microRNA-129-5p在人腹膜间皮细胞转分化中的作用及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腹膜透析(peritoneal dialysis, PD)是终末期肾脏疾病(end stage renal disease, ESRD)患者最主要的替代治疗之一,但是长期腹膜透析引起腹膜组织纤维化(peritoneal fibrosis, PF)而导致超滤衰竭(ultrafiltration failure, UFF),限制了腹膜透析的应用。腹膜间皮细胞转分化(epithelial-mesenchymal transition, EMT)是腹膜纤维化的起始和可逆环节,细胞外基质(extracellular matrix, ECM)沉积是腹膜纤维化的主要组织学改变。研究表明转化生长因子-β(transforming growth factor-β, TGF-p)在腹膜透析病人腹膜EMT及ECM沉积的过程中起到了关键的作用,并受到多个因素的调控。
     microRNA是存在于动植物基因组中的功能性非编码小RNA,大多为21-25个核苷酸,可与靶mRNA 3'端非翻译区(untranslated region, UTR)碱基互补配对结合,从而调控相关基因的表达。microRNA广泛参与到生长发育、细胞分化、增殖、凋亡、肿瘤发生等过程中,且与许多疾病,包括EMT相关。研究显示部分microRNA在TGF-β诱导的EMT中调控相关的转录抑制因子如Smad作用蛋白-1 (Smad interacting protein 1, SIP1),或TGF-β的下游结缔组织生长因子(connective tissue growth factor, CTGF)等的表达,从而发挥对EMT的调节作用。基于以上分析,我们认为,特定的microRNA参与了调控腹膜间皮细胞EMT及纤维化。为此,本研究开展如下:
     目的检测腹膜透析患者腹膜透析流出液细胞中1microRNA的表达及EMT发生情况,初步探讨nicroRNA-129-5p与腹膜间皮细胞EMT的关系。
     方法随机选取新开管持续不卧床腹膜透析(continuous ambulatory peritoneal dialysis, CAPD)患者10人,腹透半年以上者12人,分离培养并鉴定流出液细胞;通过micro array得出二者microRNA差异表达谱并用realtime PCR Taqman探针法验证microRNA-129-5p的表达;采取realtime PCR、western blot观察流出液细胞中E-cadherin、claudin1、vimentin、FN的表达。
     结果腹透流出液细胞为腹膜间皮细胞,不同透龄患者流出液细胞存在形态学改变。透析半年以上组较新开管组33个microRNA表达上调,58个下调,其中microRNA-129-5p在半年以上组中明显下调。半年以上组流出液细胞E-钙黏素(E-cadherin)、claudin 1 mRNA及蛋白表达明显低于新开管组,而波形蛋白(vimentin)及纤维连接蛋白(fibronectin, FN) mRNA及蛋白表达明显高于新开管组。
     结论腹膜透析患者腹透流出液细胞经证实为HPMC,并表达多个EMT相关的microRNA;随腹透时间延长,microRNA-129-5p表达显著降低同时伴有EMT及ECM沉积,提示microRNA-129-5p可能与腹膜纤维化有关。
     目的阐明microRNA-129-5p在TGF-β1诱导的HMrSV5细胞EMT及ECM沉积中的作用,以寻找逆转腹膜间皮细胞纤维化的方法
     方法用5ng/ml TGF-β1刺激HMrSV5细胞,通过realtime PCR及western blot检测细胞中E-cadherin、claudin1、vimentin、FN及microRNA-129-5p的表达;转染microRNA-129-5p的前体(pre-mir-129-5p)及阴性对照pre-miR negative control,再予TGF-p1刺激,通过细胞免疫荧光、realtime PCR及western blot检测HMrSV5细胞E-cadherin、claudin1、vimentin、FN的表达变化。
     结果5ng/ml TGF-β1刺激后,HMrSV5细胞E-cadherin、claudin1 mRNA及蛋白表达水平呈时间依赖性降低,vimentin、FN mRNA及蛋白表达水平呈时间依赖性升高,microRNA-129-5p呈时间依赖性降低。与TGF-β1刺激组比较,过表达microRNA-129-5p使E-cadherin、claudin1上调,vimentin、FN下调;但转染pre-miR negative control对TGF-β1诱导的HMrSV5细胞E-cadherin、claudin1、vimentin、FN的表达变化无明显影响。
     结论TGF-β1诱导HMrSV5细胞EMT及ECM沉积;TGF-β1诱导microRNA-129-5p表达下调;上调microRNA-129-5p可逆转HMrSV5细胞EMT,抑制ECM沉积。
     目的阐明microRNA-129-5p参与调控TGF-β1诱导的HMrSV5细胞EMT和ECM沉积的可能机制,为靶向microRNA-129-5p防治腹膜纤维化提供理论依据。
     方法用5ng/ml TGF-β1刺激HMrSV5细胞,通过realtime PCR及western blot检测细胞中SIP1的表达;转染pre-mir-129-5p及阴性对照pre-miR negative control,再予TGF-β1刺激,通过细胞免疫荧光、realtime PCR及western blot检测HMrSV5细胞SIP1的表达变化。
     结果5ng/ml TGF-β1刺激后,HMrSV5细胞SIP1 mRNA及蛋白表达水平呈时间依赖性上调。与TGF-β1刺激组比较,过表达microRNA-129-5p使SIP1蛋白水平下调,而mRNA水平无变化;转染pre-miR negative control对TGF-β1诱导的HMrSV5细胞SIP1的表达变化无明显影响。
     结论TGF-β1诱导HMrSV5细胞SIP1表达上调;miRNA-129-5p通过转录后水平调节SIP1,影响E-cadherin、claudin1的表达,从而参与TGF-β1诱导的腹膜间皮细胞EMT及ECM的沉积。
Background Peritoneal dialysis (PD) is an established alternative for the replacement therapy of end stage renal disease (ESRD). Unfortunately, the limitation of long-term PD is peritoneal fibrosis (PF), resulting in ultrafiltration failure (UFF). Epithelial-mesenchymal transition (EMT) is the initiate and reversible stage of PF and extracellular matrix (ECM) accumulation is the key histological change of PF. It is established that transforming growth factor-P (TGF-P) plays a key role in these processes, and is regulated by multi-factors.
     microRNAs are 21~25 nucleotide small non-coding RNAs that participate in gene regulation, and exist in species ranging from plants to humans genome. They regulate gene expression by base-pairing to 3' untranslated region of target mRNAs. microRNAs have been implicated in various biological processes such as developing, differentiation, proliferation, apoptosis, tumorigenesis, et al. They are also related to pathological processes such as EMT. It is reported that EMT-related protein like Smad interacting protein 1 (SIP1) or connective tissue growth factor (CTGF) can be regulated by some microRNAs.
     Therefore, novel microRNAs may play a key role in the process of EMT and ECM accumulation in petitoneal dialysis. To this end, experimental research is carried out as follow.
     Objective To investigate the expression of microRNAs and the EMT status in HPMC from effluents, and to observe the relationship of microRNA-129-5p and EMT in peritoneal dialysis.
     Methods 22 patients undergoning continuous ambulatory peritoneal dialysis (CAPD) were enrolled into this study,10 patients undergoing PD start while 12 patients undergoing PD over 6 months. The isolated cells from effluents in dialysis fluid were cultured and identified by morphology and immunohistochemistry. Scaning the samples through micro array to determine the different microRNAs expression between PD-start group and PD-over-6-month group. Taqman assay was used to determine the expression of microRNA-129-5p. The expressions of E-cadherin, claudin1, vimentin and FN were tested by realtime PCR and western blot.
     Results Cells isolated from effluents of dialysis fluid were identified as HPMC. The morphology varied according to how long patients undergoing PD. Micro array showed that 33 miRNAs up-regulated and 58 miRNAs down-regulated in cells from patients undergoing PD over 6 months, compared to patients undergoing PD start. The down-regulation of microRNA-129-5p was clarified. Poor expression of E-cadherin and claudin1 and excessive expression of vimentin and fibronectin (FN) both in mRNA and protein level was remarkable in PD-over-6-month group, compared to PD-start group.
     Conclusion Multiple EMT-related microRNAs can be found in HPMC from effluents. Down-regulation of miRNA-129-5p along with EMT and ECM accumulation during long-term PD indicated that miRNA-129-5p was negatively related to peritoneal fibrosis.
     Methods HMrSV5 cells were exposed to 5ng/ml TGF-β1. The expressions of E-cadherin, claudin1, vimentin and FN were examined by realtime PCR and western blot, meanwhile realtime PCR for miRNA-129-5p. Furthermore HMrSV5 cells were transfected with miRNA-129-5p precursor (pre-mir-129-5p) or pre-miR negative control before exposing to TGF-β1. Then the expressions of E-cadherin, claudin1, vimentin and FN were detected by immunofluorescence, realtime PCR and western blot.
     Results Stimulation of HMrSV5 cells with TGF-β1 resulted in a significant decrease of E-cadherin and claudinl, and increase of vimentin and FN, all in time-dependent manner. TGF-β1 also repressed miRNA-129-5p. Compared to TGF-β1 group, overexpression of miRNA-129-5p in HMrSV5 cells upregulated the mRNA and protein expression of E-cadherin and claudinl, and downregulated the mRNA and protein expression of vimentin and FN. However, pre-miR negative control had no significant effect on the expression of E-cadherin, claudin1, vimentin and FN.
     Conclusion TGF-β1 leads to EMT and ECM accumulation and represses miRNA-129-5p level. Overexpression of miRNA-129-5p can reverse the EMT of HMrSV5 cells and inhibit the ECM accumulation.Ⅸ
     Objective To investigate the mechanism by which miRNA-129-5p modulates the process of TGF-β1 induced EMT and ECM accumulation in HMrSV5 cell lines.
     Methods HMrSV5 cells were exposed to 5ng/ml TGF-β1. The expression of SIP1 was examined by realtime PCR and western blot. Furthermore HMrSV5 cells were transfected with pre-mir-129-5p or pre-miR negative control before exposing to TGF-β1. Then the expression of SIP1 was detected by immunofluorescence, realtime PCR and western blot.
     Results Stimulation of HMrSV5 cells with TGF-β1 resulted in a significant increase of SIP1 in time-dependent manner. Compared to TGF-β1 group, overexpression of miRNA-129-5p in HMrSV5 cells downregulated the protein expression of SIP1, but had no effect on its mRNA expression. However, pre-miR negative control had no significant effect on the expression of SIP 1.
     Conclusion TGF-β1 leads to upregulation of SIP1. During the process of TGF-β1 induced EMT in HMrSV5 cells, miRNA-129-5p modulates E-cadherin and claudinl expression by posttranscriptional repression of SIP1.
引文
1. Coresh J, Astor BC, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult us population:Third national health and nutrition examination survey. Am J Kidney Dis.2003; 41:1-12.
    2. Chadban SJ, Briganti EM, Kerr PG, et al. Prevalence of kidney damage in australian adults:The ausdiab kidney study. J Am Soc Nephrol.2003; 14:S 131-8.
    3. Duan S, Zhou X, Liu F, et al. Comparative cytotoxicity of high-osmolar and low-osmolar contrast media on hkcs in vitro. J Nephrol.2006; 19:717-24.
    4. Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int.1992; 12:14-27.
    5. Betjes MG, Bos HJ, Krediet RT, et al. The mesothelial cells in capd effluent and their relation to peritonitis incidence. Perit Dial Int.1991; 11:22-6.
    6. Aroeira LS, Aguilera A, Sanchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: Pathologic significance and potential therapeutic interventions. J Am Soc Nephrol.2007; 18:2004-13.
    7. Vargha R, Endemann M, Kratochwill K, et al. Ex vivo reversal of in vivo transdifferentiation in mesothelial cells grown from peritoneal dialysate effluents. Nephrol Dial Transplant.2006; 21:2943-7.
    8. Chendrimada TP, Finn KJ, Ji X, et al. Microrna silencing through risc recruitment of eif6. Nature.2007; 447:823-8.
    9. John M, Constien R, Akinc A, et al. Effective rnai-mediated gene silencing without interruption of the endogenous microrna pathway. Nature.2007; 449:745-7.
    10. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of micrornas in vivo with 'antagomirs'. Nature.2005; 438:685-9.
    11. Wang J, Xu R, Lin F, et al. Microrna:Novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology.2009; 113:81-8.
    12. Korpal M, Kang Y. The emerging role of mir-200 family of micrornas in epithelial-mesenchymal transition and cancer metastasis. RNA Biol.2008; 5:115-9.
    13. Zavadil J, Narasimhan M, Blumenberg M, et al. Transforming growth factor-beta and microrna:Mrna regulatory networks in epithelial plasticity. Cells Tissues Organs.2007; 185:157-61.
    14. El-Ghoul B, Elie C, Sqalli T, et al. Nonprogressive kidney dysfunction and outcomes in older adults with chronic kidney disease. J Am Geriatr Soc.2009; 57:2217-23.
    15. Hada R, Khakurel S, Agrawal RK, et al. Incidence of end stage renal disease on renal replacement therapy in nepal. Kathmandu Univ Med J (KUMJ).2009; 7:301-5.
    16. Ingsathit A, Thakkinstian A, Chaiprasert A, et al. Prevalence and risk factors of chronic kidney disease in the thai adult population:Thai seek study. Nephrol Dial Transplant; 25:1567-75.
    17. Otero A, de Francisco A, Gayoso P, et al. Prevalence of chronic renal disease in spain:Results of the epirce study. Nefrologia; 30:78-86.
    18. Johnson DW, Cho Y, Livingston BE, et al. Encapsulating peritoneal sclerosis: Incidence, predictors, and outcomes. Kidney Int.
    19. Mizutani M, Ito Y, Mizuno M, et al. Connective tissue growth factor (ctgf/ccn2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol Renal Physiol; 298:F721-33.
    20. Sampimon DE, Korte MR, Barreto DL, et al. Early diagnostic markers for encapsulating peritoneal sclerosis:A case-control study. Perit Dial Int; 30:163-9.
    21. Solak Y, Turkmen K, Atalay H, et al. Successful peritoneal dialysis in a hemophilia a patient with factor viii inhibitor. Perit Dial Int; 30:114-6.
    22. Tsai HL, Yang LY, Chin TW, et al. Outcome and risk factors for mortality in pediatric peritoneal dialysis. Perit Dial Int; 30:233-9.
    23. Williams JD, Craig KJ, Topley N, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol.2002; 13:470-9.
    24. Williams JD, Craig K.J, Topley N, et al. Peritoneal dialysis:Changes to the structure of the peritoneal membrane and potential for biocompatible solutions. Kidney Int Suppl.2003:S158-61.
    25. Yanez-Mo M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med.2003; 348:403-13.
    26. Jimenez-Heffernan JA, Aguilera A, Aroeira LS, et al. Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosis. Virchows Arch.2004; 444:247-56.
    27. Del Peso G, Jimenez-Heffernan JA, Bajo MA, et al. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney Int Suppl.2008:S26-33.
    28. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol.1982; 95:333-9.
    29. Fujigaki Y, Sun DF, Fujimoto T, et al. Mechanisms and kinetics of bowman's epithelial-myofibroblast transdifferentiation in the formation of glomerular crescents. Nephron.2002; 92:203-12.
    30. Kim YL. Update on mechanisms of ultrafiltration failure. Perit Dial Int.2009; 29 Suppl 2:S123-7.
    31. Lee HB, Ha H. Mechanisms of epithelial-mesenchymal transition of peritoneal mesothelial cells during peritoneal dialysis. J Korean Med Sci.2007; 22:943-5.
    32. Aguilera A, Yanez-Mo M, Selgas R, et al. Epithelial to mesenchymal transition as a triggering factor of peritoneal membrane fibrosis and angiogenesis in peritoneal dialysis patients. Curr Opin Investig Drugs.2005; 6:262-8.
    33. Zavadil J, Bottinger EP. Tgf-beta and epithelial-to-mesenchymal transitions. Oncogene.2005; 24:5764-74.
    34. Gregory PA, Bert AG, Paterson EL, et al. The mir-200 family and mir-205 regulate epithelial to mesenchymal transition by targeting zebl and sipl. Nat Cell Biol.2008; 10:593-601.
    35. Ikenouchi J, Matsuda M, Furuse M, et al. Regulation of tight junctions during the epithelium-mesenchyme transition:Direct repression of the gene expression of claudins/occludin by snail. J Cell Sci.2003; 116:1959-67.
    36. Lecuit M, Hurme R, Pizarro-Cerda J, et al. A role for alpha-and beta-catenins in bacterial uptake. Proc Natl Acad Sci U S A.2000; 97:10008-13.
    37. Emadi Baygi M, Soheili ZS, Schmitz I, et al. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol.
    38. Iwatsuki M, Mimori K, Fukagawa T, et al. The clinical significance of vimentin-expressing gastric cancer cells in bone marrow. Ann Surg Oncol.
    39. Li A, Zhou T, Guo L, et al. Collagen type i regulates beta-catenin tyrosine phosphorylation and nuclear translocation to promote migration and proliferation of gastric carcinoma cells. Oncol Rep; 23:1247-55.
    40. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:Pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol.2004; 15:1-12.
    41. White LR, Blanchette JB, Ren L, et al. The characterization of alpha5-integrin expression on tubular epithelium during renal injury. Am J Physiol Renal Physiol. 2007; 292:F567-76.
    42. Vyas-Read S, Shaul PW, Yuhanna IS, et al. Nitric oxide attenuates epithelial-mesenchymal transition in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol.2007; 293:L212-21.
    43. Strutz F, Zeisberg M, Ziyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int.2002; 61:1714-28.
    44. Steenvoorden MM, Tolboom TC, van der Pluijm G, et al. Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics. Arthritis Res Ther.2006; 8:R165.
    45. Poncelet AC, Schnaper HW, Tan R, et al. Cell phenotype-specific down-regulation of smad3 involves decreased gene activation as well as protein degradation. J Biol Chem.2007; 282:15534-40.
    46. Phanish MK, Wahab NA, Colville-Nash P, et al. The differential role of smad2 and smad3 in the regulation of pro-fibrotic tgfbetal responses in human proximal-tubule epithelial cells. Biochem J.2006; 393:601-7.
    47. Masszi A, Fan L, Rosivall L, et al. Integrity of cell-cell contacts is a critical regulator of tgf-beta 1-induced epithelial-to-myofibroblast transition:Role for beta-catenin. Am J Pathol.2004; 165:1955-67.
    48. Li JH, Zhu HJ, Huang XR, et al. Smad7 inhibits fibrotic effect of tgf-beta on renal tubular epithelial cells by blocking smad2 activation. J Am Soc Nephrol. 2002; 13:1464-72.
    49. Fan JM, Ng YY, Hill PA, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int.1999; 56:1455-67.
    50. de Iongh RU, Wederell E, Lovicu FJ, et al. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens:A model for cataract formation. Cells Tissues Organs.2005; 179:43-55.
    51. Burns WC, Twigg SM, Forbes JM, et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition:Implications for diabetic renal disease. J Am Soc Nephrol.2006; 17:2484-94.
    52. Martin J, Yung S, Robson RL, et al. Production and regulation of matrix metalloproteinases and their inhibitors by human peritoneal mesothelial cells. Perit Dial Int.2000; 20:524-33.
    53. Chegini N. The role of growth factors in peritoneal healing:Transforming growth factor beta (tgf-beta). Eur J Surg Suppl.1997:17-23.
    54. Rougier JP, Guia S, Hagege J, et al. Pai-1 secretion and matrix deposition in human peritoneal mesothelial cell cultures:Transcriptional regulation by tgf-beta 1. Kidney Int.1998; 54:87-98.
    55. Ha H, Cha MK, Choi HN, et al. Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular matrix proteins by human peritoneal mesothelial cells. Perit Dial Int.2002; 22:171-7.
    56. Saed GM, Collins KL, Diamond MP. Transforming growth factors betal, beta2 and beta3 and their receptors are differentially expressed in human peritoneal fibroblasts in response to hypoxia. Am J Reprod Immunol.2002; 48:387-93.
    57. Kato M, Zhang J, Wang M, et al. Microrna-192 in diabetic kidney glomeruli and its function in tgf-beta-induced collagen expression via inhibition of e-box repressors. Proc Natl Acad Sci U S A.2007; 104:3432-7.
    58. Duisters RF, Tijsen AJ, Schroen B, et al. Mir-133 and mir-30 regulate connective tissue growth factor:Implications for a role of micrornas in myocardial matrix remodeling. Circ Res.2009; 104:170-8,6p following 178.
    59. Strippoli R, Benedicto I, Perez Lozano ML, et al. Epithelial-to-mesenchymal transition of peritoneal mesotheliai cells is regulated by an erk/nf-kappab/snaill pathway. Dis Model Mech.2008; 1:264-74.
    60. Lee YH, Albig AR, Regner M, et al. Fibulin-5 initiates epithelial-mesenchymal transition (emt) and enhances emt induced by tgf-beta in mammary epithelial cells via a mmp-dependent mechanism. Carcinogenesis.2008; 29:2243-51.
    61. Margetts PJ, Bonniaud P, Liu L, et al. Transient overexpression of tgf-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol.2005; 16:425-36.
    62. Nagai K, Matsubara T, Mima A, et al. Gas6 induces akt/mtor-mediated mesangial hypertrophy in diabetic nephropathy. Kidney Int.2005; 68:552-61.
    63. Szeto CC, Chow KM, Kwan BC, et al. The relationship between bone morphogenic protein-7 and peritoneal transport characteristics. Nephrol Dial Transplant.2008; 23:2989-94.
    64. Pohlers D, Brenmoehl J, Loffler I, et al. Tgf-beta and fibrosis in different organs-molecular pathway imprints. Biochim Biophys Acta.2009; 1792:746-56.
    65. Zhang Y, Huang P, Jiang T, et al. Role of aldose reductase in tgf-betal-induced fibronectin synthesis in human mesangial cells. Mol Biol Rep.2009.
    66. Cheng YC, Kuo WW, Wu HC, et al. Zak induces mmp-2 activity via jnk/p38 signals and reduces mmp-9 activity by increasing timp-1/2 expression in h9c2 cardiomyoblast cells. Mol Cell Biochem.2009; 325:69-77.
    67. Chung AS, Kao WJ. Fibroblasts regulate monocyte response to ecm-derived matrix:The effects on monocyte adhesion and the production of inflammatory, matrix remodeling, and growth factor proteins. J Biomed Mater Res A.2009; 89:841-53.
    68. Fuchshofer R, Stephan DA, Russell P, et al. Gene expression profiling of tgfbeta2-and/or bmp7-treated trabecular meshwork cells:Identification of smad7 as a critical inhibitor of tgf-beta2 signaling. Exp Eye Res.2009; 88:1020-32.
    69. Junglas B, Yu AH, Welge-Lussen U, et al. Connective tissue growth factor induces extracellular matrix deposition in human trabecular meshwork cells. Exp Eye Res.2009; 88:1065-75.
    70. Samarakoon R, Higgins PJ. Integration of non-smad and smad signaling in tgf-betal-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb Haemost.2008; 100:976-83.
    71. Wang P, Liu T, Cong M, et al. Expression of extracellular matrix genes in cultured hepatic oval cells:An origin of hepatic stellate cells through transforming growth factor beta? Liver Int.2009; 29:575-84.
    72. Garamszegi N, Garamszegi SP, Shehadeh LA, et al. Extracellular matrix-induced gene expression in human breast cancer cells. Mol Cancer Res.2009; 7:319-29.
    73. Sugiura H, Ichikawa T, Koarai A, et al. Activation of toll-like receptor 3 augments myofibroblast differentiation. Am J Respir Cell Mol Biol.2009; 40:654-62.
    74. Tsai SH, Sheu MT, Liang YC, et al. Tgf-beta inhibits il-1beta-activated par-2 expression through multiple pathways in human primary synovial cells. J Biomed Sci.2009; 16:97.
    75. Zode GS, Clark AF, Wordinger RJ. Bone morphogenetic protein 4 inhibits tgf-beta2 stimulation of extracellular matrix proteins in optic nerve head cells: Role of gremlin in ecm modulation. Glia.2009; 57:755-66.
    76. Ozbun LL, Martinez A, Jakowlew SB. Differentially expressed nucleolar tgf-betal target (dentt) shows tissue-specific nuclear and cytoplasmic localization and increases tgf-beta1-responsive transcription in primates.
    Biochim Biophys Acta.2005; 1728:163-80.
    77. Couzin J. Micrornas make big impression in disease after disease. Science.2008; 319:1782-4.
    78. Esau CC. Inhibition of microrna with antisense oligonucleotides. Methods.2008; 44:55-60.
    79. Esau C, Davis S, Murray SF, et al. Mir-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.2006; 3:87-98.
    80. Hurteau GJ, Spivack SD, Brock GJ. Potential mrna degradation targets of hsa-mir-200c, identified using informatics and qrt-pcr. Cell Cycle.2006; 5:1951-6.
    81. Bartel DP. Micrornas:Genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281-97.
    82. Chen X. A microrna as a translational repressor of apetala2 in arabidopsis flower development. Science.2004; 303:2022-5.
    83. Hornstein E, Mansfield JH, Yekta S, et al. The microrna mir-196 acts upstream of hoxb8 and shh in limb development. Nature.2005; 438:671-4.
    84. Wu L, Fan J, Belasco JG Micrornas direct rapid deadenylation of mrna. Proc Natl Acad Sci U S A.2006; 103:4034-9.
    85. Huang YW, Liu JC, Deatherage DE, et al. Epigenetic repression of microrna-129-2 leads to overexpression of sox4 oncogene in endometrial cancer. Cancer Res.2009; 69:9038-46.
    86. Wu J, Qian J, Li C, et al. Mir-129 regulates cell proliferation by downregulating cdk6 expression. Cell Cycle; 9.
    87. van Grunsven LA, Schellens A, Huylebroeck D, et al. Sipl (smad interacting protein 1) and deltaefl (delta-crystallin enhancer binding factor) are structurally similar transcriptional repressors. J Bone Joint Surg Am.2001; 83-A Suppl 1:S40-7.
    88. Baskerville S, Bartel DP. Microarray profiling of micrornas reveals frequent coexpression with neighboring mirnas and host genes. Rna.2005; 11:241-7.
    89. Lee Y, Kim M, Han J, et al. Microrna genes are transcribed by rna polymerase ii.
    Embo J.2004; 23:4051-60.
    90. Lee Y, Ahn C, Han J, et al. The nuclear rnase iii drosha initiates microrna processing. Nature.2003; 425:415-9.
    91. Han J, Lee Y, Yeom KH, et al. The drosha-dgcr8 complex in primary microrna processing. Genes Dev.2004; 18:3016-27.
    92. Kim VN. Microrna precursors in motion:Exportin-5 mediates their nuclear export. Trends Cell Biol.2004; 14:156-9.
    93. Lee Y, Jeon K, Lee JT, et al. Microrna maturation:Stepwise processing and subcellular localization. Embo J.2002; 21:4663-70.
    94. Khvorova A, Reynolds A, Jayasena SD. Functional sirnas and mirnas exhibit strand bias. Cell.2003; 115:209-16.
    95. Hutvagner G. Small rna asymmetry in rnai:Function in rise assembly and gene regulation. FEBS Lett.2005; 579:5850-7.
    96. Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microrna expression in colorectal cancer. Int J Cancer.2009; 125:2737-43.
    97. Dyrskjot L, Ostenfeld MS, Bramsen JB, et al. Genomic profiling of micrornas in bladder cancer:Mir-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res.2009; 69:4851-60.
    98. Katada T, Ishiguro H, Kuwabara Y, et al. Microrna expression profile in undifferentiated gastric cancer. Int J Oncol.2009; 34:537-42.
    99. Liao R, Sun J, Zhang L, et al. Micrornas play a role in the development of human hematopoietic stem cells. J Cell Biochem.2008; 104:805-17.
    100. Shen R, Pan S, Qi S, et al. Epigenetic repression of microrna-129-2 leads to overexpression of sox4 in gastric cancer. Biochem Biophys Res Commun; 394:1047-52.
    101. Huang YJ, Wang ZH, Zhang JB, et al. [smad7 instead of smad6 blocks epithelial-mesenchymal transition induced by tgf-beta in human renal proximal tubule epithelial cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.2008; 24:1074-8.
    102. Liu Q, Mao H, Nie J, et al. Transforming growth factor {beta}1 induces epithelial-mesenchymal transition by activating the jnk-smad3 pathway in rat peritoneal mesothelial cells. Perit Dial Int.2008; 28 Suppl 3:S88-95.
    103. Poncelet AC, de Caestecker MP, Schnaper HW. The transforming growth factor-beta/smad signaling pathway is present and functional in human mesangial cells. Kidney Int.1999; 56:1354-65.
    104. Cowden Dahl KD, Dahl R, Kruichak JN, et al. The epidermal growth factor receptor responsive mir-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia.2009; 11:1208-15.
    105. Du J, Yang S, An D, et al. Bmp-6 inhibits microrna-21 expression in breast cancer through repressing deltaefl and ap-1. Cell Res.2009; 19:487-96.
    106. Gebeshuber CA, Zatloukal K, Martinez J. Mir-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep.2009; 10:400-5.
    107. Khew-Goodall Y, Goodall GJ. Myc-modulated mir-9 makes more metastases. Nat Cell Biol; 12:209-11.
    108. Kong W, Yang H, He L, et al. Microrna-155 is regulated by the transforming growth factor beta/smad pathway and contributes to epithelial cell plasticity by targeting rhoa. Mol Cell Biol.2008; 28:6773-84.
    109. Li Y, VandenBoom TG,2nd, Kong D, et al. Up-regulation of mir-2.00 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res.2009; 69:6704-12.
    110. Peter ME. Let-7 and mir-200 micrornas:Guardians against pluripotency and cancer progression. Cell Cycle.2009; 8:843-52.
    111. Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by mir-192/215 by a mechanism that is independent of the profibrotic effects of tgf{beta}. Diabetes.
    112. Yang S, Du J, Wang Z, et al. Dual mechanism of deltaefl expression regulated by bone morphogenetic protein-6 in breast cancer. Int J Biochem Cell Biol.2009; 41:853-61.
    113. Elloul S, Elstrand MB, Nesland JM, et al. Snail, slug, and smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer.2005; 103:1631-43.
    114. Kang Y, Massague J. Epithelial-mesenchymal transitions:Twist in development and metastasis. Cell.2004; 118:277-9.
    115. Van Doren M, Mathews WR, Samuels M, et al. Fear of intimacy encodes a novel transmembrane protein required for gonad morphogenesis in drosophila. Development.2003; 130:2355-64.
    116. Fujita N, Jaye DL, Kajita M, et al. Mta3, a mi-2/nurd complex subunit, regulates an invasive growth pathway in breast cancer. Cell.2003; 113:207-19.
    117. Peinado H, Marin F, Cubillo E, et al. Snail and e47 repressors of e-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci.2004; 117:2827-39.
    118. Sobrado VR, Moreno-Bueno G, Cubillo E, et al. The class i bhlh factors e2-2a and e2-2b regulate emt. J Cell Sci.2009; 122:1014-24.
    119. van Grunsven LA, Taelman V, Michiels C, et al. Xsip1 neuralizing activity involves the co-repressor ctbp and occurs through bmp dependent and independent mechanisms. Dev Biol.2007; 306:34-49.
    120. Katoh M, Katoh M. Integrative genomic analyses of zeb2:Transcriptional regulation of zeb2 based on smads, etsl, hifl alpha, pou/oct, and nf-kappab. Int J Oncol.2009; 34:1737-42.
    121. Hannus S, Buhler D, Romano M, et al. The schizosaccharomyces pombe protein yab8p and a novel factor, yiplp, share structural and functional similarity with the spinal muscular atrophy-associated proteins smn and sipl. Hum Mol Genet. 2000; 9:663-74.
    122. Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between zebl-sipl and the microrna-200 family regulates epithelial-mesenchymal transition. Cancer Res.2008; 68:7846-54.
    123. Hu M, Xia M, Chen X, et al. Microrna-141 regulates smad interacting protein 1 (sip1) and inhibits migration and invasion of colorectal cancer cells. Dig Dis Sci. 2009.
    124. Park SM, Gaur AB, Lengyel E, et al. The mir-200 family determines the
    epithelial phenotype of cancer cells by targeting the e-cadherin repressors zeb1 and zeb2. Genes Dev.2008; 22:894-907.
    125. Saydam O, Shen Y, Wurdinger T, et al. Downregulated microrna-200a in meningiomas promotes tumor growth by reducing e-cadherin and activating the wnt/beta-catenin signaling pathway. Mol Cell Biol.2009; 29:5923-40.
    1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993; 75:843-854.
    2. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature.2000; 403:901-906.
    3. D. P. Bartel. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281-97.
    4. Yang Wang, Heidi M. Stricker, Deming Gou, et al.MicroRNA:past and present. Frontiers in Bioscience.2007; 12:2316-2329.
    5. M. Boehm, F. Slack. A developmental timing microRNA and its target regulate life span in C. elegans. Science.2005; 310:1954-7.
    6. N. S. Sokol, V. Ambros. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 2005; 19:2343-54.
    7. J. Couzin. Cancer biology. A new cancer player takes the stage. Science.2005; 310:766-7.
    8. P. Xu, M. Guo, B. A. Hay. MicroRNAs and the regulation of cell death. Trends Genet.2004; 20:617-24.
    9. C. Esau, X. Kang, E. Peralta, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem.2004; 279:52361-5.
    10. S. Baskerville, D. P. Bartel. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. Rna.2005; 11:241-7.
    11. Y. Lee, M. Kim, J. Han, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J.2004; 23:4051-60.
    12. Y. Lee, C. Ahn, J. Han, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature.2003; 425:415-9.
    13. J. Han, Y. Lee, K. H. Yeom, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev.2004; 18:3016-27.
    14. V. N. Kim. MicroRNA precursors in motion:exportin-5 mediates their nuclear export. Trends Cell Biol.2004; 14:156-9.
    15. Y. Lee, K. Jeon, J. T. Lee, et al. MicroRNA maturation:stepwise processing and subcellular localization. Embo J.2002; 21:4663-70.
    16. A. Khvorova, A. Reynolds, S. D. Jayasena. Functional siRNAs and miRNAs exhibit strand bias. Cell.2003; 115:209-16.
    17. G. Hutvagner. Small RNA asymmetry in RNAi:function in RISC assembly and gene regulation. FEBS Lett.2005; 579:5850-7.
    18. X. Chen. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science.2004; 303:2022-5.
    19. E. Hornstein, J. H. Mansfield, S. Yekta, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature.2005; 438:671-4.
    20. R. C. Lee, R. L. Feinbaum, V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993; 75: 843-54.
    21. E. G. Moss, R. C. Lee, V. Ambros. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell.1997; 88:637-46.
    22. J. E. Abrahante, A. L. Daul, M. Li, et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell.2003; 4:625-37.
    23. S. D. Hatfield, H. R. Shcherbata, K. A. Fischer, et al. Stem cell division is regulated by the microRNA pathway. Nature.2005; 435:974-8.
    24. N. Vo, M. E. Klein, O. Varlamova, et al. A cAMPresponse element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad SciUSA.2005;102:16426-31.
    25. G. M. Schratt, F. Tuebing, E. A. Nigh, et al. A brainspecific microRNA regulates dendritic spine development. Nature.2006; 439:283-9.
    26. C. Esau, X. Kang, E. Peralta, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem.2004; 279:52361-5.
    27. J. F. Chen, E. M. Mandel, J. M. Thomson, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006; 38:228-33.
    28. P. Xu, S. Y. Vernooy, M. Guo, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol.2003; 13:790-5.
    29. J. Brennecke, D. R. Hipfner, A. Stark, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell.2003; 113:25-36.
    30. J. A. Wilson, C. D. Richardson. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol.2005; 79:7050-8.
    31. S. Lu, B. R. Cullen. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol.2004; 78:12868-76.
    32. C. H. Lecellier, P. Dunoyer, K. Arar, et al. A cellular microRNA mediates antiviral defense in human cells. Science.2005; 308:557-60.
    33. A. Gupta, J. J. Gartner, P. Sethupathy, et al. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature.2006.
    34. M. V. Iorio, M. Ferracin, C. G. Liu, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.2005; 65:7065-70.
    35. M. Z. Michael, O. C. SM, N. G. van Holst Pellekaan, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res.2003; 1:882-91.
    36. A. Cimmino, G. A. Calin, M. Fabbri, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005; 102:13944-9.
    37. J. A. Chan, A. M. Krichevsky, K. S. Kosik. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.2005; 65:6029-33.
    38. M. N. Poy, L. Eliasson, J. Krutzfeldt, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature.2004; 432:226-30.
    39. Yingqing Sun, Seongjoon Koo, Neill White, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Research.2004; 32:188-193.
    40. Mitsuo Kato, Jane Zhang, Mei Wang, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A.2007; 104:3432-7.
    41. Jacqueline Ho, Kar Hui Ng, Seymour Rosen, et al. Podocyte-Specific Loss of Functional MicroRNAs Leads to Rapid Glomerular and Tubular Injury. J Am Soc Nephrol.2008; 19:2069-2075.
    42. Shaolin Shi, Liping Yu, Celine Chiu, et al. Podocyte-Selective Deletion of Dicer Induces Proteinuria and Glomerulosclerosis. J Am Soc Nephrol.2008; 17: 1681-91.
    43. Scott J. Harvey, George Jarad, Jeanette Cunningham, et al. Podocyte-Specific Deletion of Dicer Alters Cytoskeletal Dynamics and Causes Glomerular Disease. J Am Soc Nephrol.2008; 17:1705-13.
    44. Fedra Gottardo, Chang Gong Liu, Manuela Ferracin, et al. Micro-RNA profiling in kidney and bladder cancers. Urologic Oncology.2007; 25:387-392.
    45. Eric J. Kort, Leslie Farber, Maria Tretiakova, et al. The E2F3-Oncomir-1 Axis Is Activated in Wilms'Tumor. Cancer Res.2008; 68:4034-8.
    46. Khokon Kumar Dutta, Yi Zhong, Yu-Ting Liu, et al. Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci.2007; 98:1845-1852.
    47. Weiguo Sui, Yong Dai, YuanShuai Huang, et al. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transplant Immunology.2008; 19:81-85.
    48. Couzin J. Breakthrough of the year. Small RNAs make big splash. Science.2002; 298:2296-2297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700