缺血对M细胞缓慢激活型延迟整流钾电流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:心肌细胞在电生理特性上是不均一的,在心室壁的中层存在一种电生理特性有别于心内、外膜层细胞的心肌细胞,名为M细胞。M细胞的动作电位曲线呈尖峰圆顶形;0位相最大上升速率快;1、2位相间的切迹较明显;动作电位时程较长,而且频率依赖性明显;静息电位负值较大。M细胞电生理独特性的主要离子基础是Iks电流较弱。Iks电流是心肌细胞复极的主要外向电流,它的异常变化,与心律失常的发生有很大的关系。本文拟研究缺血时心肌细胞Iks电流的变化情况。
     方法:利用全细胞膜片钳方法分析急性分离的M细胞和心内、外膜细胞的Iks通道尾电流密度。利用不同成份细胞浴槽液模拟心肌细胞正常与缺血状态,并记录相应状态下Iks尾电流密度。观察缺血对Iks电流的影响。
     结果:在正常状态,M细胞的Iks电流明显小于心内、外膜层细胞。在缺血状态,三层细胞的Iks电流均较正常状态明显减弱;三层细胞的Iks电流减弱程度不一,M细胞的减弱程度明显大于心内、外膜层细胞。
     结论:缺血时,心肌细胞的Iks电流减弱,使得细胞动作电位复极中后期延长,容易出现EAD并引发TdP;由于M细胞的Iks电流减弱程度明显大于心内、外膜细胞,造成心室跨壁复极离散度增加,有利于折返的发生,使得心律失常得以持续。因此,增强Iks电流对控制缺血时心律失常的发生、发展是有利的。
Objective: Electrophysiological heterogeneity was observed within ventricle. A unique population of cells (M cells) exists in the midmyocardial layers of ventricle. The hallmark of the M cell: prominent spike-dome morphology of action potentials; the maximal rate of rise of the action potential upstroke; prominent phase 1 repolarization; prolongation of APD and more pronounced APD-rate relationship; decrease of the rest membrane potential. The primarily ionic basis for its electrophysiological characteristics of the M cells is a weaker Iks. Iks is the main outward current contribution to action potential repolarization. It shows a nearly relationship between abnormal Iks current and arrhythmia. In this article, I will study the effect of ischemia on Iks current of cardiac myocytes.
    Methods: The whole cell recording patch clamp technique was used to investigate the Iks tail current density of enzymatic isolated M cell, sub-endocardial and sub-epicardial myocytes. Different bath solution component was used to simulate the normal and ischemic status and Iks tail current was measured under each status.
    Results: Iks current was significantly smaller in M cell than in sub-endocardial myocytes or sub-epicardial under normal status. Iks current of all three layers myocytes was significantly smaller under ischemic status
    ?3 ?
    
    
    than that under normal status. But the decrease of three layers myocytes is not in equal extent, the decrease of M cell was significantly greater than that of sub-endocardial myocytes and sub-epicardial.
    Conclutions: Under ischemic condition, the decrease of Iks could prolong the mid-late repolarization phase of APD. It could cause BAD and then arouse TdP. Because the decrease of M cell was significantly greater than that of sub-endocardial myocytes and sub-epicardial myocytes, it could increase TDR. Cardiac arrhythmias could last due to reentrance that secondary the increase of TDR. So, to increase Iks current is a good idea to control the occurring and development of cardiac arrhythmias.
引文
1. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle the M cell. Circ Res, 1991,68:1729-1741
    2. Drouin E, Charpentier F, Gauthier C, et al. Evidence for the presence of M cells in the human ventricle. PACE, 1993,16:876-876
    3. Drouin E, Charpentier F, Gauthier C, et al. Electrophysiologic characteristic of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol, 1995,26:185-192
    4. Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations: the role of Mcells in the generation of U waves, triggered activity and torsade de points. J Am Coil Cardiol, 1994,23:259-277
    5. Antzelevitch C, Nesterenko VV, Yan GX. Role of M cells in acquired long QT syndrome, U waves, and Torsade de pointes, J Electrocardiol, 1995,28(suppl): 131-138
    6. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res, 1993,72:671-687
    7. Antzelevitch C, Sicouri S, Litovsky SH, et al. Heterogeneity with the ventricular wall: electrophysiology and pharmacology of epicardial, endocardial and M cells. Circ Res, 1991,69:1427-1449
    8. Noble D, Tsien R.W. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. Journal of Physiology, 1969,200:205-231
    
    
    9. Sanguinetti M.C, Jurkiewicz N. K. Two components of cardiac delayed rectifier K~+ current: Differential sensitivity to block by class Ⅲ antiarrhythmic agents. Journal of General Physiology, 1990,96(1):195-215
    10. Sanguinetti M.C, Jurkiewicz N. K. Delayed rectifier outward K~+ current is composed of two currents in guinea pig atrial cells. American Journal of Physiology, 1991,260:H393-399
    11. Li GR, Feng J, Yue L, et al. Evidence for two components of delayed rectifier K~+ current in human ventricular myocytes. Circ-Res, 1996; 78(4): 689-696
    12. Liu-DW; Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endoeardial myoeytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. 1995 Mar; 76(3): 351-365
    13. Gary A. Regional differences in Ik density in canine left ventricle: role of Iks in electrical heterogeneity. Am. J. Physiol, 1995,268:H604-H613
    14. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the Long-QT syndrome. Effects of β-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarisation and Torsade de Pointes. Circulation, 1998,98:2314-2322
    15. Bosch R, Gaspo R, Busch A, et al. Effects of the chromanol 293B, a selective blocker of the slow component of the delayed rectifier K~+ current on repolarisation in human and guinea pig ventricular myocytes. Cardiovas Res, 1998,38:441-450
    16. Varro A, Balati B, Iost N, et al. The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J Physiol, 2000,15( 523 Pt1): 67-81
    
    
    17. Sicouri S, Antzelevitch C. Drug-induced afterdepolarizations and triggered activity occur in a discrete subpopulation of ventricular muscle cells (M cells) in the canine heart: quinidine and digitalis. J Cardiovasc Electrophysiol. 1993,4(1):48-58
    18. Viswanathan PC, Shaw RM, Rudy Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation, 1999, 99(18): 2466-2474
    19. Ravens U, Wettwer E. Electrophysiological aspects of changes in heart rate. Basic-Res-Cardiol, 1998, 93 (Suppl 1): 60-65
    20. Jurkiewica NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class Ⅲ antiarrhythmic agent: specific lock of rapidly activating delayed rectifier K~+ current by dofetilide. Circ Res, 1993,72:75-83
    21. Groh WJ, Gibson KJ, Maylie JG, et al. Comparison of the rate-dependent properties of the class Ⅲ antiarrhythmic agents azimilide (NE-10064) and E-4031: considerations on the mechanism of reverse rate-dependent action potential prolongation. J Cardiovasc Electrophysiol, 1997,8(5): 529-536
    22. Klapperstuck M, Markwardt F. The new antiarrhythmic substance AWD 23-111 inhibits the delayed rectifier potassium current (IK) in guinea pig ventricular myocytes. Pharmazie, 1999, 54(1): 61-68
    23. Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of KvLQT1 and mink(IsK)proteins to form cardiac Iks potassium channel. Nature, 1996,384:80-83.
    
    
    24. Barhanin J, Lesage F, Guillemare E, et al. K(V)LQT1 and IsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996 Nov 7;384(6604):78-80.
    25. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 models of the long-QT syndrome. Circulation, 1997,96:2038-2047
    26. Antzelevitch C, Sun ZQ, Zhang ZQ, et al. Cellular and ionic mechanisms underlying erythromycin-induced long QT and torsade de pointes. J Am Coll Cardiol, 1996,28:1836-1848
    27. Sicouri S, Antzelevitch C. Afterdepolarizations and triggered activity develop in a select population of cells(M cells)in canine ventricular myocardium: the effects of acetylstrophanthidin and Bay K 8644. PACE pacing clinelectrophysiol, 1991,14:1714-1720
    28. Yameda MR, Corr S. Effeects of β-adrengic receptor activation on intracellular calcium and membrance potential in adult cardial myocytes. J Cardiovasc electrophysiol, 1992,2:209-234
    29. 丁国良,崔长琮,杨琳,等.缺血对犬心室肌M细胞外向钾电流的影响.中华心律失常学杂志1999,3(3):220-221
    30. 曹世平.降钙素基因相关肽对缺血性和缺血再灌注性心律失常的作用及其电生理、离子机制研究.博士论文.西安医科大学.1998
    31. Neher E, Sakmann B. Single channel currents recorded from membrane of denervated frog muscle fibers. Nature, 1976,260:799-802
    32. Valenzuela C, Bennett PB: Voltage and use dependent modulation of calcium channel current in guinea pig ventricular cells by amiodarone and des-oxo-amiodarone. J Cardiovasc Pharmacol, 1991,17:894-902
    
    
    33. Tania Stankovicora, Monika S Zilard, I. De Scheerder, et al. M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovascular Research, 2000,45:952-960
    34. Szabo, March, Scherlag, et al. Simultaneous demestration of early and delayed afterpolarizations in Ca~(2+)-load cardial cells. JACC, 1989,13:185A
    35.张国强.M细胞的电生理特性——豚鼠左心室M细胞的实验研究.中国现代医学杂志,1998,7:40-41
    36.陈前,崔长琮,杨琳,等.降钙素基因相关肽对缺血-再灌注心肌细胞电生理的影响.中华心律失常学杂志 2001,5(1):49
    37.邹路芸,蒋文平.缺血/再灌注对心室肌细胞膜离子通道的影响.中国心脏起博与心电生理杂志,1999,13(4):230-233
    38. Matsuura H, Ehara T. Selective enhancement of the slow component of delayed rectifier K+ current in guinea-pig atrial cells by external ATP. J Physiol Lond. 1997,15( 503, Pt 1): 45-54
    39. Sakaguche Y, Cui CT, Sen L. Acute effects of thyroid hormone on inward rectifier potassium channel currents in guinea pig ventricular myocytes. Endocrinology, 1996,137(11):4744
    40. Jeffrey R, Paul B, Dan M. Time-dependent outward current in guinea pig ventricular myocytes__gating kinetics of the delayed rectifier. J Gen Physiol, 1990,96:835-863
    41.刘华军,陈灏珠,杨学义,等.低氧复氧对豚鼠心肌细胞钾通道电流及钙通道电流的影响.中华心血管病杂志,1997,25(2):85-88
    42.别毕华,张珍祥,徐永健,等.慢性低氧对豚鼠右心室肌细胞钙、钾电流的影响.心理学报,1999,51(5):527-532
    43. Banyasz T, Magyar J, Kortvely A, et al. Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells. Naunyn Schmiedebergs Arch Pharmacol, 2001,363(4):383-390
    
    
    44. Sanguinetti MC, Jurkiewicz NK. Role of external Ca2+ and K+ in gating of cardiac delayed rectifier K+ currents. Pflugers-Arch. 1992, 420(2): 180-186
    45. Tohse N, Kameyrma M, Irisawa H. Intracellular Ca2+ and protein kinase C modulate K+ current in guinea pig heart cells. Am J Physiol, 1987,253(22):H1321-H1324
    46. Sicouri S, Fish J, Antzelecitch C. Distribution of M cells in the canine ventricle. J Cardiovasc Electrophysiol, 1994,5(10):824-837
    47. Burashnikov A, A ntzelecitch C. α-agonists produce poopsite effect on action potential duration in Purkinje and M cells isolated from the canine left ventricle. PACE, 1995,18(Pt Ⅱ):935
    48. Burashnikov A, Antzelecitch C. Mechanisms underlying early afterdepolarization activity are different in canine Purkinje and M cell preparations: role of intracellular calcium. Circulation, 1996,94(8):Ⅰ-527
    49. Yan GX, A ntzelecitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long QT syndrome. Circulation, 1998,98( 18): 1928-1936
    50. Watanabe Y. Purkinje repolazation as a possible cause of the U wave in the electrocardiogram. Circulation, 1975,51:1030-1037
    51. Sicouri S, Moro S. Elizari MV. d-Sotalol induces marked action potential prolongation and early afterdepolarizations in M but not epicardial or endocardial cells of the canine ventricle. J Cardiovasc Pharmacol Ther, 1997,2(1):27-38
    52. Nnyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiologic properties of epicardium, midmyocardium and encardium: in vitro and in vivo correlatios. Circulation, 1996,94(8): 1981-1988
    
    
    53. Li GR, Feng J, Carrier M, et al. Transdmural electrophysiologic heterogeneity in the human ventricle. Circulation, 1995,92(pT Ⅰ): Ⅰ-158
    54. Sasyniuk BI, Brunet S. Torsade de pointes induced by quinidine, d-sotalol, and E-4031 in the isolated rabbit heart:importance of interval dependent dispersion of repolarization. PACE, 1995,18(pT Ⅱ): Ⅱ-904
    55. Sicouri S, Moro S, Litovsky SH, et al. Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol, 1997,8(11): 1269-1279
    56. Habbab MA, EL-Sherif N. TU alternans, long QTU, and torsade de pointes: clinical and experimental observations. PACE, 1992,15(6):916-931
    57. Zareba W, Moss AJ, Le Cessie S, et al. T wave alternans in idiopathic long QT syndrome. JACC, 1994,23(7): 1541-1546
    58. 张存仄,李运田,陆再英,等.不同血钾水平时也洛尔对在体跨室壁心肌复极不均一性的影响.同济医科大学学报,2001,30(1):32-35
    59. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am Heart J, 1957,54(1):59-68
    60. Keating M, Atkinson D, Dunn C, et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science, 1991,252:704-709
    61. Keating M. The long QT syndrome: a review of recent molecular genetic and physiologic discoveries. Medicine, 1996,75(1 ): 1-5
    
    
    62. Chinn K. Two delayed rectifiers in guines pig ventricular myocytes distinguished by tail current kinetics. J Pharmacol Exp Ther, 1993;264(2):553
    63. Gintant-GA. Two components of delayed rectifier current in canine atrium and ventricle. Does IKs play a role in the reverse rate dependence of class Ⅲ agents? Circ-Res. 1996 Jan; 78(1): 26-37
    64. Sanguinetti MC, Jiang C, Curran ME, et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995 Apr 21 ;81 (2):299-307.
    65. Wang-DW, Kiyosue-T, Sato-T, et al. Comparison of the effects of class Ⅰ anti-arrhythmic drugs, cibenzoline, mexiletine and flecainide, on the delayed rectifier K+ current of guinea-pig ventricular myocytes. J-Mol-Cell-Cardiol. 1996 May; 28(5): 893-903
    66. Fiset-C, Drolet-B, Hamelin-BA, et al. Block of IKs by the diuretic agent indapamide modulates cardiac electrophysiological effects of the class Ⅲ antiarrhythmie drug dl-sotalol. J-Pharmacol-Exp-Ther. 1997 Oct; 283(1): 148-56
    67. Baskin-EP, Lynch-JJ. Differential atrial versus ventricular activities of class Ⅲ potassium channel blockers. J-Pharmacol-Exp-Ther. 1998 Apr; 285(1): 135-42
    68. 马玉萍、郝雪梅、张文钦等.CPU86017 对豚鼠心室肌细胞缓慢激活型延迟整流钾通道的抑制作用.中国药科大学学报,2000,31(2):121-125
    69. Fermini-B, Jurkiewicz-NK, Jow-B, et al. Use-dependent effects of the class Ⅲ antiarrhythmic agent NE-10064 (azimilide) on cardiac repolarization: block of delayed rectifier potassium and L-type calcium currents. J-Cardiovasc-Pharmacol. 1995 Aug; 26(2): 259-71
    
    
    70. Salata-JJ, Jurkiewicz-NK, Wang-J, et al. A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol-Pharmacol. 1998 Jul; 54(1): 220-30
    71. Matsumoto-Y; Ogura-T; Uemura-H; Saito-T. et al. Histamine H1-receptor-mediated modulation of the delayed rectifier K+ current in guinea-pig atrial cells: opposite effects on IKs and IKr. Br-J-Pharmacol. 1999 Dec; 128(7): 1545-53
    72. Zhou-YY, Yao-JA, Tseng-GN. Role of tyrosine kinase activity in cardiac slow delayed rectifier channel modulation by cell swelling. Pflugers-Arch. 1997 Apr; 433(6): 750-7
    73. Rees-SA, Vandenberg-JI, Wright-AR, et al. Cell swelling has differential effects on the rapid and slow components of delayed rectifier potassium current in guinea pig cardiac myocytes. J-Gen-Physiol. 1995 Dec; 106(6): 1151-70
    74. 徐长庆、李玉荣、孙可青等.活性氧对豚鼠心肌细胞不同钾通道离子电流的影响.中国病理生理杂志,1999,15(10):773-776
    75. Chadwick CC, Ezrin AM, O'Connor B, ed al. Identification of a specific radioligand for the cardiac rapidly activating delayed rectifier K~+ channel. Circ Res, 1993,72:707-714
    76. Tande PM, Bjomstad H, Yang T, et al. Rate-dependent class Ⅲ antiarrhythmic action, negative chronotropy, and positive inotropy o a novel Ik blocking drug, UK-68,798: potent in guinea pig but no effect in rat myocardium. J Cardiovasc Pharmacol. 1990,16:401-410
    77. Follmer CH, Colatsky TJ. Block of delayed rectifier potassium current, iK, by flecainide and E-4031 in cat ventricular myocytes. Circulation, 1990,82:289-293
    
    
    78. Salata JJ, Jurkiewicz NK, Jow B, ea al. Evidence for the slowly activating component of the delayed rectifier K~+ current(iKs) in rabbit ventricular myocytes. Biophys J, 1995, 68(supp12, pt 2):A147
    79. Wang Z, Fermini B, Nattel S. Rapid and slow componets of delayed rectifier current in human atrial myocytes. Cardiovasc Res, 1994,28:1540-1546
    80. Konarzewska H, Peeters GA, Sanguinetti MC. Repolarizing K~+ currents in nonfailing human hearts. Similarties between right septal subendocardial and left subepicardial ventricular myocytes. Circulation, 1995,92:1179-1187
    81. Ajos GJ, Wettwer E, Metzger F, et al. Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol, 1996,491:31-50
    82. Veldkamp MW. Is the slowly activating component of the delayed rectifier current, IKs' absent from undiseased human ventricular myocardium? Cardiovasc Res, 1998, 40(3): 433-435
    83. Matin CL, Chinn K. Contribution of delayed rectifer and inward rectifier to repolarization of the action potential:pharmacologic separation. J Cardiovasc Pharmacol, 1992,19:830-837
    84. 祁小燕,施渭彬,汪海宏,等.兔心室肌细胞电生理异质性研究——血对动作电位和钾流的影响.Acta Physiologica Sinica,2000,52(5):360-364
    85. 陈前.缺血及缺血预适对犬心外膜细胞、M细胞和心内膜细胞电生理特性的影响.博士论文.西安医科大学.2001
    86. Kurz RW, Lin X, Franz MR. Increased dispersion of ventricular repolarization and ventricular tachyarrhythmias in the globally ischaemia rabbit heart. Eur Heart J, 1993,14:1561
    
    
    87. Furukawa T, Kimura S, Furukawa N, et al. Role of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia. Circ Res. 1991 ,68(6): 1693-702.
    88.尹炳生,喻德旷,张暋,等.心肌细胞TAP异常的计算机模拟.电子工程师杂志,1999年增刊:585-587
    89. Terzic A, Tung RT, Kurach Y. Nucleolide regulation of ATP sensitive potassium channels. Cardiovasc Res, 1994,28:746
    90. Elsherief N. Early afterpolarizations and arrhythemias experimental and clinical aspects. Arch Mal Coeur Vaiss, 1991,84:227
    91.胺碘酮和索他洛尔对心肌复极不均一性的影响李运田 张存泰 陆再英 中华心律失常学杂志2000,4(4):284-288
    92.张存泰 李运田 陆再英.硫酸镁对家兔在体心脏跨室壁心肌复极不均一性的影响.中华心血管病杂志,2001,29(11):680-682

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700