微生物法生产聚羟基脂肪酸酯嵌段共聚物及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羟基脂肪酸酯(PHA)是很多微生物都可合成的具有生物可降解性的高分子聚酯。为满足对生物塑料日益增长的需求,具有多样化学结构和独特性质的PHA越来越受重视。利用微生物法生产嵌段共聚物(block copolymer PHA)整合了聚合物微结构的优势,从而获得一些其它PHA(包括均聚物、混聚物、随机共聚物)所没有的、新型实用的性质。本课题合成了以下三种嵌段共聚物:(1)聚3-羟基丁酸酯-block-聚3-羟基己酸酯(P3HB-b-P3HHx);(2)聚3-羟基丙酸酯-block-聚4-羟基丁酸酯(P3HP-b-P4HB);(3)聚3-羟基己酸酯-block-(聚3-羟基十酸酯-co-聚3-羟基十二酸酯)[P3HHx-b-P(3HD-co-3HDD)]。同时通过1H NMR,13CNMR,HMBC NMR,DSC,GPC和机械性能测试研究这些嵌段共聚物的热学和机械性质。
     首先,我们用-氧化弱化的恶臭假单胞菌Pseudomonas putida合成了聚3-羟基丁酸酯-block-聚3-羟基己酸酯P3HB-b-P3HHx。聚3-羟基丁酸酯是短链PHA,而聚3-羟基己酸酯是中长链PHA,两者通过共价连接形成二聚嵌段聚合物。P3HB-b-P3HHx比随机共聚物P(3HB-co-P3HHx)具有更优良的机械性质。
     利用重组大肠杆菌将柔软高弹性的聚4-羟基丁酸酯(P4HB)和强刚性的聚3-羟基丙酸酯(P3HP)连接形成嵌段聚合物,以获得性能优异的材料。本研究获得两种嵌段聚合物P3HP-b-29%P4HB和P3HP-b-37%P4HB,比随机共聚物P(3HP-co-4HB)具有更优的性质。与均聚物P3HP和P4HB相比,嵌段微结构的引入降低了熔融温度。此外,嵌段聚合物比之前报道的组分相近的随机共聚物具有更高的杨氏模量(Young’s modulus)、屈服强度(Yield strengths)和拉伸强度(Tension strengths)。
     最后,以基因组精简的恶臭假单胞菌为工程菌株,通过连续的添加相关脂肪酸碳源,得到中长链PHA嵌段聚合物P3HHx-b-P(3HD-co-3HDD),其中P3HHx和P(3HD-co-3HDD)分别含有49mol%和51mol%。热力学性质分析表明,该嵌段共聚物同时获得了3HHx和3HD的无定型和3HDD的高结晶,并且比中长链均聚物和随机共聚物PHA具有更高的力学强度。
     这项研究的目的主要是利用微生物法生产嵌段共聚物,不仅丰富了PHA的结构组成,在一定程度也提高了PHA的各项理化性质。微生物法生产嵌段共聚物通过共价连接两种甚至更多种的均聚物从而增强了材料的特性,通过控制聚合物单体的组成可以得到具有理想性质的生物材料。嵌段聚合开辟了一种新的聚羟基脂肪酸酯的聚合形成方式,并表现出优越的性能。在我们的研究工作中,恶臭假单胞菌KT2442作为研究平台,可以合成出多种新型生物聚合物,尤其以聚羟基脂肪酸酯的嵌段共聚物和无序共聚物为主。这项工作可以生产出具有可持续发展的环境友好型生物聚合物并用来替代石油基聚合物。
Polyhydroxyalkanoates (PHA) are fully biodegradable biopolymers produced byseveral microorganisms from renewable substrates. To meet the current growingrequirements of bioplastics, PHA biopolymers with diverse chemical structures andunique properties are required. Microbial block copolymerization offers the advantageof incorporating polymer microstructures that achieve some novel properties not yetseen in PHA homopolymers, blend polymer and random copolymers. In the presentstudy three types of block copolymers were biosynthesized such aspoly(3-hydroxybutyrate)-block-poly(3-hydroxyhexanoate)[P3HB-b-P3HHx],poly(3-hydroxypropionate)-block-poly(4-hydroxybutyrate)[P3HP-b-P4HB],poly(3-hydroxyhexanoate)-block-poly(3-hydroxydecanoate-co-3-hydroxydodecanoate)[P3HHx-b-P(3HD-co-HDD)]. The block copolymers were characterized by1H NMR,13C NMR, HMBC NMR, DSC, GPC and mechanical property analysis.
     Diblock copolymers comprising of poly-3-hydroxybutyrate (P3HB) as theshort-chain-length (SCL) PHA block covalently bonded with poly-3-hydroxyhexanoate(P3HHx) as the medium-chain-length (MCL) PHA block were for the first timesuccessfully produced in-oxidation weakened Pseudomonas putida KT2442.Differential scanning calorimetry (DSC) showed that the block copolymer had two glasstransition temperatures (Tg), one melting temperature (Tm) and one cool crystallizationtemperature (Tc), it had superior mechanical properties over random copolymerP(3HB-co-3HHx).
     Block copolymers consisting of elastic P4HB block with a strong and tough P3HPblock were biosynthesized to gain unique and excellent material properties, two blockcopolymers were formed from this study, including the P3HP-b-29mol%P4HB andP3HP-b-37mol%P4HB, they showed superior properties over random copolymersP(3HP-co-4HB) with similar monomer ratios. The block copolymers had two glasstransition temperatures (Tg) and two melting temperatures (Tm). In comparison to thehomopolymers P3HP and P4HB, incorporation of block microstructure resulted in thelowering of Tm, block copolymers were revealed with higher Young’s modulus, yield strengths and tension strengths, much better than the previously reported randomcopolymers of similar compositions.
     Medium chain length PHA (MCL PHA) diblock copolymerP3HHx-b-P(3HD-co-3HDD) consisting of a49mol%poly-3-hydroxyhexanoate (3HHx)block with another block consisting of51mol%copolymer of3-hydroxydecanoate(3HD) and3-hydroxydodecanoate (3HDD) was produced from another β-oxidationweakened strain Pseudomonas putida KT2442during the sequential addition of relatedfatty acid substrates. Thermo-mechanical properties of the block copolymer showed thatblock microstructure gained the amorphous nature of3HHx and3HD and attained thecrystallinity of3HDD, thus higher mechanical strength was realized in contrast tomedium chain length MCL PHA homopolymers and random copolymer. PHAproduction platform consisting of P. putida derivatives was also utilized for theproduction of copolyesters of P(3HB-co-3HHx) and P(3HHx-co-3HD) with a widerrange of alterable monomer contents and compositions.
     The purpose of this research is to microbially produce block copolymers to diversifyPHA microstructures and increase their material properties. Microbial production ofblock copolymers can covalently link together two or more homopolymers and gainnovel material properties. Thus, desired material properties can be gained based on thePHA monomer composition. In this study, Pseudomonas putida KT2442was developedas a suitable platform for the production of various new biopolymers, especiallypolyhydroxyalkanoates (PHA) block copolymers, and random copolymers. This studycould help to produce sustainable bio based polymers in order to replace petroleumbased polymers.
引文
Abe H, Ishii N, Sato S, Tsuge T, et al. Thermal properties and crystallization behaviors ofmedium-chain-length poly(3-hydroxyalkanoate)s. Polymer,2012,53:3026-3034.
    Akiyama M, Tsuge T, Doi Y. Environmental life cycle comparison of polyhydroxyalkanoatesproduced from renewable carbon resources by bacterial fermentation. Polym Degradat andStabil,2003,80:183-194.
    Agnew D E, Pfleger B F. Synthetic biology strategies for synthesizing polyhydroxyalkanoates fromunrelated carbon sources. Chem Eng Sci,2012, DOI:10.1016/j.ces2012.12.023.
    Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role, and industrial uses of bacterialpolyhydroxyalkanoates. Microbiol Rev,1990,54:450-472.
    Andreessen B, Steinb chel A. Biosynthesis and biodegradation of3-hydroxypropionate containingpolyesters. Appl Environ Microbiol,2010,76:4919-4925.
    Andreessen B, Lange A B, Robenek H, Steinb chel A, et al. Conversion of glycerol topoly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol,2010,76:622-626.
    Asrar J, Valentin H E, Berger P A, Tran M, Padgette S R, Garbow J R, et al. Biosynthesis andproperties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers. Biomacromolecules,2002,3:1006-1012.
    Ballard D G H, Courtis A, Shirley I M and Taylor S C, et al. Synthesis of polyphenylene from acis-dihydrocatechol biologically produced monomer. Macromolecules,1988,21:294-304.
    Bax A, Summers M F. Proton and carbon-13assignments from sensitivity-enhanced detection ofheteronuclear multiple-bond connectivity by2D multiple quantum NMR. J Am Chem Soc,1986,108:2093-2094.
    Bian Y Z, Wang Y, Aibaidoula G, et al. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials,2009,30:217-225.
    Bluhm T L, Hamer G K, Marchessault R H, Fyfe C A, Veregin R P, et al. Isodimorphism in bacterialpoly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules,1986,19:2871-2876.
    Bond Watts B B, Bellerose R, Chang M C, et al. Enzyme mechanism as a kinetic control element fordesigning synthetic biofuel pathways. Nat Chem Biol,2011,7:222-227.
    Brandl H, Gross R A, Lenz R W, Fuller R C, et al. Pseudomonas oleovoorans as a source ofpoly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl EnvironMicrobiol,1988,54:1977-1982.
    Braunegg G, Sonnleitner B, Lafferty R M, et al. Rapid gas-chromatographic method fordetermination of poly-beta-hydroxybutyric acid in microbial biomass. Eur J Appl MicrobBiotechnol,1978,6:29-37.
    Braunegg G, Lefebvre G, Genser K F, et al. Polyhydroxyalkanoates, biopolyesters from renewableresources: physiological and engineering aspects. J Biotechnol,1998,65:127-161.
    Braunegg G, Bona R, Koller M, et al. Sustainable polymer production. Poly-Plast Technol,2004,43:1779-1793.
    Breuer U. Plastics from bacteria-natural functions and applications. Biotech J,2010,5:1351-1351.
    Brigham C J, Sinskey A J. Applications of polyhydroxyalkanoates in the medical industry. Int JBiotechnol Wellness Ind,2012,1:52-60.
    Budde C F, Riedel S L, Willis L B, Rha C and Sinskey A J, et al. Production ofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstoniaeutropha strains. Appl Environ Microbiol,2011,77:2847-2854.
    Cai L, Yuan M Q, Liu F, Jian J, Chen G Q, et al. Enhanced production of medium-chain-lengthpolyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putidaKT2442. Bioresour Technol,2009,100,2265-2270.
    Cai L, Tan D, Aibaidula G, Dong X R, Chen J C, Tian W D, Chen G Q, et al. Comparative genomicsstudy of PHA and ectoine relevant genes from Halomonas sp. TD01revealed extensivehorizontal gene transfer events and co-evolutionary relationships. Microb Cell Fact,2011,10:88.
    Celinska, E. Debottlenecking the1,3-propanediol pathway by metabolic engineering. BiotechnolAdv,2010,28:519-530.
    Chee J W, Amirul A A, Tengku Muhammad T S, Majid M I A, Mansor S M, et al. The influence ofcopolymer ratio and drug loading level on the biocompatibility of P(3HB-co-4HB) synthesizedby Cupriavidus sp.(USMAA2-4). Biochem Eng J,2008,38:314-318.
    Chen G Q, Koenig K H, Lafferty R M, et al. Production of poly-D(-)-3-hydroxybutyrate andpolyD(-)-3-hydroxyvalerate by strains of Alcaligenes latus. Antonie Van Leewenhoek,1991,60:61–66
    Chen G Q, Zhang G, Park S J, Lee S Y, et al. Industrial scale production ofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol,2001,57:50-55.
    Chen G Q, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials.Biomaterials,2005,26:6565-6578.
    Chen G Q, Wu Q. Microbial production and applications of chiral hydroxyalkanoates. ApplMicrobiol Biotechnol,2005,67:592-599.
    Chen G Q. A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem SocRev,2009,38:2434-2446.
    Chen G Q, Patel M K. Plastics derived from biological sources: present and future: a technical andenvironmental review. Chem Rev,2012,112:2082-2099.
    Chen G Q. Plastics from bacteria. Microbiology Monographs, Springer Berlin Heidelberg,2010,14, doi:10.1007/978-3-642-03287_5_1
    Chen J Y, Song G, Chen G Q, et al. A lower specificity PhaC2synthase from Pseudomonas stutzericatalyses the production of copolyesters consisting of short-chain-length andmedium-chain-length3-hydroxyalkanoates. Antonie Van Leeuwenhoek,2006,89:157-167.
    Chen J Y, Liu T, Zheng Z, Chen J C, Chen G Q, et al. Polyhydroxyalkanoate synthases PhaC1andPhaC2from Pseudomonas stutzeri1317had different substrate specificities. FEMS MicrobiolLett,2004,234:231-237.
    Chen S, Liu Q, Wang H, Zhu B, Yu F, Chen G Q, Inoue Y, et al. Polymorphic crystallization offractionated microbial medium-chain-length polyhydroxyalkanoates. Polymer,2009,50:4378-4388.
    Chiu F C, Ting M H. Thermal properties and phase morphology of melt-mixed poly(trimethyleneterephthalate)/polycarbonate blends-Mixing time effect. Polym Test,2007,26:338-350.
    Chung A L, Jin H L, Huang L J, Ye H M, Chen J C, Wu Q, Chen G Q, et al. Biosynthesis andcharacterization of poly(3-hydroxydodecanoate) by beta-oxidation inhibited mutant ofPseudomonas entomophila L48. Biomacromolecules,2011,12:3559-3566.
    Clarinval A M, Halleux J. Classification of biodegradable polymers. In: Smith R (ed) Biodegradablepolymers for industrial applications. CRC, Boca Raton,2005, pp3–56.
    Dawes E A, Senior P J. The role and regulation of energy reserve polymers in micro-organisms. AdvMicrobiol Physiol,1973,10:135-266.
    Degelau A, Scheper T, Bailey J E, Guske C, et al. Fluorometric measurement ofpoly-β-hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry.Appl Microbiol Biotechnol,1995,42:653-657.
    de Koning G J M, Lemstra P J. Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]:2. Embrittlement and rejuvenation. Polymer1993,34:4089-4094.
    de Roo G, Kellerhals M B, Ren Q, Witholt B, Kessler B, et al. Production of chiralR-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolyticdegradation of polyhydroxyalkanoate synthesized by Pseudomonads. Biotechnol Bioeng,2002,77:717-722.
    de Waard P, van der Wal H, Huijberts G N, Eggink G, et al. Heteronuclear NMR analysis ofunsaturated fatty acids in poly(3-hydroxyalkanoates). Study of beta-oxidation in Pseudomonasputida. J Biol Chem,1993,268:315-319.
    Della Pina C, Falletta E, Rossi M, et al. A green approach to chemical building blocks. The case of3-hydroxypropanoic acid. Green Chemistry,2011,13:1624-1632.
    Doi Y, Kunioka M, Nakamura Y, Soga K, et al. Nuclear magnetic resonance studies onpoly(β-hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerateisolated from Alcaligenes eutrophus H16. Macromolecules,1986,19:2860–2864.
    Doi Y, Kitamura S, Abe H, et al. Microbial synthesis and characterization ofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules,1995,28:4822-4828.
    Dufresne A, Kellerhals M B, Witholt B et al. Transcrystallization in mcl-PHAs/cellulose whiskerscomposites. Macromolecules,1999,32:7396-7401.
    Dufresne A, Reche L, Marchessault R H, Lacroix M, et al. Gamma-ray crosslinking ofpoly(3-hydroxyoctanoate-co-undecenoate). Int J Biol Macromol,2001,29:73-82.
    Eggink G, de Waard P, Huijberts G N M, et al. The role of fatty acid biosynthesis and degradation inthe supply of substrates for poly(3-hydroxyalkanoate) formation in Pseudomonas putida. FEMSMicrobiology Letters,1992,103:159-163.
    Federle T W, Barlaz M A, Pettigrew C A, Kerr K M, Kemper J J, Nuck B A, Schechtman L A, et al.Anaerobic biodegradation of aliphatic polyesters: poly(3-hydroxybutyrate-co-3-hydroxyoc-tanoate) and poly(e-caprolactone). Biomacromolecules,2002,3:813–822.
    Feng L, Watanabe T, Wang Y, et al. Studies on comonomer compositional distribution of bacterialpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s and thermal characteristics of their factions.Biomacromolecules,2002,3:1071-1077.
    Fukui T, Doi Y. Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)biosynthesis genes of Aeromonas caviae. J Bacteriol,1997,179:4821-4830.
    Fukui T, Kichise T, Iwata T, Doi Y, et al. Characterization of13kDa granule-associated protein inAeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar compositionby recombinant bacteria. Biomacromolecules,2001,2:148-153.
    Fukui T, Suzuki M, Tsuge T, Nakamura S, et al. Microbial synthesis ofpoly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources byengineered Cupriavidus necator. Biomacromolecules,2009,10:700-706.
    Gagnon K D, Lenz R W, Farris R J, Fuller R C, et al. Crystallization behavior and its influence onthe mechanical properties of a thermoplastic elastomer produced by Pseudomonas oleovorans.Macromolecules,1992,25:3723-3728.
    Gao H J, Wu Q, Chen G Q, et al. Enhanced production of d-()-3-hydroxybutyric acid byrecombinant Escherichia coli. FEMS Microbiol Lett,2002,213:59-65.
    Hanggi U J. Pilot scale production of PHB with Alcaligenes latus. In: Dawes ED (ed) Novelbiodegradable microbial polymers. Kluwer, Dordrecht,1990, pp65–70.
    Hassan M K, Abou-Hussein R, Zhang X, Mark J E, Noda I, et al. Biodegradable copolymers of3-Hydroxybutyrate-co-3-Hydroxyhexanoate (Nodax), including recent improvements in theirmechanical properties. Mol Cryst Liq Cryst,2006,447:23/[341]-344/[362].
    Hazer B, Steinb chel A. Increased diversification of polyhydroxyalkanoates by modificationreactions for industrial and medical applications. Appl Microbiol Biotechnol,2007,74:1-12.
    Hein S, Sohling B, Gottschalk G, Steinb chel A, et al. Biosynthesis of poly(4-hydroxybutyric acid)by recombinant strains of Escherichia coli. FEMS Microbiol Lett,1997,153:411-418.
    Hoffmann N, Steinb chel A, Rehm B H, et al. The Pseudomonas aeruginosa phaG gene product isinvolved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-lengthconstituents from non-related carbon sources. FEMS Microbiol Lett,2000,184:253-259.
    Hoffmann N, Steinb chel A, Rehm B H, et al. Homologous functional expression of cryptic phaGfrom Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoatebiosynthetic pathway. Appl Microbiol Biotechnol,2000,54:665-670.
    Holmes P A, Wright L F, Alderson B, Senior P J, et al. A process for the extraction ofpoly-3-hydroxybutyric acid from microbial cells.1980, European Patent No.15,123.
    Hu D, Chung A L, Wu L P, Zhang X, Wu Q, Chen J C, Chen G Q, et al. Biosynthesis andcharacterization of polyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromolecules,2011,12:3166-3173.
    Huijberts G N, de Rijk T C, de Waard P, Eggink G, et al.13C nuclear magnetic resonance studies ofPseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate)synthesis. J Bacteriol,1994,176:1661-1666.
    Hwang K J, You S F, Don T M, et al. Disruption kinetics of bacterial cells during purification ofpoly-beta-hydroxyalkanoate using ultrasonication. J Chin Inst Chem Eng,2006,37:209-216.
    Ichikawa M, Nakamura K, Yoshie N, Asakawa N, Inoue Y, Doi Y, et al. Morphological study ofbacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate). Macromol Chem Physic,1996,197:2467-2480.
    Inoue Y, Kamiya N, Yamamoto Y, Chujo R, Doi Y, et al. The microstructures of commerciallyavailable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s. Macromolecules,1989,22:3800-3802.
    Jaeger K E, Steinb chel A, Jendrossek D, et al. Substrate specificities of bacterialpolyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyzepoly(omega-hydroxyalkanoates). Appl Environ Microbiol,1995,61:3113-3118.
    Jin H J, Lee B Y, Kim M N, Yoon J S, et al. Properties and biodegradation of poly(ethylene adipate)and poly(butylene succinate) containing styrene glycol units. Euro Polym J,2000,36:2693-2698.
    Kamiya N, Yamamoto Y, Inoue Y, Chujo R, Doi Y, et al. Microstructure of bacterially synthesizedpoly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules,1989,22:1676–1682.
    Karr D B, Waters J K, Emerich D W, et al. Analysis of poly-β-hydroxybutyrate inRhizobium-japonicum bacteroids by ion-exclusion high-pressure liquid-chromatography andUV detection. Appl Environ Microbiol,1983,46:1339-1344.
    Kato M, Bao H J, Kang C K, Fukui T, Doi Y, et al. Production of a novel copolyester of3-hydroxybutyric acid and medium-chain-length3-hydroxyalkanoic acids by Pseudomonas sp.61-3from sugars. Appl Microbiol Biotechnol,1996,45:363-370.
    Kelley A S, Srienc F. Production of two phase polyhydroxyalkanoic acid granules in Ralstoniaeutropha. Int J Biol Macromol,1999,25:61-67.
    Kessler B, Witholt B. Synthesis, recovery and possible application of medium-chain-lengthpolyhydroxyalkanoates: A short overview. Macromol Sy,1998,130:245-260.
    Khanna S, Srivastava A K. Recent advances in microbial polyhydroxyalkanoates. Process Biochem,2005,40:607-619.
    Kichise T, Fukui T, Yoshida Y, Doi Y, et al. Biosynthesis of polyhydroxyalkanoates (PHA) byrecombinant Ralstonia eutropha and effects of PHA synthase activity on in vivo PHAbiosynthesis. Int J Biol Macromol,1999,25:69-77.
    Kim J, Reneker D H. Mechanical properties of composites using ultrafine electrospun fibers. PolymComposite,1999,20:124-131.
    Kim Y B, Lenz R W. Polyesters from microorganisms. Adv Biochem Eng Biotechnol,2001,71:51-79.
    Koller M, Salerno A, Dias M, Reiterer A, Braunegg G, et al. Modern biotechnological polymersynthesis: a review. Food Technol Biotech,2010,48:255-269.
    Lageveen R G, Huisman G W, Preusting H, Ketelaar P, Eggink G, Witholt B, et al. Formation ofpolyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition ofpoly-(R)-3-Hydroxyalkanoates and poly-(R)-3-Hydroxyalkenoates. Appl Environ Microbiol,1988,54:2924-2932.
    Lee S H, Oh D H, Ahn W S, Lee Y, Choi J, Lee S Y, et al. Production ofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonashydrophila. Biotechnol Bioeng,2000,67:240-244.
    Lee S Y, Choi J. Production and degradation of polyhydroxyalkanoates in waste environment. WasteManage,1999,19:133-139.
    Lee S Y, Lee Y, Wang F, et al. Chiral compounds from bacterial polyesters: Sugars to plastics tofine chemicals. Biotechnol Bioeng,1999,65:363-368.
    Liebergesell M, Steinbuchel A. Cloning and nucleotide sequences of genes relevant for biosynthesisof poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem1992,209,135-150.
    Ling Y, Wong H H, Thomas C J, Williams D R G, Middelberg A P J, et al. Pilotscale extraction ofPHB from recombinant E-coli by homogenization and centrifugation. Bioseparation,1997,7:9-15.
    Li R, Zhang H, Qi Q, et al. The production of polyhydroxyalkanoates in recombinant Escherichiacoli. Bioresour Technol,2007,98:2313-2320.
    Li S Y, Dong C L, Wang S Y, Ye H M, Chen G Q et al. Microbial production ofpolyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida. Appl MicrobiolBiotechnol,2011,90:659-669.
    Li Z J, Shi Z Y, Jian J, Guo Y Y, Wu Q, Chen G Q, et al. Production ofpoly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolicallyengineered Escherichia coli. Metab Eng,2010,12:352-359.
    Liu Q, Luo G, Zhou X R, Chen G Q, et al. Biosynthesis of poly(3-hydroxydecanoate) and3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibitedPseudomonas putida. Metab Eng,2011,13:11-17.
    Liu S J, Steinb chel A. A novel genetically engineered pathway for synthesis ofpoly(hydroxyalkanoic acids) in Escherichia coli. Appl Environ Microbiol,2000,66:739-743.
    Liu W, Chen G Q. Production and characterization of medium-chain-length polyhydroxyalkanoatewith high3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant ofPseudomonas putida KT2442. Appl Microbiol Biotechnol,2007,76:1153-1159.
    Loo C Y, Lee W H, Tsuge T, Doi Y, Sudesh K, et al. Biosynthesis and characterization ofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersiaeutropha mutant. Biotechnol Lett,2005,27:1405-1410.
    Lu X, Zhang J, Wu Q, Chen G Q, et al. Enhanced production ofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid β-oxidationpathway in E. coli. FEMS Microbiol Lett,2003,221:97-101.
    Luengo J M, Garcia B, Sandoval A, Naharro G, Olivera E R, et al. Bioplastics from microorganisms.Curr Opin Microbiol,2003,6:251-260.
    Luis P, Gerhart B, Martin K, et al. Production of plastics from waste derived from agrofood industry.Renew Resour Renew Energ,2006, CRC Press, pp.119-135.
    Lux G, Stabenow-Lohbauer U, Langer M, Bozkurt T, et al. Gastroenterology in Germanydetermination of current status and perspectives. Results of a survey among members of theGerman Society of Digestive and Metabolic Diseases. Z Gastroenterol1996,34,542-548.
    Macrae R M, Wilkinson J F. Poly-beta-hyroxybutyrate metabolism in washed suspensions ofBacillus cereus and Bacillus megaterium. J Gen Microbiol,1958,19:210-222.
    Madden L A, Anderson A J, Shah D T, Asrar J, et al. Chain termination in polyhydroxyalkanoatesynthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. Int J BiolMacromol,1999,25:43-53
    Madison L L, Huisman G W. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA toplastic. Microbiol Mol Biol Rev,1999,63:21-53.
    Marchessault R H, Yu G. Crystallization and material properties of polyhydroxyalkanoates PHAs).Biopolymers Online, Wiley-VCH Verlag GmbH&Co. KGaA,2005.
    Mark J E. Polymer Data Handbook. Oxford University Press, USA,1999.
    Martin D P, Williams S F. Medical applications of poly-4-hydroxybutyrate: a strong flexibleabsorbable biomaterial. Biochem Engin J,2003,16:97-105.
    Matsumoto K, Matsusaki H, Taguchi S, Seki M, Doi Y, et al. Cloning and characterization of thePseudomonas sp.61-3phaG gene involved in polyhydroxyalkanoate biosynthesis.Biomacromolecules,2001,2:142-147.
    Matsumoto K, Nakae S, Taguchi K, Matsusaki H, Seki M, Doi Y, et al. Biosynthesis ofpoly(3-hydroxybutyrate-co-3-hydroxyalkanoates) copolymer from sugars by recombinantRalstonia eutropha harboring the phaC1Ps and the phaGPs genes of Pseudomonas sp.61-3.Biomacromolecules,2001,2:934-939.
    Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y. Cloning and molecular analysis of thepoly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesisgenes in Pseudomonas sp. strain61-3. J Bacteriol1998,180:6459-6467.
    Mc Chalicher C W, Srienc F. Investigating the structure-property relationship of bacterial PHAblock copolymers. J Biotechnol,2007,132:296-302.
    Meng D C, Shi Z Y, Wu L P, Zhou Q, Wu Q, Chen J C, Chen G Q, et al. Production andcharacterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllablestructures by recombinant Escherichia coli containing an engineered pathway. Metab Eng,2012,14:317-324.
    Meyer T, Keurentjes J T F. Polymer Reaction Engineering, an Integrated Approach. Handbook ofPolymer Reaction Engineering,Wiley-VCH Verlag GmbH,2008.
    Mitomo H, Morishita N, Doi Y, et al. Composition range of crystal phase transition ofisodimorphism in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules,1993,26:5809-5811.
    Mikova G, Chodak I. Properties and modification of poly(3-hydroxybutanoate). Chem Listy2006,100,1075–1083.
    Mukai K, Doi Y, Sema Y, Tomita K, et al. Substrate specificities in hydrolysis ofpolyhydroxyalkanoates by microbial esterases. Biotech Lett,1993,15:601-604.
    Noda I, Satkowski M M, Dowrey A E, Marcott C, et al. Polymer alloy of Nodax copolymers andpoly(lactic acid). Macromol Biosci,2004,4:269–275.
    Noda I, Green P R, Satkowski M M, Schechtman L A, et al. Preparation and properties of a novelclass of polyhydroxyalkanoate copolymers. Biomacromolecules,2005,6:580–586.
    Nomura C T, Taguchi S. PHA synthase engineering toward superbiocatalysts for custom-madebiopolymers. Appl Microbiol Biotechnol,2007,3:969-979.
    Ostle A, Holt J G. Nile Blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl EnvironMicrobiol,1982,44:238-241.
    Orts W J, Nobes G A R, Kawada J, Nguyen S, Yu G, Ravenelle F, et al. Poly(hydroxyalkanoates):Biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault.Can J Chemistry,2008,86:628-640.
    Ouyang S, Han J, Qiu Y et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Production inRecombinant Aeromonas hydrophila4AK4Harboring phbA, phbB and vgb Genes. MacromolSymp,2005,224:21-34.
    Ouyang S P, Luo R C, Chen S S, Liu Q, Chung A, Wu Q, Chen G Q, et al. Production ofpolyhydroxyalkanoates with high3-hydroxydodecanoate monomer content by fadB and fadAknockout mutant of Pseudomonas putida KT2442. Biomacromolecules,2007,8:2504-2511.
    Park S J, Kim T W, Kim M K, Lee S Y, Lim S C. Advanced bacterial polyhydroxyalkanoates:Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotech Adv2012,30:1196-1206.
    Pederson E N, McChalicher C W, Srienc F, et al. Bacterial synthesis of PHA block copolymers.Biomacromolecules,2006,7:1904-1911.
    Poliakoff M, Noda I. Plastic bags, sugar cane and advanced vibrational spectroscopy: taking greenchemistry to the third world. Green Chem,2004,6:G37–G38.
    Qu X H, Wu Q, Liang J. Enhanced vascular-related cellular affinity on surface modifiedcopolyesters of3-hydroxybutyrate and3-hydroxyhexanoate (PHBHHx). Biomaterials,2005,26:6991-7001.
    Qiu Y Z, Han J, Chen G Q, et al. Metabolic engineering of Aeromonas hydrophila for the enhancedproduction of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol,2006,69:537-542.
    Qiu Y Z, Han J, Guo J J, Chen G Q, et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila andPseudomonas putida. Biotech Lett,2005,27:1381-1386.
    Qiu Y Z, Ouyang S P, Shen Z, Wu Q, Chen G Q, et al. Metabolic engineering for the production ofcopolyesters consisting of3-Hydroxybutyrate and3-Hydroxyhexanoate by Aeromonashydrophila. Macromol Biosci,2004,4:255-261.
    Reddy C S, Ghai R, Rashmi, Kalia V C, et al. Polyhydroxyalkanoates: an overview. BioresourTechnol,2003,87:137-146.
    Ruzette A V, Leibler L. Block copolymers in tomorrow's plastics. Nat Mater,2005,4:19-31.
    Saad G R, Seliger H. Biodegradable copolymers based on bacterial poly((R)-3-hydroxybutyrate):thermal and mechanical properties and biodegradation behaviour. Polym Degrad Stab,2004,83:101-110.
    Saito Y, Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)in Comamonas acidovorans. Int J Biol Macromol,1994,16:99-104.
    Saito Y, Nakamura S, Hiramitsu M, Doi Y, et al. Microbial synthesis and properties ofpoly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int,1996,39:169-174.
    Salehizadeh H, Van Loosdrecht M C. Production of polyhydroxyalkanoates by mixed culture: recenttrends and biotechnological importance. Biotechnol Adv,2004,22:261-279.
    Shi F, Ashby R D, Gross R A, et al. Fractionation and characterization of microbial polyesterscontaining3-Hydroxybutyrate and4-Hydroxybutyrate repeat units. Macromolecules,1997,30:2521-2523.
    Shibata M, Teramoto N, Inoue Y, et al. Mechanical properties, morphologies, and crystallizationbehavior of plasticized poly(l-lactide)/poly(butylene succinate-co-l-lactate) blends. Polymer,2007,48:2768-2777.
    Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y, et al. Physical properties andbiodegradability of microbial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).Macromolecules,1994,27:878-880.
    Shishatskaya E I, Volova T G, Gitelson II et al. In vivo toxicological evaluation ofpolyhydroxyalkanoates. Dokl Biol Sci,2002,383:109-111.
    Solaiman D Y, Ashby R, Foglia T, Marmer W, et al. Conversion of agricultural feedstock andcoproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol,2006,71:783-789.
    Song A J. Cloning of new Pseudomonas sp. MBEL6–19polyhydroxyalkanoate synthase genes and
    their use in the development of recombinant microorganisms.2004, M.S. Dissertation, KAIST.
    Song S, Hein S, Steinbüchel A, et al. Production of poly(4-hydroxybutyric acid) by fed-batchcultures of recombinant strains of Escherichia coli. Biotech Lett,1999,21:193-197.
    Stageman J F. Extraction process.1984, European Patent No.124,309.
    Steinb chel A. Non-biodegradable biopolymers from renewable resources: perspectives and impacts.Curr Opin Biotechnol,2005,16:607-613.
    Steinb chel A, Fuchtenbusch B. Bacterial and other biological systems for polyester production.Trends Biotechnol,1998,16:419-427.
    Steinb chel A, Aerts K, Babel W, et al. Considerations on the structure and biochemistry of bacterialpolyhydroxyalkanoic acid inclusions. Can J Microbiol,1995,1:94-105.
    Steinbüchel A, Valentin H E. Diversity of bacterial polyhydroxyalkanoic acids. FEMS MicrobiolLett,1995,128:219-228.
    Steinbüchel A, Lütke-Eversloh T. Metabolic engineering and pathway construction forbiotechnological production of relevant polyhydroxyalkanoates in microorganisms. BiochemEng J,2003,16:81-96.
    Steinbüchel A, Valentin H, Sch nebaum A, et al. Application of recombinant gene technology forproduction of polyhydroxyalkanoic acids: Biosynthesis of poly(4-hydroxybutyric acid)homopolyester. J environ polym deg,1994,2:67-74.
    Steinbüchel A, Valentin H E, Sch nebaum A, et al. Application of recombinant gene technology forproduction of polyhydroxyalkanoic acids: Biosynthesis of poly(4-hydroxybutyric acid)homopolyester. J Polym Environ,1994,2:67-74.
    Steinbüchel A, Debzi E M, Marchessault R, Timm A, et al. Synthesis and production ofpoly(3-hydroxyvaleric acid) homopolyester by Chromobacterium violaceum. Appl MicrobiolBiotechnol,1993,39:443-449.
    Sudesh K, Iwata T. Sustainability of biobased and biodegradable plastics. CLEAN-Soil, Air, Water,2008,36:433-442.
    Sudesh K, Abe H, Doi Y, et al. Synthesis, structure and properties of polyhydroxyalkanoates:biological polyesters. Prog Poly Sci,2000,25:1503-1555.
    Sun Z, Ramsay J A, Guay M, Ramsay B A, et al. Fermentation process development for theproduction of medium-chain-length poly-3-hyroxyalkanoates. Appl Microbiol Biotechnol,2007,75:475-485.
    Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S, et al. Biotechnological approachesfor the production of polyhydroxyalkanoates in microorganisms and plants-A review. BiotechAdv,2007,25:148-175.
    Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y, et al. Co-expression of3-ketoacyl-ACPreductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichiacoli HB101strain. FEMS Microbiol Lett,1999,176:183-190.
    Tamer I M, Moo-Young M, Chisti Y, et al. Optimization of poly(betahydroxybutyric acid) recoveryfrom Alcaligenes latus: combined mechanical and chemical treatments. Bioprocess Eng,1998,19:459-468.
    Tokiwa Y, Calabia B P. Biological production of functional chemicals from renewable resources.Can J Chemistry,2008,86:548-555.
    Tripathi L, Wu L P, Chen J, Chen G Q, et al. Synthesis of diblock copolymerpoly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidationweakened Pseudomonas putida KT2442. Microb Cell Fact,2012,11:44.
    Tripathi L, Wu L P, Meng D, Chen J, Chen G Q, et al. Biosynthesis and characterization of diblockcopolymer of P(3-hydroxypropionate)-block-P(4-hydroxybutyrate) from recombinantEscherichia coli. Biomacromolecules,2013a,14,862-870.
    Tripathi L, Wu L P, Dechuan M, Chen J, Wu Q, Chen G Q, et al. Pseudomonas putida KT2442as aplatform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents andcompositions. Bioresour Tech,2013b,142,225-231.
    Tsuge T. Metabolic improvements and use of inexpensive carbon sources in microbial production ofpolyhydroxyalkanoates. J Biosci Bioeng,2002,94:579-584.
    Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y, et al. Molecularcloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa andtheir use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett,2000,184:193-198.
    Valentin H E, Dennis D. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) inrecombinant Escherichia coli grown on glucose. J Biotechnol,1997,58:33-38.
    Valentin H E, Mitsky T A, Mahadeo D A, Tran M, Gruys K J, et al. Application of a propionylcoenzyme A synthetase for poly(3-hydroxypropionate-co-3-hydroxybutyrate) accumulation inrecombinant Escherichia coli. Appl Environ Microbiol,2000,66:5253-5258.
    Venkateswar Reddy M, Nikhil G N, Venkata Mohan S, Swamy Y V, Sarma P N, et al. Pseudomonasotitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using syntheticwastewater and acidogenic effluents. Bioresour Tech,2012,123:471-479.
    Wang H H, Zhou X R, Liu Q, Chen G Q, et al. Biosynthesis of polyhydroxyalkanoatehomopolymers by Pseudomonas putida. Appl Microbiol Biotechnol,2011,89:1497-1507.
    Wang Y, Inagawa Y, Saito T, Kasuya K, Doi Y, Inoue Y, et al. Enzymatic hydrolysis of bacterialpoly(3-hydroxybutyrate-co-3-hydroxypropionate)s by poly(3-hydroxyalkanoate) depolymerasefrom Acidovorax Sp. TP4. Biomacromolecules,2002,3:828-834.
    Wang Y, Bian Y Z, Wu Q, et al. Evaluation of three-dimensional scaffolds prepared frompoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes forcartilage repair in rabbits. Biomaterials,2008,29:2858-2868.
    Wang Y W, Wu Q, Chen J Chen G Q, et al. Evaluation of three-dimensional scaffolds made ofblends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bonereconstruction. Biomaterials,2005,26:899-904.
    Wei G, Wang L, Chen G, Gu L, et al. Synthesis and characterization ofpoly(ethylene-co-trimethylene terephthalate)s. J Appl Polym Sci,2006,100:1511-1521.
    Weiner R M. Biopolymers from marine prokaryotes. Trends Biotechnol,1997,15,390–394.
    Williamson D H, Wilkinson J F. The isolation and estimation of poly-β-hydroxybutyrate inclusionsof Bacillus species. J Gen Microbiol,1958,19:198-209.
    Williams S F, Martin D P, Horowitz D M, Peoples O P, et al. PHA applications: addressing the priceperformance issue: I. Tissue engineering. Int J Biol Macromol,1999,25:111-121.
    Witholt B, Kessler B. Perspectives of medium chain length poly(hydroxyalkanoates), a versatile setof bacterial bioplastics. Curr Opin Biotech,1999,10:279-285.
    Wu Q, Sun S Q, Yu P H F, Chen A X Z, Chen G Q, et al. Environmental dependence of microbialsynthesis of polyhydroxyalkanoates. Acta Polym Sin,2000,6:751–756.
    Yamane T, Chen X, Ueda S, et al. Growth-associated production of poly(3-hydroxyvalerate) fromn-pentanol by a methylotrophic bacterium, Paracoccus denitrificans. Appl Environ Microbiol,1996,62:380-384.
    Yang Y H, Brigham C J, Song E, Jeon J M, Rha C K, Sinskey A J, et al. Biosynthesis ofpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. JAppl Microbiol113:815-823.
    Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D,Osterhout R E, Stephen R, Estadilla J, Teisan S, Schreyer H B, Andrae S, Yang T H, Lee S Y,Burk M J, Van Dien S, et al. Metabolic engineering of Escherichia coli for direct production of1,4-butanediol. Nat Chem Biol,2011,7:445–452.
    Yoshie N, Menju H, Sato H, Inoue Y, et al. Complex composition distribution ofpoly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules,1995,28:6516-6521.
    Yuan M Q, Shi Z Y, Wei X X, Wu Q, Chen S F, Chen G Q, et al. Microbial production ofmedium-chain-length3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442harboring genes fadL, fadD and phaZ. FEMS Microbiol Lett,2008,283:167-175.
    Zagar E, Krzan A, Adamus G, Kowalczuk M, et al. Sequence distribution in microbialpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polyesters determined by NMR and MS.Biomacromolecules,2006,7:2210-2216.
    Zhang H F, Ma L, Wang Z H, Chen G Q, et al. Biosynthesis and characterization of3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila.Biotechnol Bioeng,2009,104:582-589.
    Zhang L, Shi Z Y, Wu Q, Chen G Q, et al. Microbial production of4-hydroxybutyrate,poly-4-hydroxybutyrate, and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by recombinantmicroorganisms. Appl Microbiol Biotechnol,2009,84:909-916.
    Zhang X, Luo R, Wang Z, Deng Y, Chen G Q, et al. Application of (R)-3-hydroxyalkanoate methylesters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules,2009,10:707-711.
    Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M, et al. Mechanical, thermal and flammabilityproperties of polyethylene/clay nanocomposites. Polym Degrad Stabil,2005,87:183-189.
    Zhao K, Deng Y, Chun Chen J, Chen G Q, et al. Polyhydroxyalkanoate (PHA) scaffolds with goodmechanical properties and biocompatibility. Biomaterials,2003,24:1041-1045.
    Zheng Z, Deng Y, Lin X S, et al. Induced production of rabbit articular cartilage-derivedchondrocyte collagen II on polyhydroxyalkanoate blends. J Biomater Sci-Polym E,2003,14:615-624.
    Zhou Q, Shi Z Y, Meng D C, Wu Q, Chen J C, Chen G Q, et al. Production of3-hydroxypropionatehomopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer byrecombinant Escherichia coli. Metab Eng,2011,13:777-785.
    Zhou X Y, Yuan X X, Shi Z Y, et al. Hyperproduction of poly(4-hydroxybutyrate) from glucose byrecombinant Escherichia coli. Microb Cell Fact,2012,11:54.
    Zini E, Focarete M L, Noda I, Scandola M, et al. Bio-composite of bacterialpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with vegetable fibers. Compos SciTechnol,2007,67:2085-2094.
    Zinn M, Witholt B, Egli T, et al. Occurrence, synthesis and medical application of bacterialpolyhydroxyalkanoate. Adv Drug Deliv Rev,2001,53:5-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700