基于光纤光栅的传感和解调技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤传感器技术是通过传感器从自然信源获取信息,并对信息进行处理和识别的一门多学科交叉的现代科学,它与通信技术、计算机技术构成信息产业的三大支柱。该技术涉及到激光技术、纤维光学、非线性光学、电子技术、计算机技术、通信技术、信号处理技术等多个学科和领域。随着传感技术的深入研究与应用,光纤光栅传感技术正要向着网络化、智能化和实用化方向发展,传感解调技术也将向着高速度、高精度和分布式测量等方向发展。
     本文在调研光纤传感的特点和其在军事、民用领域的应用以及国内外研究进展的基础上,研究了光纤光栅传感技术:分析了光纤光栅传感解调技术的优、劣势,以及今后研究的方向与待解决的技术难点;依据耦合模理论分析方法研究了光纤光栅的光学特性和传感机理;总结了光纤光栅的分类及各类型光纤光栅的制作方法;对多种光纤光栅传感器和解调方案进行了系统的理论和实验研究,设计了四种传感器和三种解调结构,并成功构建了光纤光栅无线传感网络。其主要研究工作和创新成果(黑体部分)如下:
     针对光纤光栅传感技术实用化中的交叉敏感问题,设计了渐变型等强度悬臂梁结构,研究其对光纤光栅调谐的温度补偿机理,实验验证了该悬臂梁对光纤光栅线性、无啁啾的调谐和温度补偿。采用渐变型悬臂梁调谐光纤布拉格光栅(FBG),通过测定光栅反射谱双峰的位置,使用一根光栅实现了应力和温度双参量同时传感测量。应力和温度传感的灵敏度分别为KF=0.125nm/N和KT=0.0124nm/℃。
     设计并实现了基于带宽检测的啁啾光纤光栅位移传感器,通过测定啁啾光栅反射谱带宽实现位移的测定,位移传感的灵敏度为K=0.05nm/mm。
     设计并实现了基于光强检测的啁啾光纤光栅位移传感器。该系统利用电路方法测定光强,提高了测量精度并降低了成本。位移传感的灵敏度为K=0.58pm/mm。
     研究FBG化学浓度传感器,对丙二醇溶液浓度的测量进行了实验研究,分析了温度敏感对化学浓度的影响及其去敏方法。通过测定溶液折射率的变化实现其对浓度的检测。
     设计并实现了基于交叉相位调制(XPM)技术的锁相光纤光栅传感器解调系统。采用XPM技术避免了压电陶瓷(PZT)等机械结构的使用,大大提高了系统速度和可重复性,对温度的测量精度可达0.1℃。分析了外界环境对M-Z结构的影响,并提出以LiNbO3波导器件克服环境对干涉器件影响的改进方案。
     设计了基于保偏型光纤环镜的波长解调系统,分析了其输入光波长和输出光功率分配特性,进行数值仿真并搭建了解调系统。通过调节保偏光纤长度、耦合器耦合系数、保偏光纤主轴角度,实现对测量范围和系统分辨率的调控,并能通过软件自动测定其结构参数。系统在解调范围大于1 nm时,分辨率小于1pm,测量精度小于±1pm。
     设计了采用保偏光纤和偏振分束器构建干涉仪的传感解调方案,仿真分析了系统结构参数对输出光强与波长对应关系的影响,并搭建实验系统。系统通过调节保偏光纤长度、保偏光纤主轴角度,实现对测量范围和系统分辨率的调控,在解调范围大于1nm时,分辨率小于1pm,测量精度小于±1pm。
     基于LabVIEW软件平台开发了针对不同传感解调方案的光纤光栅传感解调控制软件,成功地应用于不同机理、不同结构FBG传感器的结构参数测定、数据处理和实时二维图像显示。该软件是传感系统能够脱离实验室,进入应用领域的关键,具有通用性。
     论文最后对研究工作进行了总结,给出了进一步研究的方向。
The technology of fiber sense is an intersectant science of multiply subjects which obtains information from nature, processes and recognizes it using a sensor, and it constitutes there backbones associated with the communication and computer technology. This technology mainly refers to fiber optics, nonlinear optics, and corresponding technologies of laser, electron, computer, communication, and signal processing, and so on. With further investigation and application of sense technology, the technology of fiber grating sense is developing toward the direction of network, intelligence and practicality. Therefore, the technology of sense and demodulation also will necessarily develop toward the direction of measuring at high speed, high precision and distribution.
     This paper probes into the characteristics of fiber sense and its applications in the field of military affairs and civilization applications as well as research progress at home and abroad, and the investigation on Fiber Bragg Grating Sensor is carried out: analyzing the technology advantage and disadvantage of sense and demodulation of fiber grating, the further direction of investigation and technology difficulties unsolved; investigating the optical characteristics and sense mechanism of fiber grating based on coupling-mode theory; summarizing the classification and fabrication techniques of fiber grating; studying a number of schemes of sense and demodulation of fiber grating theoretically and experimentally; designing some structures of sense and demodulation and constructing network of wireless sense based on fiber grating successfully. The innovative works are primarily as follows:
     A kind of structure with gradient strength and double-triangle cantilever for investigating the compensation mechanism of temperature on tuning of fiber grating is designed aiming at cross-sensitive issues in actual use of sense technology of fiber grating. The linear and chirp-free tuning and temperature compensation of this structure on fiber grating are verified experimentally. The stress and temperature sensing parameters are measured in one grating at the same time using Fiber Bragg Grating with gradient strength, double-triangle cantilever structure through measuring the two peak locations of reflection spectrum of grating. The sensitivities of stress and temperature sense are KF=0.125nm/N and KT=0.0124nm/℃,respectively.
     Having designed and achieved the shift-sensor based on chirp fiber grating of bandwidth detection, the measurement of shift is implemented through determining the reflection spectrum of chirp grating, and the sensitivity of shift sensing can achieve up to K=0.05 nm/mm.
     Having designed and achieved the shift-sensor based on chirp fiber grating of light intensity detection, this system enhances precision of measurement and reduces cost through utilizing circuit method to determine light intensity, and the sensitivity of shift sensing can achieve up to K=0.58pm/mm.
     Having developed the FBG sensor of chemical concentration, the concentration of propylene glycol solution is measured experimentally, and the influence of temperature-sensitivity on chemical concentration and the method of eliminating sensitivity are analyzed. The detection of concentration is achieved by measuring changes in the refractive index of solution.
     Having designed and achieved the demodulation system of the phase-locked fiber grating sensor based on cross-phase modulation (XPM) technology, the uses of mechanical structures such as PZT, and so on are avoided because of XPM technology, the speed and repeat of system are greatly enhanced, and the precision of measurement on temperature can achieve up to 0.1℃.Furthermore, the influence of surrounding environment on the structure of M-Z is analyzed, and the improved scheme for overcoming the influence of temperature on parts of an apparatus of interference based on LiNbO3 waveguide devices is put forward.
     Having designed the system of wavelength-demodulation based on the loop mirror with polarization-keeping fiber, the distribution characteristics between the input wavelengths and output powers is analyzed with the numerical simulation being carried out, and the demodulation is established. Moreover, the scope of measurement and resolution of system are controlled through adjusting the length of polarization-keeping fiber, the coupling coefficient of coupling devices, and the main-axis angles of polarization-keeping fiber with the structure parameters being determined by software. The resolution and precision of demodulation system are less than 1pm and±1pm in a much wider scope of above 1nm, respectively.
     Having designed the schemes of sense and demodulation of establishing interferometer based on polarization-keeping fiber and polarization beam-splitter, the influences of structure parameters of system on the corresponding relationship of output light intensities and wavelengths are simulated numerically, and the experimental system is established. The scope of measurement and resolution of system are controlled through adjusting the length of polarization-keeping fiber, and the main-axis angles of polarization-keeping fiber. The resolution and precision of demodulation system are less than lpm and±1pm within 1nm, respectively.
     Having developed controllable software for sense and demodulation of fiber grating aiming at different schemes of sense and demodulation based on Lab VIEW platform, and apply successfully it to the determination of structure parameters, data processing and display of two dimension image of FBG sensor with different principles and structures. This software is crucial for sense system to depart from lab and enter into the field of application.
     Finally, all works investigated are summarized, and the further direction of study is indicated.
引文
[1.1]王其富,乔学光,贾振安等.光纤光栅传感器信号解调方法综述.光通信研究.67(4).2006,3:1-3.
    [1.2]罗映祥.光纤光栅传感技术及其应用研究.[硕士研究生学位论文].北京.北京邮电大学:2005.
    [1.3]Sano,Toshihiko Yoshino. Fast optical wavelength interrogator employing array waveguide grating for distributed fiber Bragg grating sensors[J].Journal of Light wave Technology,2003,21(1):132~139
    [1.4]Vohra S.T. Davis M.A.,Dandridge A. et al.In:Proceedings of the 12th International Conference on Optical Fiber Sensors. Williams burg. USA,1997
    [1.5]Pietro F,Giuseppe D. N. Optics and Laser in Engineering,2002,37:115
    [1.6]Wolfgang E,Stephan G,Ines L et al, SPIE,2001,4328:160
    [1.7]Vohra S.T., Davis M.A.,Dandridge A. et al,In:Proceedings of the 12thinternational Conference on Optical Fiber Sensors,Williamsburg, USA,1997
    [1.8]E.F.Crawley,J.D.Luis.Use of Piezoelectric Actuators as Elements of Intelligent Structures.AIAA Journal.1988,25(10):1373~1385
    [1.9]陈熙源,王曦峤.光纤Bragg光栅传感器在智能船舶结构中的应用.船舶工程.2006,28(2):29~32
    [1.10]P.D.Foote.Fiber Bragg Grating Strain Sensors for Aerospace Smart Structure.Proc.of SPIE.1994,2361:162-166
    [1.11]M.Helyla,P.Florila.Flow-Speed Measurements based on Optical Fiber Sensors. Info.Techn.Annual Report of Optoelectronics and Measurements Laboratory of University of Oulu,1999:66-72
    [1.12]Friebele P,et al. Fibre Bragg grating strain sensors:present and future applications in smart structures [J].Optics and Photonics News,1998,9:33-37.[1.13]Henderson P J, Fisher N E,Jackson D A.In:Proceeding of the 12th International Conference on Optical Fiber Sensors. Williamsburg,USA,1997,186
    [1.14]Wolfgang E,Stephan G, Ines L et al,SPIE,2001,4328:160
    [1.16]Rao Y J,Henderson P J,Jackson D A et al,Electron.Lett.,1997,33:2063
    [1.17]R.Oliveira,O.Frazao,J.L.Santos and A.T.Marques.Optic Fiber sensor for Real-time Damage Detection in Smart Composite.Computers and Structures.2004,82:1315-1321
    [1.18]S.Yashiro,N.Takeda,T.Okabe and H.Sekine.A New Approach to Predicting Multiple Damage States in Composite Laminates with Embedded FBG Sensors.Composites Science and Technology.2005,65:659-667
    [1.19]姜德生,罗裴,梁磊.光纤布拉格光栅传感器与基于应变模态理论的结构损伤识别.传感器技术.2003,(2):17-19
    [1.20]丁睿.工程健康监测的分布式光纤传感技术及应用研究.四川大学博士学位论文2005:7~15
    [1.21]W.Baker,I.McKenzie and R.Jones.Development of Life Extension Strategies for Australian Military Aircraft,Using Structural Health Monitoring of Composite Repairs and Joints.Composite Structures.2004,66:133~143
    [1.22]B.Beral,H.Speckmann.Structural Health Monitoring(SHM)for Aircraft Structures-A Challenge for System Developers and Aircraft Manufacturers.Proc.Forth International Workshop on Structural Health Monitoring,2003,California:31~38
    [1.23]I.M.Kenzie,R.Jones,I.H.Marshall and S.Galea.Optical Fiber Sensors for Health Monitoring of Bonded Repair Systems.Composite Structures.2000,50:405~416
    [1.24]于秀娟,余有龙,张敏,廖延彪.光纤光栅传感器在航空航天复合材料结构健康监测中的应用.激光杂志.2006,27(1):1~3
    [1.25]D.Whiting,B.Stejskal and M.Nagi.Condition of Pre-stressed Concrete Bridge Components-Technology Review and Field Surveys. FHWA-RD-93-037.Federal Highway Administration,1993, Washington, D.C.(项目报告)
    [1.26]S.Johansson,A.Elforsk.Detection of Internal Erosion in Embankment Dams:Possible Methods in Theory and Practice.FHWA-OR-RD-98-21.Oregon Department of Transportation,1998,Salem(项目报告)
    [1.27]欧进萍,关新春.土木工程智能结构体系的研究与发展.地震工程与工程振动.1999,19(2):21~28
    [1.28]Ou Jinping.Some Recent Advances of Intelligent Health Monitoring Systems for Civil Infrastructures in Mainland China.Proc.of the First International Conference on Structural Health Monitoring and Intelligent Infrastructure,2003,Tokyo:131~144
    [1.29]Ou Jinping.Practical Implementations of Intelligent Health Monitoring Systems in HIT.Proc.of North American Euro Pacific Workshop for Sensing Issues in Civil Structural Health Monitoring,2004,Hawaii
    [1.30]M. H. Sun, K. A. Wickersheim, and J. Kim, Fiber-optic temperature sensors in the medical setting, Proc. SPIE,1989, vol.1967:15-21
    [1.31]Sennhauser U, Bronnimann R, Nellen P M, Proc SPIE,1996,2839:64
    [1.32]Ferdinand P, Ferrsgu O, Lechien J L et al, J Lightwave Technai.,1995,13:1303
    [1.33]Rao Y J, et al. In-situtrmperature monitoring in NMR machines with a prototype in fibre Bragg grating sensor system [A] Proc. of the Optical Fiber Sensors Conf. (OFS-12) [C]. Williamsburg, VA, USA,1997,646-649.
    [1.34]Rao Y J, etal. In-fibre Bragg grating flow-directed themodilution catheter for cardiac monitoring [C].Proc. of the Optical Fiber Sensors Conf.(OFS-12)
    [1.35]Henderson P J,Fisher N E,Jackson D A.In:Proceeding of the 12th International Conference on Optical Fiber Sensors. Williamsburg, USA,1997,186
    [1.36]Y.J.Rao,et al..In-fiber Bragg Grating Temperature Sensor Syatem for edical Application.Lightwave Technology.1997,15:779~785
    [1.37]宁靖,王文争,刘世海,冯跃军.光纤布拉格光栅传感器在石油勘探领域应用展望.物探装备.2004,14(4):1~5
    [1.38]张向林,陶果,刘新茹.光纤传感器在油田开发测井中的应用.测井技术.2006,30(3):267~269
    [1.39]石艺尉,王耀才,蒋洪涛.分布式光纤传感在井下瓦斯检测中的应用.仪器仪表学报.1995,16(4):387~392
    [1.40]C.S.Weis,M.Naumann and G.Borm.Fiber Bragg Grating Strain Measurements in Comparison with Additional Techniques for Rock Mechanical Testing.IEEE Sensors Journal.2003,3(1):50~55
    [1.41]R.M.Lopeza,V.V.Spirina,S.V.Miridonova,et al..Fiber Optic Distributed Sensor for Hydrocarbon Leak Localization based on Transmission Reflection Measurement.Optics&Laser Technology.2002,34:465~469
    [1.42]R.W.Wlezien,G.C.Horner,A.R.McGowan,et al..The Aircraft Morphing Program.Proc.of the SPIE Smart Structures and Materials Symposium. Industrial and Commercial Applications Conference.1998,3326:84~91
    [1.43]A N. Chryssis, S M. Lee, S B.Lee. High sensitivity evanescent field fiber Bragg grating sensor [J].IEEE Photon. Technol. Lett,2005,17(6):1253~1255
    [1.44]J.O.Simpson,S.A.Wise,R.G.Bryant,et al..Innovative Materials for Aircraft Morphing. Report of Materials Division NASA Langely Research Center.Hampton,VA 23681
    [1.45]Meng Zhaofang, Yan Binbin, Sang Xinzhu et al. Sensitivity of chemical sensor based on fiber Bragg gratings. Proceedings of SPIE-The International Society for Optical Engineering, v 6830, Advanced Sensor Systems and Applications Ⅲ,2007, p 683011
    [1.46]Y.Ogawa,et al..A Multiplexing Load Monitoring System for Power Transmission Lines Using Fiber Bragg Grating.Proc.or the Optical Fiber ensors Conf..Williamsburg, VA,USA,1997:468~471
    [1.47]T.E.Hammon,et al..Optical Fiber Bragg Grating Temperature Sensor Measurements in an Electrical Power Transformer Using a Temperature Compensated Fiber Bragg Grating as a Reference.Proc.of 11th International Conf.on Optical Fiber Sensors.Sapporo,Japan,1996:566~569
    [1.48]N.M.Theune,et al..Application of Fiber Optical Sensors in Power Generators:Current and Temperature Sensors.Proc.of Opto2000 Conf.2000:22~25
    [1.49]W.Ecke,et al..Chemical Bragg Grating Sensor Network based on Sidepolished Optical Fiber.Proc.of SPIE.1998,3555:457~466
    [1.50]K.Habib.Detection of Crevice Corrosion by Optical Interferometry.Corrosion Science.2000,42:455~467
    [1.51]K.Habib,K.A.Muhana.Detection of Crevice Corrosion of Steels in Seawater by Optical Interferometry.Materials Characterization,2000,45:203~209
    [1.52]K.O.Hill, YFujii, D.C. Johnson et al., Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett 1978,32(10):647-649
    [1.53]G.Meltz, W.W. Morey, H.Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt.Lett.,1989,14(15):823-825
    [1.54]K.O.Hill, B.Malo, F.Bilodeau et al.,Bragg gratings fabricated in monomode photosensitive optical fiber by exposure through a phase mask. Appl. Phys, Lett.,1993, 62(10):1035-1037;
    [1.55]P.J.Lemaire, R.M.Atkins, V.Mizrahi et al.,High pressure HZ loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in Ge-doped optical fibers. Electron. Let.,1993,29(10):1991-1992
    [1.56]W.W.Morey, G.Meltz, W.H.Glenn, Fiber Bragg grating sensors. Proc SPIE.,1989,Vol.2507:98-107;
    [1.57]Rao Y J. In-fibre Bragg grating sensors [J].Meas. SciTechnol.,1997,8:355.
    [1.58]Kersey A D, et al.Fiber grating sensors [J].IEEE J.of Lightwave Tech.,1997,15: 1442-1463.
    [1.59]Slowik V, et al.Fibre Bragg Grating Sensors in Concrete Technology [J].LACER,1998, 3:109-119.
    [1.60]A.D.Kersey.A Review of Recent Developments in Fiber Optic Sensor Technology.Optical Fiber Technology.1996,2:291~317
    [1.61]A.D.Kersey,M.A.Davis,H.J.Patrick,et al..Fiber Grating Sensors.IEEE Journal of Lightwave Technology.1997,15(8):1442~1462
    [1.62]K.O.Hill and G.Meltz.Fiber Bragg Grating Technology Fundamentals and Overview.IEEE Journal of Lightwave Technology.1997,15(8):1263~1276
    [1.63]D.Kersey,A.Dandridge.An Overview of the Navy Fiber Optic Sensor Program.Report of OSM.US Naval Research Laboratory.Washington D.C.2003:180~185
    [1.64]Zh.Shulian,B.L.Sang,X.Fang and C.S.Sam.In-fiber Grating Sensors. Optics and Lasers in Engineering.1999,32:405~418
    [1.65]Federal Highway Administration,1996 Research and Technology Program Highlights. FHWA-RD-96-168,Washington D.C.1996(项目报告)
    [1.66]Y.J.Rao.Recent Progress in Applications of In-fiber Bragg Grating Sensors.Optics and Lasers in Engineering.1999,31:297~324
    [1.67]Liang W, Huang Y, Xu Y, et al. Highly sensitive fiber Bragg grating refractive index sensors [J].Appl. Phys. Lett.,2005,86(15):151~122
    [1.68]桑新柱,余重秀,颜玢玢等.基于FBG的化学传感器[J].光学精密工程,2006,14(5):771~774
    [1.69]侯尚林,胡春莲,马义元.光纤Bragg光栅及其应用研究进展.兰州理工大学学报.2004,30(1):94~97
    [1.70]胡志新,朱军,张陵.新型高准确度光纤光栅压力传感系统[J],光子学报,2006,35(5):709-711
    [1.71]张颖.光纤布拉格光栅传感技术研究.南开大学博士论文,2001:47~61
    [1.72]X.Shu,L.Zhang. Sensitivity Characteristics of Long-Period Fiber Gratings. J.Lightwave Techn..2002,20(2):255~266
    [1.73]C.Sun,C.Li,X.Yu.Study on a Sampled Chirped Fiber Gratings.Optics Communications. 2003,218:297~302
    [1.74]C.Zheng,Y.Dai.The Influence of Tilting on Reflection Property of Fiber Grating. Opt.Electronic Techn,2005,Vol.25(1):25~27
    [2.1]A.H.Hermann and H.Weiping.Coupled-Mode Theory. Proc.of IEEE.1991,79(10):1505~ 1518
    [2.2]M.Yamada,K.Sakuda.Analysis of Almost Periodic Distributed Feedback Waveguide via a Fundamental Matrix Approach.Appl.Opts..1987,26(6):3474~3478.
    [2.3]G.G.Karapetyana,A.V.Daryan,D.M.Meghavoryan,et al..Theoretical Investigation of Active Fiber Bragg Grating.Optics Communications.2002,205:421~425
    [2.4]G.G.Karapetyana,A.V.Daryan,D.M.Meghavoryan,et al..Theoretical Investigation of Active Fiber Bragg Grating.Optics Communications.2002,205:421~425
    [2.5]P.D.Foote.Fiber Bragg Grating Strain for Aerospace Smart Structures.Proc.of SPIE. 1994,2361:162~166
    [2.6]廖帮全.光纤光栅理论、传感应用及全光纤声光调制研究.南开大学博士论文.2002:22~35
    [2.7]洪从胜,徐新华,吕昌贵等.切趾光纤光栅技术及其研究进展.光电子技术与信 息.2002,15(3):1~6
    [2.8]余有龙.光纤光栅及其在传感领域中的应用研究.南开大学博士论文.1999:34~40
    [2.9]周智.土木工程结构光纤光栅智能传感元件及其监测系统.2003:27~38
    [2.10]G.P.Agrawal,非线性光纤光学原理及应用第三版电子工业出版社200226-30.
    [2.11]Yariv A.Coupled-mode theory for guided-wave optics.IEEE J.Quantum Electron., 1973.QE-9:919-933.
    [2.12]Yariv A.现代通信光电子学(英文版),电子工业出版社,2002年9月第一版.
    [2.13]J. Nathan Kutz, Benjamin J. Eggleton, Jason B. Stark, and Richart E. Slusher Nonlinear pulse propagation in long-period fiber gratings:theory and experiment. IEEE Journal of Selected Topics in Quantum Electronics, vol 3,NO.5, October 1997
    [2.14]Makoto Yamada and Kyoheic Sakuda,Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,Applied optics,26(16):3474~3478
    [2.15]李永健胡硕臻用传输矩阵法研究光纤Bragg光栅的非线性特性,科技广场2005.2
    [2.16]张颖.布喇格光纤光栅传感技术研究.(博士学位论文).天津:南开大学,2001.
    [2.17]童峥嵘.光纤光栅传感网络及解调技术的研究.(博士学位论文).天津:南开大学,2003.
    [2.18].D.Kersey.A Review of Recent Developments in Fiber Optic Sensor Technology.Optical Fiber Technology.1996,2:291~317
    [2.19]A.D.Kersey,M.A.Davis,H.J.Patrick,et al..Fiber Grating Sensors.IEEE Journal of Lightwave Technology.1997,15(8):1442~1462
    [2.20]K.O.Hill and G.Meltz.Fiber Bragg Grating Technology Fundamentals and Overview.IEEE Journal of Lightwave Technology.1997,15(8):1263~1276
    [2.21]侯尚林,胡春莲,马义元.光纤Bragg光栅及其应用研究进展.兰州理工大学学报.2004,30(1):94~97
    [2.22]K.O.Hill,et al..Bragg Grating Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure through a Phase Mask.Appl.Phys.Lett..1993,62:1035~1037
    [2.23]W.W.Morey,G.Meltz,W.H.Glenn.Fiber Optic Bragg Grating Sensors. Proc.of SPIE.1989,1169:98~107
    [2.24]H.Ke,K.S.Chiang,and J.H.Peng.Analysis of Phase-Shifted Long-Period Fiber Gratings.IEEE Photonics Techn.Lett..1998,10(10):1596~1598
    [2.25]M.Froggatt.Distributed Measurement of the Complex Modulation of a Photoinduced Bragg Grating in an Optical Fiber.Applied Optics.1996,35:5162~5166
    [2.26]M.Das,K.Thyagarajan.Dispersion Compensation in Transmission Using Uniform Long Period Fiber Gratings.Optics Communication,2001,190:159~163
    [2.27]L.Z.Qiang,C.X.Fei,S.J.Shan,et al..A novel method for fabricating apodized fiber Bragg gratings.Optics and Laser Technology.2003(35):315~318
    [2.28]R.Zengerle,O.Lemingere.Phase-shifted Bragg Filters with improved transmission characteristics.J.Lightwave Technol.,1995,13:2354~2358
    [2.29]瞿荣辉,丁浩,赵浩,方祖捷等.取样光纤布拉格光栅光学学报.1999,19(2):226~229
    [2.30]E.Udd.Fiber Optic Smart Structures.Proc.of IEEE.1996,84(1):60~67
    [2.31]贾宝华,盛秋琴,冯丹琴,董孝义.超结构光纤布拉格光栅的理论研究.中国激光.2003,30(3):247~251
    [2.32]X.Wang,K.Matsushima,A.Nishiki,and N.Wadal.High Reflectivity Superstructured FBG for Coherent Optical Code Generation and Recognition.Optics Express. 2004,12(22):5457~5468
    [2.33]M.Sumetsky,B.J.Eggleton.Theory of Group Delay Ripple Generated by Chirped Fiber Gratings.Optics Express,2002,Vol.10(7):332~340
    [2.34]魏道平,赵玉成,张良忠等.利用啁啾光纤光栅进行色散补偿的研究.光学技术.2000,26(1):76~78
    [2.35]刘崇琪.具有倾角的光纤光栅反射特性的研究.西安邮电学院学报.2000,5(3):8~10
    [2.36]L.Sun-Kyu,L.Shuang,S.In-Cheon,J.Sung-Ho,et al..Signal processing for strain measurement system with fiber Bragg grating.Report of Korea Science and Engineering Foundation(KOSRF RO1-2000-0300).Gwangju, Korea.2000
    [2.37]EdrognaT.SIPeJ.E.TiltedfiberPhasegratings.J.OPt.Soe.Am.A,1996,13(2):296-313.
    [2.38]赵岭,李琳,瞿荣辉等.基于莫尔光纤光栅的带通滤波器.半导体光电.2002,23(6):408~414
    [2.39]M.J.Cole.Broad Band Dispersion-Compensating Moire Fiber Bragg Gratings in a lOGbit/s NRZ 100km Standard Step Index Monomode Fiber Link.J.Electron.Lett..1997,33:70~71
    [2.40]L.Zhao,L.Li,A.Luo,J.Zhen,et al..Bandwidth Controllable Transmission Filter based on Moire Fiber Bragg Grating.J.Light and Electron Optics.2002,113(10):464~468
    [2.41]Albert J.,Malo B.,Hill K.O.,et al.Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses.Appl.Phys.Lett.,1995.67(24):3529-3531.
    [2.42]Nikogosyan D.N.Multi-photon high-excitation-energy approach to fibre grating inscription.Measurement Science&Technology,2007.18(1):R1-R29.
    [2.43]Fonjallaz P.Y.,Limberger H.G.,Salathe R.P.,et al.Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings.Optics Letters,1995.20:1346-1348.
    [2.44]Hill K.O.,Fujii Y., Johnson D. C., and Kawasaki B.S.,"Photosensitivity in optical waveguides:Application to reflection filter fabrication",Appl. Phys.Lett.32 (1978) 647.
    [2.45]Meltz G., Morey W. W.,and Glenn W. H.,"Formation of Bragg gratings in optical fibres by transverse holographic method", Opt. Lett.14 (1989) 823.
    [2.46]R.Kasyap,J.R.Armitage,R.Wyatt,S.T.Davey,and D.L.Williams, Electron. Lett. 26,730(1990)
    [2.47]K. O. Hill, B.Malo, F. Bilodeau, et al,"Fiber gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask",Appl. Phys. Lett.62 (1993) 1035-1037.
    [2.48]吴强,“光纤光栅多通道色散补偿技术及CAINONet中相关问题的研究”,博士论文,2003.
    [2.49]王东,祁雷,张玉书,紫外写入光纤光栅器件的研究概况,微细加工技术,4(1996)1-3.
    [2.50]黎敏,廖延彪等“一种新型的光纤光栅制作方法”,激光杂志,22(2001)24-25.
    [2.51]Dong L, Archambanlt J L. Reckie L, russell P St J and Paync D N. Single pulse Bragg gratings written during fiber drawing. Eleetr Lett 1993:29(17)1577-1578
    [2.52]Meltz G,Morey W W,Glenn W H.Formation of Bragg gratings in optical fiber by a transverse holographic method.Optics Letter,1989,14 (15):823-825.
    [2.53]Hill K O,Malo B,et al.Bragg gratings fabricated in monomode fiber by UV exposure throught a phase mask. Applied Physics Letter,1993,62(10):1035-1037.
    [2.54]SANG X Z,CHU P L,YU C X,et al.Novel growth phenomena in fiber Braggs under low irradiation power[J].Opt.Commun,251(1-3):94-99.
    [2.55]桑新柱,余重秀,王葵如,等.高非线性光子品体光纤中布拉格光栅的制作[J].光学精密工程,2005,13(6):633-636.
    [2.56]SANG X Z,YU C X,WANG K R,et al.Fabrication of Bragg grating in a highly nonlinear photonic crystal fiber[J].Optics and Precision Engineering,2005,13(6):633-636.(in Chinese)
    [2.57]SHU Xue-wen, ZhANG Lin, Bennion I. Sensitivity characteristics of long-period fiber gratings [J].Lightwave Technology.2002,20(2):255-266.
    [2.58]Harumoto M,Shigehara M,Suganuma H.Gain-flattening filter using long-period fiber graitings.Lightwave Technology,2002,20(6):1027-1033.
    [2.59]宋宁,郭晓金,殷宗敏.长周期光纤光栅的分析和优化设计[J].光子学报,2003,32(6):735-737.
    [2.60]Shokooh-Saremi M.,Ta'eed V.G.,Baker N.J.,et al.High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer.Journal of the Optical Society of America B-Optical Physics,2006.23(7):1323-1331.
    [2.61]Zhang H.B.,Eaton S.M.,Li J.Z.,et al.Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass.Optics Letters,2006.31(23):3495-3497.
    [2.62]Lai Y.,Zhou K.,Sugden K.,et al.Point-by-point inscription of first-order fiber Bragg grating for C-band applications.Optics Express,2007.15(26):18318-18325.
    [2.63]洪从胜,徐新华,吕昌贵,徐春详,崔一平,“切趾光纤光栅技术及其研究进展”光电子技术与信息,15(2002)1-6.
    [2.64]J. J. Pan and Y. Shi,"Steep skirt fibre Bragg grating fabrication using a new apodised phase mask",Electron. Lett.33 (1997) 1895-1896.
    [2.65]谢世钟,李栩辉,夏历,王建萍,“啁啾和切趾函数可调的光纤光栅制作方法”国家发明专利申请号:00109436.X
    [2.66]Martin Guy, Jocelyn Lauzon, Martin Pelletier, Peter Ehbets and Daniel Asselin," Simple and flexible technique for spectrally designing all-fibre filter and apodizing fibre gratings",1997, ECOC 97:195-198.
    [2.67]孙成城,曹京,李春贇,“实现光纤光栅变迹的方法”,国家发明专利申请号:99119430.6
    [2.68]P.-Y. Cortes, F. Ouellette and S. LaRochelle,"Instrinsic apodisation of Brag gratings written using UV-pulse interferometry",Electron. Lett.34 (1998):396-397.
    [2.69]林宗强,陈向飞,殷玉喆,毛晋,“任意切趾的光纤光栅的制作方法及其系统”,国家发明专利申请号:02146019.1
    [2.70]金世润,辛相吉,金玟成,“变迹光纤光栅制造设备”,国家发明专利申请号:00119988.9
    [2.71]Harmeet Singh and Mark Zippin," Apodized fiber Bragg gratings for DWDM applications using uniform phase mask",ECOC 1998,189-190.
    [2.72]吴强,“光纤光栅多通道色散补偿技术及CAINONet中相关问题的研究”,博士论文,2003.
    [2.73]黎敏,廖延彪.一种新型的光纤光栅制作方法,激光杂志,22(2001)24-25.
    [2.74]李剑芝,姜德生.载氢与光纤布拉格光栅.材料研究学报.2006,20(5):518~522
    [2.75]靳伟,廖延彪,张志鹏,等,导波光学传感器原理与技术,科学出版社北京:1998年
    [3.1]朱涛,饶云江,莫秋菊等.温度/应变/扭曲三参量同时测量低成本传感系统[J],光子学报,2006,35(5):655~658
    [3.2]刘汉平,王健刚,杨田林等.可分离温度影响的光纤布拉格光栅应变测量方法[J].应用光学,2006,27(3):235~238
    [3.3]周智,王赫哲,欧进萍等.无外力影响光纤Bragg光栅封装温度传感器[J].传感器与微系统,2006,25(3):57~59
    [3.4]胡家艳,江山.光纤光栅传感器的应力补偿及温度增敏封装[J],光电子激光,2006,17(3):311~313
    [3.5]彭保进,赵勇,孟庆尧等.具有温度补偿的光纤光栅压力传感器[J],清华大学学报(自然科学版),,2006,46(4):484~487
    [3.6]王宏亮,乔学光,周红等.压力与温度双参量传感优化系统的研制[J],光学学报,2005,25(7):875~880
    [3.7]张伟刚,开桂云,赵启大等.新型光纤布拉格光栅温度自动补偿传感研究[J],光学学报,2002,22(8):999~1002
    [3.8]张东生,开桂云,曹晔.具有温度补偿功能的光纤光栅传感解调系统[J],光学学报,2005,25(3):307~311
    [3.9]王目光,魏淮,童治等.利用双周期光纤光栅实现应变和温度同时测量[J],光学学报,2002,22(7):867~869
    [3.10]M.G.Xu,J.L.Archambault,L.Reekie,et al..Discrimination between Strain and Temperature Effects Using Dual-wavelength Fiber Grating Sensors.Elcetron.Lett..1994,30(13):1085~ 1087
    [3.11]V.Bhatia,K.A.Murphy and R.O.Claus.Simultaneous Measurement Systems Employing Long-Period Grating Sensors.Proc.of Optical Fiber Sensors.1996,11:702~705
    [3.12]H.J.Patrick,G.M.Williams,A.D.Kersy and J.R.Pedrazzani.Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination.IEEE Photonics Technology Lett..1996,8(9):1223~1225
    [3.13]余有龙,关柏鸥,董孝义等.光纤光栅力传感器的无源温漂补偿技术.光学学报.2000,20(3):400~404
    [3.14]M.Song,B.Lee,S.B.Lee.Interferometric Temperature-insensitive Strain Measurement with Different-diameter Fiber Bragg Gratings.Opt.Lett..1997,22(11):790~792
    [3.15]P.M.Cavaleiro,F.M.Araujo,L.A.Ferreira,et al..Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germano-silicate and Boron-codoped Germanosilicate Fibers.IEEE Photon.Technol.Lett.1999,11:1635~1637
    [3.16]CRUZ J L,DONG L,REEKIE L. Improved thermal sensitivity of fiber Bragg grating using a polymer over layer[J].ElectronLett,1996,32(4):386~388.
    [3.17]于永森,赵志勇,卓仲畅等.一种基于啁啾光纤光栅温度不敏感的应力传感器.半导体光电.2005,26(4):353~355
    [3.18]董新永,关柏鸥,张颖等.单个光纤光栅实现对位移和温度的同时测量.中国激光,2001,28(7):621-624.
    [3.19]尉婷,乔学光,贾振安等.单光纤光栅实现位移、温度同时区分测量.传感器技术学报,2005,18(2):358-362.
    [3.20]关柏鸥,刘志国,开桂云等.基于悬臂梁结构的光纤光栅位移传感器研究.光子学报,1999,28(11):983-985.
    [3.21]余有龙,谭光耀,廖信义等.免受温度影响的光纤光栅位移传感器.光学学报,2000,20(4):538-542,
    [3.22]Mei Nar Ng,Zhihao Chen,Kin Seng Chiang.Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect[J].IEEE Photon.Technol. Lett.,2002,14(3):361~362.
    [3.23]Gwandu B A L,Allsop T D P,et al.Simultaneous refractive index and temperature measurement using cascaded long-period grating in double-cladding fiber[J].Electron Lett,2002,38(14):695-696.
    [3.24]饶云江,莫秋菊,朱涛.一种新型温度自补偿高灵敏度折射率[J].光子学报,2006,26(2):264-268.
    [3.25]桑新柱,余重秀,颜玢玢.基于光纤布拉格光栅的化学传感器[J].光学精密工程,2006,(14)5:771-774.
    [3.26]Allsop T,Zhang L,Bennion I. Detection of organic aromatic compounds by a long period fibre grating optical sensor with optimised sensitivity[J].Optics Communications, 2001,191:181-190.
    [3.27]Chong J H, Shum Ping, Haryono H, et al. Measurements of refractive index sensitivity using long-period grating refractometer[J].Optics Communications,2004,229:65-69.
    [3.28]巴龙物理化学数据简明手册压[M].上海科学技术出版社,1959年
    [3.29]J.Senosiain, I.Diaz, A.Gaston, J.Sevilla, High sensitivity temperature sensor based on side-polished optical fiber, IEEE Trans. Instrum. Meas.,vol.50,pp.1656-1660,2001.
    [3.30]张霞,夏月辉,黄永清,等.有限包层半径光纤Bragg光栅的研究理论.光子学报,2003,32(2):222~224
    [4.1]张爱华,李岩,张书练,谢芳.光纤布喇格光栅反射波长移位的探测.光电工程.2001,28(4):22~25
    [4.2]王向宇,乔学光,李明等.光纤光栅传感的解调方法.光通信技术.2006,(2):16~18
    [4.3]吴薇,戴亚文.光纤布喇格光栅传感器的波长移位检测方法.半导体光电.2006,27(4):489~492
    [4.4]Zhang Po,Cerecedo H H,Qi B,et al.Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg grating based sensor system. SPIE Optical Engineering,2003,42(6):1597-160
    [4.5]Abad S, Araujo F M,Ferrira L A, et al. Interrogation of wavelength multiplexed fiber Bragg grating using spectral filtering and amplitude to phase optical conversion[J]. Journal of Light wave Technology,2003,21(1):127-131
    [4.6]Liu Qinpeng,Qiao Xueguang,Jia Zhen'an et al. The Study of Fiber Bragg Grating Pressure Sensor with High Pressure[J],Journal of Optoelectronics ·Laser, 2006,17(12):1440~1442
    [4.7]Xie Fang, Zhang Shulian, Li Yan et al..A new wavelength shift detecting technology for fiber Bragg grating system.Acta Optica Sinica,2002,22(6):726-730(in Chinese)
    [4.8]Davis M A. Matched-filter interrogation technique for fiber Bragg gating array. Electronics Letters,1995,31(10):822~823
    [4.9]Yu Zhihui, Yu Chongxiu, Wang Xu et al..Application of Chirped Fiber Bragg Gratings with Triangular Spectrum in the Fiber Gratings Sensor System[J],Journal of Optoelectronics·Laser,2006,17(1):54~57
    [4.10]Chen Weimin, Jiang Yi, Huang Shanglian. Image Spectrometry in Multiplexing FBG Sensors[J],Acta Optica Sinica,1998,18(8):1119~1123
    [4.11]A. D. Kersey.Fiber-optic Bragg grating strain sensor with drift-compensated high resolution interferometric wavelength-shift detection [J].Optics Letter,1993,18(1):72~ 74
    [4.12]陈清海,林玉池,王为,朱永涛,“基于Michelson干涉解调技术的光纤光栅传感系统”,光电子技术,2006,26(1):45-47
    [4.13]HO H. L.,Jin W.,Chan C. C. A fiber Bragg grating senso r for static and dynamic measurement[J].Sensors and A ctuators,2002,96:21~24
    [4.14]Govind P.Agrawal.Nonlinear fiber optics, third edition & applications of nonlinear fiber optics[M],Publishing house of electronics industry:485~487
    [4.15]Hiroki Kishikawa, et al. Proposal of all-optical wavelength-selective switching using waveguide-type Raman amplifiers and 3-db couplers[J],Light wave Technology,2005,23 (4):1631-1636
    [5.1]张微,晏康.基于LabVIEW的虚拟仪器技术及其应用.中国科技信息.49(8).2006,4:1.
    [5.2]程学庆,房晓溪,韩薪莘等《LabVIEW图形化编程与实例应用》.中国铁道出版社.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700