997(4):183~187.
    【169】 邬凤英,庄汉锐,马利泰等. 添加稀土氧化物的气压烧结氮化硅. 无机材料学报,1994(9):303~308.
    【170】 李柳生等.添加剂和升温速度对 Si3N4 陶瓷显微结构的影响.硅酸盐学报,1997(25),4:466~469.
    【171】 M.D.Pugh R A.L.Drew,J. Canaolian Cer. Soc.Vol58,No2,May,1989:45~49.
    【172】 刘景林.氮化硅陶瓷结构材料的机械性能.国外耐火材料,1997,7:50~54.
    【173】 Clarke, J., Sarkar, A. D. Wear, 54(1979), 7.
    【174】 陆树荪等. 有色铸造合金及熔炼. 国防工业出版社,1983.
    【175】 张进军,寇作彦,缪达钧. PCD 刀具在 LH92 型稀土过共晶铝硅合金活塞加工中的应用. 小型内燃机,1998(2):46~49.
    【176】 李兵,朱梅林,陈晓伟等. 基于遗传算法的发动机气门弹簧的优化设计. 机械设计,1998(9):22~23.
    【177】 钱久娟,姜贵尧. 气门弹簧的简便优化设计. 现代机械,1999(3):23~25.
    【178】 楼文高. 气门外弹簧的模糊可靠性优化设计. 农业机械学报,1999(11):107~110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700