磁控形状记忆合金执行器驱动的无阀泵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代工业中,对体积小、重量轻和高力能密度运动及位置控制直线执行器的要求越来越高。现在,越来越多的功能材料可以用于产生机械运动,利用新型功能材料制造各种执行机构的研究受到人们的广泛关注。磁控形状记忆合金(MSMA)是近年来发现的一种新型的功能材料,不仅变形率大,易于控制,动态响应速度高,而且功率密度大和机电能量转换效率高,有望成为新一代智能驱动器和传感器的关键材料。
     本文首先分析了MSMA的晶体结构和变形机理,给出了MSMA的相变温度和工作温度区间。对MSMA材料的静态特性和动态特性进行了系统的分析,给出了MSMA的变形与温度、外加磁场及预压力之间的关系,为MSMA在执行器中的应用提供了理论基础。
     其次,本文研究了磁控形状记忆合金的逆效应,即MSMA在外力作用下的磁特性变化。自行设计并制作了一台实验装置,对MSMA材料的传感器特性进行了初步的实验研究。实验结果表明,MSMA作为一种新型的智能材料,可以用于位置、速度或者加速度传感器的制作中。
     最后,设计了一种差动式MSMA执行器驱动的无阀泵系统。差动式MSMA执行器可以减小励磁功率、消除温度影响和提高工作频率和输出力。本文详细论述了差动式MSMA执行器驱动的无阀泵的结构和运行原理,设计并制作了一台差动式MSMA执行器驱动的无阀泵实验样机,对实验样机进行了磁场和流场有限元分析,并进行了初步的实验研究。分析和实验结果验证了差动式MSMA执行器驱动的无阀泵的可行性。
Precision motion and position control actuators which can provide greater forces and torques within given volume and weight are in great need in modern industry. Nowadays, more and more functional materials can be adopted to generate mechanical moving. New kinds of actuators based on smart materials are paid more attention to. Magnetically controlled shape memory alloy (MSMA) is a new type of functional material found in recent years, which has not only large shape variation and fast dynamic response but also high power density and high efficiency of electromechanical energy conversion. It will be a key material of the new kinds of intelligent actuators and sensors.
     In this thesis, the crystal structure and shape variation mechanism of MSMA are analyzed. The phase transition temperature and the range of working temperature of MSMA are presented. The static and dynamic characteristic of MSMA has been analyzed systematically. The relationship between the strain of MSMA and the varying of temperatures, external magnetic field and pre-stresses are ascertained.
     The reverse effect of the MSMA has also been studied in this thesis. The reverse effect of the MSMA is the magnetic characteristic under the external force. The experimental device for study the reverse effect of the MSMA has been self-developed. According to the test results, as a new kind of functional material, the MSMA can be used in position, speed and acceleration sensor.
     In this thesis, a valveless pump driven by the differential MSMA actuator is proposed. The differential control strategy can decrease exciting power, eliminate temperature influence and improve working frequency and output torque. The design principle of the differential MSMA actuator and the one-way flow mechanism and structure design of the valveless pump has been analyzed. A prototype and the control system have been developed successfully. The analysis of the magnetic field and flow field has been finished, and the preliminary test has been taken. The feasibility of the operation principle and design method of the valveless pump driven by the MSMA actuator have been proved by the analysis and test results.
引文
[1] 苏海东.执行器的分类与发展.机械工程与自动化,2004,7(1):17-18.
    [2] 魏凤春,张恒,张晓.智能材料的开发与应用.河南科技学院学报(自然科学版),2005,25(3):89-94.
    [3] 朱子健,陈仁文,徐晓弈等.智能材料在微机械中的应用及发展.航空精密制造技术,2003,8(3):4-8.
    [4] 刘国华,李亮玉.压电式执行器用于超精密进给机构的技术研究.压电与声光,2006,28(4):411-416.
    [5] 王静,顾大强,邬义杰.超磁致伸缩材料与自传感执行器.农业机械学报,2005,36(2):131-134.
    [6] 田春,汪鸿振.超磁致伸缩执行器的自由能磁滞模型的数值实现.机械科学与技术,2005,24(6):650-652.
    [7] 祝向荣,郭懋端.大磁致伸缩执行器.金属功能材料,1998,5(2):53-55.
    [8] 杨杰,吴月华.形状记忆合金及其应用.合肥:中国科技大学出版社,1993.
    [9] Tellinen J, uorsa I, Jaaskelainen A et al. Basic properties of magnetic shape memory actuators. 8th International Conference Actuator 2002, Bremen, Germany, 2002:566-569.
    [10] 李健靓,张羊换.磁性形状记忆合金NidtmGa的研究现状及发展.金属功能材料,2003,2(5):25-30.
    [11] 徐祖耀.铁基形状记忆合金.上海金属,1993,2(15):1-10.
    [12] Jokinen T, Ullakko K, Suorsa I. Magnetic shape memory materials new possibilities to create force and movement by magnetic fields. Proceedings of the Fifth International Conference on Electrical Machines and Systems, Shenyang, China, 2001, 1:20-23.
    [13] O' Handley R C. Model for strain and magnetization in magnetic shape-memory alloys. Journal of Applied Physics, 1998, 83(6):3263-3270.
    [14] www.AdaptaMat.com.
    [15] 刘庆锁.形状记忆合金及其工程应用.天津理工学院学报,2001,17(3):68-72.
    [16] 高智勇,王中等.磁性形状记忆材料Ni-Mn-Ga研究现状.功能材料,2001,32(1):22-26.
    [17] Jae-Pyoung Ahn, Ning Cheng, Thomas Lograsso et al. Magnetic properties, structure and shape-memory transitions in Ni-Mn-Ga thin films grown by ion-beam sputtering. IEEE Transactions on Magnetics, 2001, 37(4):2141-2143.
    [18] Massimo Pasquale, Carlo P. Sasso, Stefano Besseghini et al. Schlagel. magnetic and mechanical properties of Ni-Mn-Ga single crystals. IEEE Transactions on Magnetics, 2002, 38(5):2847-2849.
    [19] Wang F E, Buehler W J, Pichart S J. Crystal structure and unique "martensitic" transition in TiNi. Journal of Applied Physics, 1963, 4(36):3232-3239.
    [20] Tsugunori Kanada. Magnetization and shape memory effect of ferromagnetic shape memory alloy wire. IREE Transactions on Magnetics, 1999, 35(5):3403-3405.
    [21] Kajiwara S, Owen W S. Substructure of austenite formed by a paritial reverse martensitic transformation in an Fe-Pt Alloy. Metall. Trans. 1973, 4:1988-1992.
    [22] Pakhomov A B, Wong C Y, Zhang X X et al. Magnetization and magnetocaloric effect in magnetic shape memory alloys Ni-Mn-Ga. IEEE Transactions on Magnetics, 2001, 37(4):2718-2720.
    [23] Tickle R, James R D, Shield T et al. Ferromagnetic shape memory effect in the Ni-Mn-Ga system. IEEE Transactions on Magnetics, 1999, 5(5):4301-4310.
    [24] 张庆新.磁控形状记忆合金特性及其执行器应用基础研究:(博士学位论文).沈阳:沈阳工业大学,2006.
    [25] 李文君.磁控形状记忆合金执行器的设计及特性研究:(硕士学位论文).沈阳:沈阳工业大学,2005.
    [26] Massimo Pasquale, Carlo Paolo Sasso, Stefano Besseghini et al. Field and temperature induced giant strain in single crystal Ni-Mn-Ga. IEEE Transactions on Magnetics, 2001, 37(4):2669-2671.
    [27] Oleg Heczko, Kari Ullakko. Effect of temperature on magnetic properties of Ni-Mn-Ga magnetic shape memory (msm) alloys. IEEE Transactions on Magnetics, 2001, 37(4):2672-2674.
    [28] Suorsa I, Pagounis E. Magnetic field-induced stress in the Ni-Mn-Ga magnetic shape memory alloy. Journal of Applied Physics, 2004, 95(9):4958-4961.
    [29] 刘莹,胡敏,李小兵等.微执行器的研究与展望.微纳电子技术,2005,(12):561-565.
    [30] Suorsa I. Performance and modeling of magnetic shape memory actuators and sensors:(Doctoral Dissertation). Finland, Helsinki University of Technology, 2005.
    [31] Suorsa I, Tellinen J, Ullakko K et al. Voltage generation induced by mechanical straining in magnetic shape memory materials. Journal of Applied Physics, 2004, 5(11):8054-8058.
    [32] 陈自新,李长生,任荣君.用于精密微驱动的微执行器研究.农机化研究,2006,(3):73-75.
    [33] 王凤翔,张庆新,吴新杰等.磁控形状记忆合金蠕动型直线电机研究.电机工程学报,2004,24(7):140-144.
    [34] Suorsa I, Tellinen J, Pagounis E et al. Applications of magnetic shape memory actuators. 8th International Conference Actuator 2002, Bremen, Germany, 2002:158-161.
    [35] Ullakko K et al. Magnetic shape memory(MSM)-a new way to generate motion in electromechanical devices. Proceedings of International Conference on Electrical Machines2000, 28-30 August 2000, Espoo, Finland.
    [36] Ullakko K et al. Magnetically Controlled Shape Memory Alloys:A New Class of Actuator Materials. Journal of Materials Engineering and Performance, 1996, 5(3):405-409.
    [37] 袁月峰.形状记忆合金驱动器设计及控制研究:(硕士学位论文).阜新:辽宁工程技术大学,2003.
    [38] 谢海波,傅新,杨华勇.用于微量化学分析芯片的微型无阀泵流动特性分析与测试.仪器仪表学报,2004,25(2):168-173.
    [39] 杨林杰.压电式无阀微泵震动分析及流场数值计算:(硕士学位论文).秦皇岛:燕山大学,2005.
    [40] 谢海波,傅新,杨华勇.微型无阀泵流动特征仿真与试验研究.机械工程学报,2002,38(7):54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700