雌激素和idoxifene对心血管系统的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     雌激素可通过多种途径发挥对心血管系统的保护作用。除了抗氧化、
    降低低密度脂蛋白和升高高密度脂蛋白等作用外,雌激素主要通过基因
    和非基因这两种途径发挥效应。经典的基因途径主要是通过雌激素与其
    受体(ER)结合,影响基因转录,从而产生一系列的生物学效应。该途径
    潜伏期长,但作用持久。非基因途径是雌激素的一种快速效应,在数分
    钟内既可产生作用,但持续时间短。雌激素的作用机制,特别是非基因
    调节机制,非常复杂,还远不清楚。
     虽然雌激素对心血管系统及骨骼系统的保护作用已得到肯定,但妇
    女绝经后,长期行雌激素替代治疗(ERT)能显著增加患生殖系肿瘤的风
    险,困而极大地限制了它在临床上的应用。因此,一些具备雌激素对骨
    骼或心血管等系统的保护效应,但没有致生殖系肿瘤等副作用的新药就
    应运而生。这些药物的共同特点是对不同组织的ER具有选择性的激动作
    用,因而把这些药物统称为选择性雌激素受体调节剂(SERM)或雌激素类
    
    
     第四军医大学博士学位论文
     似物。开发和研究SERM 已引起人们的极大兴趣.idoxifene是新一代
     SEIUvi,它对心血管系统的作用仍需深入地研究.
     雌激素通过ER调节心血管系统的功能,但ER在动物心脏的分布特
     点及性别差异,雌激素对自身受体表达的影响等还未得到系统的研究。
     雌激素对心肌细胞钙转运及离子通道的调节,是其发挥对心脏保护作用
     的重要机制.虽然,雌激素对心肌细胞钙转运的影响有一些初步的研究,
     但结果还存在矛盾。钙通道作为调节细胞钙转运的一重要途径,雌激素
     对它的作用机制也不清楚.研究表明雌激素对血管的作用也是其心血管
     保护效应的重要方面,idoxifene作为一种新的旺IUvi,它对血管的舒张
     作用及机制,目前未见报道。
     研究目的:
     1.阐明ER在大鼠心脏的分布特点;大鼠去势后,ER在心脏的表达变化;
     应用培养的。。肌细胞,观察雌激素对ER表达的影响;
     2.探讨雌激素对大鼠心肌细胞钙转运的影响及其机制;
     3.观察雌激素和idoxifene对心肌细胞离子通道的影响;
     4.研究雌激素和idoxifene对血管的舒张作用及机制.
     主要的实验结果:
     1.实验第一部分通过免疫组织化学和细胞培养方法,观察了 ERa在大鼠
     心脏的分布特点,表现为ERa在心肌中层的分布明显少于心内膜和心
     外膜;ERa在成年大鼠心脏的表达无明显的性别差异;在双侧卵巢切
     除后,大鼠心脏ERa免疫反应阳性细胞数明显下降,在雌激素替代治
     疗后,可恢复到正常水平.BRa阳性细胞数(阳性细胞数/高倍视野)在
     正常对照大鼠的心外膜和内膜分别为:118土45,104土38;卵巢切除组:
     60土34,5609(P<0.05 vs control);雌激素替代治疗组:107士34,
     99士33(P>o刀5 Vs COtltrOI)。离体培养的心 肌细胞也有*a免疫反应阳
     性物质分布,加入 176-estrsdi*”‘m。凡)后,ERQ的染色强度明显
     增强(P<0.001),由未给药组的 45.457t6.954(U),增力口到给药组的
     6二.874上8石9二(m。
     2.实验第二部分通过膜片钳全细胞j己录和细胞内灌流枝术,发现雌激素
     4
    
     第四军医大学博士学位论文
     一
     口刁)可剂量依赖性地抑制大鼠心室肌细胞L型钙通道电流
     (I*。*)、雌激素受体阻断齐 ICI 182,780(10 pol/L),tamoxifen(l
     呷*)均不能阻断雌激素对钙通道的抑制效应;应用不能通过细胞
     膜的耦联了牛血清白蛋白的雌激素田ST习SA,100 pOUL),ie胞外灌
     流也对IC。。有抑制作用,但细胞内灌流EST-BSA却无明显的抑制效
     应。应用激光共聚焦显微镜,发现门 P七stradiol* poffe)可轻度
     升高培养的静息心肌细胞胞内钙浓度[C4勺卜荧光强度历
     Wens吨FI)值由54.2。13.6增力。到86.5土15.3(俩,P<0.OS),大约在
     二-3min内达到峰值并稳定;17 6-estradiol(10 mpow)可显著降低具有
     自发收缩活动的。C肌细胞钙瞬变幅度,荧光强度由给药前的且8.5土4.3
     减小?
Background
    It is well known that estrogen played a protective role in cardiovascular system via genomic and non-genomic pathway, but the exact mechanism is far from clear.
    Despite the apparent beneficial effects of estrogen in preventing cardiovascular diseases, it was estimated that <10% of women who might benefit from this therapy are actually taking it, due to the side effects of estrogen. Recently some new drugs have attracted much attention, which differ from estrogen in a tissue specific manner. These kinds of drugs were named as selective estrogen receptor modulator (SERM). Idoxifene is a novel SERM.
    To date, the distribution of estrogen receptor (ER) in the hearts has not been investigated; The effects of estrogen on calcium homeostasis in cardiomyocytes are not illuminated, and its mechanism is not clear. The effects of idoxifene on blood vessel and ion channel of myocytes are also needed to explore. At present study, the immunohistochemistry, patch clamp, cell culture
    
    
    
    and confocal microscope methods were used. Objective
    1. To examine the distribution of ERa in rat heart.
    2. To explore the effects of estradiol and idoxifene on calcium homeostasis of rat cardiomyocytes and its mechanism.;
    3. To investigate the effects of estradiol and idoxifene on ion channel of rat ventricular myocytes.
    4. To study the effects of estradiol and idoxifene on vessel and their
    mechanism.. Results
    1. ERa was located in rat hearts and dominated in epicardium and endocardium, there was no difference in gender. The number of ERa positive cells decreased in ovarioectomized rats, The numbers (positive cell/HP) of ERa positive cells in epicardium and endocardium are listed as following respectively, normal group: 118145, 104138; ovariectomized group: 60+34, 56129 (P<0.05 vs control); estrogen replacement group: 107134, 99133(P>0.05 vs control). The cultured cardiomyocytes could also express ERa immuno-reactive positive substance, 17(3-estradiol (10" 8mol/L) enhance the staining, from 45.457?.954 in control group, to 62.87418.692 in ovariectemized group (P<0.001 vs control).
    2. 17-estradiol(l~30 umol/L) inhibited L-type calcium current in dose-dependently manner, the inhibitory effects of estrogen were not influenced by estrogen receptor blocker, ICI 182,780 (10 umol/L) and tamoxifenQO (omol/L). Extracellular perfusion of impermiant estradiol (100 umol/L) also had inhibitory effects on L-type calcium current, but intracellular perfusion did not affect L-type calcium current at same concentration.
    3. 17-estradiol(10 umol/L) increased intracellular calcium concentration ([Ca2+]i) of quiescent cultured cardiomyocytes of rat, but decreased calcium transient of cardiomyocytes with spontaneously contraction.
    
    
    
    4. 17-estradiol(l~30 jamol/L) inhibited L-type calcium current(ICa L) and outward transient potassium current (Ilo) of rat ventricular myocytes, idoxifene also inhibited ICa L, but had little effects on Ito.
    5. 17p-estradiol and idoxifene (10"9~10~5mol/L) relax superior mesenteric artery of rats in dose-dependently fashion, the effects were blocked by nitric oxide synthase inhibitor, L-NAME. Both 170-estradiol and idoxifene (10~9~10~5mol/L) increased nitric oxide production of cultured human endothelial cell line, E304, and they (10"5mol/L) also increased immunohistochemical staining of endothelial nitric oxide synthase in E304. Conclusion
    1. ERa immuno-reactive positive substance located in rat heart in specific pattern, ERa in the cardiomyocytes could be regulated by estrogen.
    2. 17p-estradiol affected calcium homeostasis by more than one pathway.
    3. l?p-estradiol inhibited L-type calcium channel via a stereo-specific receptor at plasma membrane.
    4. Idoxifene had different effects on ion channel of rat cardiomyocytes, in comparison with estradiol.
    5. Both 17p-estradiol and idoxifene relaxed the artery of rats, and the effects were involved in nitric oxide, both of them increased NO production via genomic and non-genomic pathway.
引文
1. Bazett HC. An analysis of the time relationship of electrocaudiograms. Heart. 1918;7:353-370
    2. Berger F, Borchard U, Hafner D, Putz I. Effects of 17-estradiol on action potentials and ionic currents in male rat ventricular myocytes. Naunyn-Schmiedeberg's Arch Pharmacol 1997;356(6) :788-796
    3. Blum A and Cannon RO. Effects of oestrogens and selective oestrogen receptor modulators on serum lipoproteins and vascular function. Curr Opin Lipidol 1998; 9(6) :575-586
    4. Boulanger CM, Vanhoutte PM. G proteins and endothelium dependent relaxations. J Vasc Res 1997;34(3) :175-185
    5. Buitrago C, Massheimer V, De Boland AR. Acute modulation of Ca~(2+) influx on rat heart by 17beta-estradiol. Cell Signal. 2000 ;12(l):47-52
    6. Bush TL, Barrett-Connor E, Cowan LD, Criqui MH, Wallace RB, et al. Cardiovascular mortality and noncontraceptive use of estrogen in women: results from the Lipid Research Clinics Program Follow-up Study. Circulation 1987;75(6) :1102-1109
    7. Bush TL, Cowan LD, Barrett-Connor E, Criqui MH, Karon JM, et al. Estrogen use and all-cause mortality. Preliminary results from the Lipid Research Clinics Program Follow-Up Study. JAMA 1983;249(7) :903-906
    8. Carmeliet E. Mechanisms and control of repolarization. Eur Heart J. 1993;14,Suppl.:H3-H13.
    9. Chandrasekar B, Tanguay JF. Local delivery of 17-beta-estradiol
    
     decreases neointimal hyperplasia after coronary angioplasty in a porcine model. J Am Coll Cardiol 2000;36(6) : 1972-1978
    10. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, et al. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 1999; 103(3) :401-406
    11. Colditz GA, Willett WC, Stanpfer MJ, et al. Menopause and the risk of coronary heart disease in women. N Engl J Med, 1987; 316(19) : 1105-1110
    12. Colditz GA. Relationship between estrogen levels, use of hormone replacement therapy, and breast cancer. J Natl Cancer Inst. 1998;90(11) :814-823
    13. Drici MD, Burklow TR, Haridasse V, Glazer RI, Woosley RL. Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation 1996; 15 ;94(6) : 1471-1474
    14. Dubai DB, Zhu H, Yu J, Rau SW, Shughrue PJ, et al. Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A 2001 13;98(4) :1952-1957
    15. Fiorelli G, Gori F, Frediani U, Franceschelli F, Tanini A, Tosti-Guerra C, Benvenuti S, Gennari L, Becherini L, Brandi ML. Membrane binding sites and non-genomic effects of estrogen in cultured human preosteoclastic cells. J Steroid Biochem Mol Biol 1996;599(2) :233-240
    16. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, et al. Sequence and expression of human estrogen receptor complementary DNA. Science
    
     1986;231(4742) :1150-1154
    17. Grohe C, Kahlert K, Van EM, et al. Effects of moediprilat on oestrogen-stimulated cardiacfibroblast growth. Br J Pharmacol, 1997; 1219(7) : 1350-1354
    18. Grohe C, Kahlert S, Lobbert K, Vetter H. Expression of oestrogen receptor alpha and beta in rat heart: role of local oestrogen synthesis. J Endocrinol 1998;156(2) :Rl-7
    19. Grohe C, Kahlet S, Lobbert K, Meyer R, Lonz KsW, et al. Modulation of hypertensive heart disease by estrogen. Steroids 1996;61(4) : 201-204
    20. Han HJ, Lee YH, Park SH. Estradiol-17beta-BSA stimulates Ca~(2+) uptake through nongenomic pathways in primary rabbit kidney proximal tubule cells: involvement of cAMP and PKC. J Cell Physiol 2000;183(l):37-44
    21. Jiang C, Pooleo-Wilson PA, Sarrel PM, et al. Effects of 17 β-Estradiol on contraction, Ca~(2+) current and intracellular free Ca~(2+) in guinea pig isolated myocyte. Br J Pharmacol, 1992; 106:739-745
    22. Jiang CW, Sarrel PM, Lindsay DC, Poole-Wilson PA, Collins P. Endothelium-independent relaxation of rabbit coronary artery by 17 beta-oestradiol in vitro. Br J Pharmacol 1991; 104(4) : 1033-7
    23. Johnson BD, Zheng W, Korach KS, Scheuer T, Catterall WA, et al. Increased expression of the cardiac L-type calcium channel in estrogen receptor-deficient mice. J Gen Physiol 1997; 110(2) : 135-40
    24. Jovanovic S, Jovanovic A, Shen WK, Terzic A. Low concentrations of 17beta-estradiol protect single cardiac cells against metabolic stress-
    
     induced Ca2+ loading. J Am Coll Cardiol 2000;36(3) :948-52
    25. Karas RH, Hodgin JB, Kwoun M, Krege JH, Aronovitz M, et al. Estrogen inhibits the vascular injury response in estrogen receptor beta-deficient female mice. Proc Natl Acad Sci U S A 1999;96(26) : 15133-6
    26. Karas RH, Mendelsohn ME. Rapid vasomotor effects of estrogen: men are part of the club. Chest 1998;114(6) :1508-9
    27. Karas RH, Patterson BL, Mendelsohn ME. Human vascular smooth muscle cells contain functional estrogen receptor[J]. Circulation, 1994; 89(5) : 1943-1950
    28. Kauser K and Rubanyi GM. Potential cellular signaling mechanisms mediating upregulation of endothelial nitric oxide production by estrogen. J Vasc Res 1997; 34(3) :229-236
    29. Kim HP, Lee JY, Jeong JK, Bae SW, Lee HK, and Jo I Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in caveolae. Biochem Biophys Res Commun 1999; 263(l):257-262
    30. Kim-Schulze S, McGowan KA, Hubchak SC, Cid MC, Martin MB, et al. Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells. Circulation 1996;94(6) :1402-7
    31. Kitazawa T, Hamada E, Kitazawa K, Gaznabi AK. Non-genomic mechanism of 17 beta-oestradiol-induced inhibition of contraction in mammalian vascular smooth muscle. J Physiol (Lond.) 1997;499(1) : 497-511
    32. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA.
    
     Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996 ;93(12) :5925-5930
    33. Lee HW, Eghbali-webb M. Estrogen enhances proliferative capacity of cardiac fibroblasts by estrogen receptor and mitogen-activated protein kinase-dependent pathways. J Mol Cell Cardiol, 1998;30(7) :1359-1368
    34. Lee TM, Su SF, Tsai CC, Lee YT, Tsai CH. Cardioprotective effects of 17 beta-estradiol produced by activation of mitochondrial ATP-sensitive K~+ Channels in canine hearts. J Mol Cell Cardiol 2000;32(7) : 1147-1158
    35. Li HY, Bian JS, Kwan YW, Wong TM. Enhanced responses to 17beta-estradiol in rat hearts treated with isoproterenol: involvement of a cyclic AMP-dependent pathway. J Pharmacol Exp Ther 2000;293(2) :592-8
    36. Lindner V, Kim SK, Karas RH, Kuiper GG, Gustafsson JA, et al. Increased expression of estrogen receptor-beta mRNA in male blood vessels after vascular injury. Circ Res 1998;83(2) :224-229
    37. Liu B, Hu DY, Wang JY, Liu XL. Effects of 17-estradiol on early afterdepolarizations and L-type Ca~(2+) currents induced by endothelin-1 in guinea pig muscles and ventricular myocytes. Methods Find Exp Clin. Pharmacol. 1997;19(1) : 19-25
    38. Liu DW, Ant C. Characteristics of the delayed rectifier current (Ikr and Iks) in canine ventricular epicardial, midmyocardial and endocardial myocytes: A weaker Iks contributes the longer action potential of the M cell. Circ Res. 1995;76(3) :351-365
    39. Lou H, Martin MB, Stoica A, Ramwell PW, Foegh ML. Upregulation of estrogen receptor-alpha expression in rabbit cardiac allograft. Circ Res
    
     1998;83(9) :947-951
    40. Makkar RR, Fromm BS, Steinman RT, Meissner MD, Lehmann MH. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 1993 ;270(21) :2590-2597
    41. Marino M, Pallottini V, Trentalance A. Estrogens cause rapid activation of IP3-PKC-α signal transduction pathway in HEPG_2 cells. Biochemical and Biophysical Research Communications. 1998;245(l):254-258
    42. Marsden J, Baum M, Sacks NPM. Hormone replacement therapy in women with previous breast cancer. Trends Endocrinol Metab. 1998;9(2) :32-38
    43. Minami T, Oomura Y, Nabekura J, Fukuda A. 17p-Estradiol depolarization of hypothalamic neurons is mediated by cyclic AMP. Brain Res 1990;519(1-2) :301-307
    44. Mistry DK, Garland CJ. Nitric oxide (NO)-induced activation of large conductance Ca~(2+)-dependent K~+ channels (BKCa) in smooth muscle cells isolate d from the rat mesenteric artery. Br J Pharmacol 1998;124(6) : 1131-1140
    45. Mitlak BH, Cohen FJ. Selective estrogen receptor modulators: a look ahead. Drugs 1999;57(5:653-663
    46. Moini H, Bilsel S, Bekdemir T, Emerk K. 17 beta-Estradiol increases intracellular free calcium concentrations of human vascular endothelial cells and modulates its responses to acetylcholine. Endothelium 1997;5(l):11-9
    47. Moncada S, Higgs EA. The L-Arginine-nitric oxide pathway. N Engl J
    
     Med 1993;329:2002-2012
    48. Monje P, Boland R. Characterization of membrane estrogen binding proteins from rabbit uterus. Mol Cell Endocrinol 1999;147(l-2) :75-84
    49. Mugge A, Riedel M, Barton M, Kuhn M, Lichtlen PR. Endothelium independent relaxation of human coronary arteries by 17 beta-oestradiol in vitro. Cardiovasc Res 1993;27(11) :1939-1942
    50. Nakajima T, Iwasawa K, Oonuma H, Morita T, Goto A, Wang Y, Hazama H. Antiarrhythmic effect and its underlying ionic mechanism of 17β-estradiol in cardiac myocytes. Br J Pharmacol 1999;127(2) :429-440
    51. Nealen ML, Vijayan KV, Bolton E, Bray PR Human Platelets Contain a Glycosylated Estrogen Receptor beta. Circ Res 2001;88(4) :438-442
    52. Nechmad A, Merin G, Schwalb H, Shimon DV, Borman JB, et al. Estrogen induces nitric oxide-mediated vasodilation of human mammary arteries in vitro. Nitric Oxide 1998;2(6) :460-466
    53. Noble D. Ionic mechanisms in cardiac electrical activity. In: Cardiac Electrophysiology: From Cell to Bedside (2nd ed.). Philadelphia, PA: Saunders, 1995,305-313
    54. Noe G, Cheng YC, Dabkie M, et al. Tissue uptake of hormone-binding globulin and its influence on ligand kinetics in the adult female rat. Biol Reprod. 1992;47(6) :970-976
    55. Nuedling S, Kahlert S, Loebbert K, Doevendans PA, Meyer R, et al. 17 Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in-vitro and in-vivo. Cardiovasc Res 1999;15;43(3) :666-674
    
    
    56. Nuttall ME, Fisher PW, Suva LJ, Gowen M. The selective oestrogen receptor modulators idoxifene and raloxifene have fundamentally different cell-specific oestrogen-response element (ERE)-dependent/independent mechanisms in vitro. Eur J Cancer. 2000;36 Suppl 4:63-64
    57. Ogata R, Inoue Y, Nakano H, Ito Y, Kitamura K. Oestradiol-induced relaxation of rabbit basilar artery by inhibition of voltage-dependent Ca channels through GTP-binding protein. Br J Pharmacol 1996;117(2) :351-359
    58. Okabe K, Okamoto F, Kajiya H, Takada K, Soeda H. Estrogen directly acts on osteoclasts via inhibition of inward rectifier K~+ channels. Naunyn Schmiedebergs Arch Pharmacol 2000;361(6) :610-620
    59. Orimo A, Inoue S, Ikegami A, Hosoi T, Akishita M, et al. Vascular smooth muscle cells as target for estrogen. Biochem Biophys Res Commun 1993;195(2) :730-736
    60. Otter D, Austin C. Effects of 17beta-oestradiol on rat isolated coronary and mesenteric artery tone: involvement of nitric oxide. J Pharm Pharmacol 1998;50(5) :531-538
    61. Panza JA. Endothelial dysfunction in essential hypertension.Clin Cardioll997;20(11 Suppl Ⅱ): Ⅱ26-33
    62. Picotto G, Massheimer V, Boland R. Acute stimulation of intestinal cell calcium influx induced by 17 beta-estradiol via the cAMP messenger system. Mol Cell Endocrinol 1996; 119(2) : 129-134
    63. Prakash YS, Togaibayeva AA, Kannan MS, Miller VM, Fitzpatrick LA,
    
     et al. Estrogen increases Ca~(2+) efflux from female porcine coronary arterial smooth muscle. Am J Physiol 1999;276(3 Pt 2) :H926-H934
    64. Rautaharju PM, Zhou SH, Wong S, Calhoun HP, Berenson GS, et al. Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 1992;8(7) :690-695
    65. Richard EW, Darkow DJ. Estrogen Relaxes Coronary Arteries by Opening BK_(Ca) Channels Through a cGMP-Dependent Mechanism. Cir Res. 1995;77(11) :936
    66. Rosenfeld CR, White RE, Roy T, Cox BE. Calcium-activated potassium channels and nitric oxide coregulate estrogen-induced vasodilation. Am J Physiol Heart Circ Physiol 2000;279(1) :H319-H328
    67. Rubio-Gayosso I, Sierra-Ramirez A, Garcia-Vazquez A, Martinez-Martinez A, Munoz-Garcia O, et al. 17Beta-estradiol increases intracellular calcium concentration through a short-term and nongenomic mechanism in rat vascular endothelium in culture. J Cardiovasc Pharmacol 2000;36(2) : 196-202
    68. Ruehlmann DO, Steinert JR, Valverde MA, Jacob R, Mann GE. FASEB J. 1998;12(7) : 613-619
    69. Sarrel PM. Ovarian hormones and the circulation. Maturitas 1990;12(3) :287-289
    70. Shaw L, Taggart MJ, Austin C. Mechanisms of 17 beta-oestradiol induced vasodilatation in isolated pressurized rat small arteries. Br J Pharmacol 2000;129(3) :555-565
    71. Sicouri S, Antzelech C. Subpopulation of cells with unique electro-
    
     physiolgical properties in the deep subepicardium of the canine ventricle the M cell. Circ Res,1991;68(6) : 1427-49
    72. Singh AK, Schultz BD, Katzenellenbogen JA, Price EM, Bridges RJ, et al. Estrogen inhibition of cystic fibrosis transmembrane conductance regulator-mediated chloride secretion. J Pharmacol Exp Ther 2000;295(1) : 195-204
    73. Singh AK, Schultz BD, Katzenellenbogen JA, Price EM, Bridges RJ, Bradbury NA. Estrogen inhibition of cystic fibrosis transmembrane conductance regulator-mediated chloride secretion. J Pharmacol Exp Ther 2000;295(1) : 195-204
    74. Sudhir K, Chou TM, Mullen WL, Hausmann D, Collins P, et al. Mechanisms of estrogen-induced vasodilation: in vivo studies in canine coronary conductance and resistance arteries. J Am Coll Cardiol 1995;26(3) :807-814
    75. Tanabe S, Hata T, Hiraoka M. Effects of estrogen on action potential and membrane currents in guinea pig ventricular myocyte. Am J Physiol. 1999;277 (2 Pt 2) :H826-H833
    76. Teoh H, Quan A, Leung SW, Man RY. Differential effects of 17beta-estradiol and testosterone on the contractile responses of porcine coronary arteries. Br J Pharmacol 2000;129(7) :1301-1308
    77. Tschudi MR, Mesaros S, Luscher TF, Malinski T. Direct in situ measurement of nitric oxide mesenteric resistance arteries-increased decomposition by superoxide in hypertension. Hypertension 1996;27(1) :32-35
    
    
    78. Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, et al. Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science 1999;285(5435) :1929-1931
    79. Wang XQ, Jiang Y, Zhong GG, Yang GY. Influence of estradiol benzoate on the electric activity of primary cultured rat heart cells.Chin J Endemiol 1990;9(2) : 347-349
    80. Wu WX, Ma XH, Smith GC, Nathanielsz PW. Differential distribution of ERalpha and ERbeta mRNA in intrauterine tissues of the pregnant rhesus monkey. Am J Physiol Cell Physiol 2000;278(1) :C190-C198
    81. Yang S, Bae L, Zhang L. Estrogen increases eNOS and NOx release in human coronary artery endothelium. J Cardiovasc Pharmacol 2000;36(2) :242-247
    82. Yoon BK, Oh WJ, Kessel B, Roh CR, Choi D, et al. 17Beta-estradiol inhibits proliferation of cultured vascular smooth muscle cells induced by lysophosphatidylcholine via a nongenomic antioxidant mechanism. Menopause 2001;8(l):58-64
    83. Yue TL, Vickery-Clark L, Louden CS, et al. Selective estrogen receptor modulator idoxifene inhibits smooth muscle cell proliferation, enhances reendothelialization, and inhibits neointimal formation In vivo after vascular injury. Circulation 2000;102(19 Suppl 3) : Ⅲ281-8
    84. Zhai P, Eurell TE, Cooke PS, Lubahn DB, Gross DR. Myocardial ischemia-reperfusion injury in estrogen receptor-alpha knockout and wild-type mice. Am J Physiol Heart Circ Physiol. 2000;278(5) :H1640-H1647
    
    
    85. Zhai P, Eurell TE, Cotthaus R, Jeffery EH, Bahr JM, Gross DR. Effect of estrogen on global myocardial ischemia-reperfusion injury in female rats. Am J Physiol. 2000;279(6):H2766-H2775
    86.张翼,宋立林,谷双振,卢慎圭,周兆年.雌二醇抑制豚鼠心室肌细胞内向整流和延迟整流钾通道电流.中国药理学报 1999;20(7):631-634
    87.周士胜,臧益民.介绍一种方便的细胞内灌流装置.中国病理生理学杂志 1998;14(2):116-117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700