逼尿肌兴奋性与逼尿肌不稳定的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逼尿肌不稳定是泌尿外科最常见的一种膀胱功能障碍性疾病,发生率极高,主要表现为储尿期膀胱逼尿肌出现无抑制收缩而引起尿频、尿急、尿失禁等症状。绝大多数原因不明,针对病因治疗显得极为困难。
    逼尿肌不稳定主要表现为逼尿肌的无抑制收缩,肌肉的收缩是通过兴奋-收缩耦连机制来实现的,逼尿肌自身兴奋性在逼尿肌不稳定的发生中起着重要作用。细胞膜上K+电流参与膜电位的形成及动作电位末期复极,对细胞兴奋性的产生起着决定性的作用。Ca2+作为细胞内最普遍和最重要的信号转导成分,介导兴奋收缩耦联、信号转导、神经递质的释放等各种细胞功能,对增加和维持平滑肌细胞兴奋性和收缩力起重要作用。本研究通过对逼尿肌兴奋性的特性进行观察,了解逼尿肌兴奋性与逼尿肌不稳定之间的关系,并对逼尿肌不稳定时逼尿肌中钙通道和钾通道与逼尿肌兴奋性之间的关系进行了初步探讨。主要实验结果及结论如下:
    1. 我们同时制作了最常见的特发性逼尿肌不稳定、BOO和骶髓上脊髓损害三种模型,对逼尿肌不稳定时逼尿肌组织功能与结构变化的共性进行初步探讨。逼尿肌组织在一定张力下都可引起收缩,表明逼尿肌组织是一种在特定前负荷下具有自发兴奋并引起收缩的组织。逼尿肌不稳定各组肌条在较小的张力下即出现自发性收缩;在相同前负荷下,不稳定组肌条自发性收缩频率较正常组增高。提示逼尿肌不稳定时逼尿肌自发兴奋能力增高。细胞间出现大量锯齿状的胞突连接以及较多的桥粒与缝隙连接。这种细胞间连接变化引起的兴奋性传导易化是逼尿肌不稳定发生、发展的结构基础。
    2. 逼尿肌自身“肌源性”改变在逼尿肌不稳定的发生中起着重要作用,发生逼尿肌不稳定时存在一些共同的病理生理改变:1.功能基础:逼尿肌在特定条件下都具有自发性收缩的能力,DI逼尿肌在较小的前负荷下即可出现自发性兴奋和收缩;在同等的前负荷下DI逼尿肌的自发收缩频率更高;2. 结构基础:逼尿肌不稳定时细胞间出现的大量锯齿状的胞突连接以及较多桥粒与缝隙连接形成了逼尿肌不稳定的结构基础。兴奋性是肌源性因素中的一个重要组成部分。逼尿肌自身兴奋性的变化在逼尿肌不稳定的发生中起着重要作用。
    3. 膜片钳技术能够精确直观地对细胞膜离子通道活动进行分析,直接得到有关细胞跨膜电位及电流变化信息。我们采用组织切片膜片钳全细胞记录技术,盲法获得逼尿肌平滑肌细胞,对逼尿肌不稳定时逼尿肌细胞兴奋性变化进行观察。发现BOO和
    
    SCT组中逼尿肌细胞兴奋性的升高与细胞静息电位升高(绝对值减小)有关。IDI组上述变化不明显,说明对于不同类型的逼尿肌不稳定,其兴奋性改变原因不尽相同。BOO、SCT和IDI组逼尿肌细胞在阈强度刺激下即可诱发动作电位产生,而正常对照组则需将刺激强度增加至120%阈强度方可诱发出动作电位。这说明逼尿肌不稳定时细胞细胞兴奋性上升,对刺激的反应性增强。
    4. 在细胞浴液中分别加入TEA(钙激活钾通道阻滞剂)和4-AP(延迟整流钾通道阻滞剂)可使逼尿肌细胞钾电流明显减弱,但是在细胞浴液中同时加入TEA和4-AP不能完全抑制逼尿肌钾电流的产生,说明逼尿肌细胞钾电流由多种电流成分组成,以钙离子依赖钾电流(KCa)和内向整流钾电流(KDR)为主,但尚有其他钾电流成分的存在。
    5. 膀胱流出道梗阻组和脊髓横断组中逼尿肌细胞钾通道平均外向电流较正常对照组明显下降。说明逼尿肌细胞钾电流降低是产生逼尿肌不稳定的重要原因。4-AP对BOO和SCT组中逼尿肌细胞钾电流的抑制作用较Stable组明显。加入TEA后各组间钾电流变化相差不明显。说明延迟整流钾电流在逼尿肌不稳定的产生中具有重要作用,钙激活钾电流作用不明显。
    6. Kv2.1在BOO和SCT组逼尿肌中的表达低于正常对照组,提示Kv家族钾通道在逼尿肌不稳定的产生中占有重要地位。BKCa、SKCa在大鼠膀胱逼尿肌中均有表达,但各组间二者表达无明显差异。KCa通道在逼尿肌不稳定发生中的具体作用仍需进行深入研究。KATP在BOO组和SCT组中的表达较正常组明显升高,而无明显病因的不稳定组中,KATP变化则不明显。这可能与BOO和SCT导致局部逼尿肌组织发生较明显的病理生理与结构变化有关。
    7. 根据L型和T型钙通道的电压依赖失活及激活特性,可以使用不同钳制电压加以区分。IDI组、BOO组和SCT组中逼尿肌细胞钙通道峰电流强度较正常对照组均有明显提高。L和T型电流均有明显增加,T型钙电流成分较正常组明显增加。提示在逼尿肌不稳定时钙电流的升高起着重要作用,其中T型电流在其中起主要作用。
    8. 正常组中L型钙通道含量明显多于T型钙通道,BOO组、SCI组和不稳定组中L和T型均有不同程度增加,T型钙通道增加更明显。提示在正常生理条件下,平滑肌中钙通道以L型钙通道为主。钙通道的变化在逼尿肌不稳定的产生中起着重要作用,其中T型钙通道的作用更加明显。
    9. 不稳定组、BOO组和SCT组平滑肌细胞内游离 Ca2+含量在静息状态下较正常对照组明显增高。这是由于逼尿肌不稳定时于钙通道的表达和功能增强,钙离子内流增多所致。
Background: Detrusor instability (DI) is one of the most common micturation dysfunction diseases in clinic, mainly appears to be urinary frequency, urinary urgency and stress incontinence et al. The pathogenesis causing DI is still unclear, while somebody thinks the pathological change of nervous system is the main cause of detrusor instability, but the antagonist and agonist of different nerves in the treatment of detrusor instability are not satisfactory. Detrusor is a kind of excitable tissue, so the excitability of detrusor must play a key role in the occurring of detrusor instability, but there were few reports about the excitability of detrusor. The objective of this study is to investigate the mechanism of detrusor instability, especially the relationship between the excitability and detrusor instability, and the effects of potassium and calcium on detrusor excitability.
    Materials and Methods: Idiopathic (IDI), bladder outlet obstruction (BOO) and spinal cord transection (SCT) caused detrusor instability model were established in female Wistar rats by operation and urodynamics. Pathological changes in detrusor were studied by light and electronic microscope. The spontanouse contraction frequency and strength of detrusor strip were measured: ①The minimums tension while spontaneous contraction occurred was recorded; ②The contraction frequency of strip at fixed tension (1.0g) was recorded; ③The effect of carbachol (muscarinic receptor agonist) and atropine (muscarinic receptor antagonist) on the contraction frequency of strip at fixed tension (1.0g) were recorded. The blind whole cell patch clamp recording technique for detrusor bladder smooth muscle cell (DSMC) in bladder muscle slice was performed. The resting membrane potential (RMP), input resistance (IR) and action potential (AP) were recorded and compared. The potassium currents of DSMC were recorded and the components were analyzed. The changes of the currents in DI groups were evaluated. The expressions of all the kinds of potassium channels were detected by RT-PCR technique. The changes of the potassium channels' expression in DI groups were evaluated. The concentration of free Ca2+ in DSMC was measured by laser scanning confocal microscope (LSCM). The calcium currents of DSMC were recorded and the components were analyzed. The changes of calcium currents in DI were evaluated. Expressions of L and T type of calcium channels were detected by RT-PCR. The changes of the calcium channels' expression in DI groups were evaluated.
    
    
    Results and discussion: The detrusor smooth muscle cells appeared hypertrophy, more gap junctions and protrusion junctions were found. Detrusor of all groups contracted at definite tension. DI strips contracted in lower tension and had the higher contraction frequency than that of stable. There were no obviously changes while the detrusor strips mustarded by muscarinic receptor antagonist and agonist, which means the excitability of detrusor is determined mainly by myogenic factors instead of muscarinic receptor. DSMCs with detrusor instability groups had the higher RMP and IR. AP of DSMC with detrusor instability groups could be evoked with lower depolarized stimulation compared with control. The duration of AP was prolonged in DI groups. The potassium current of DSMC was composed by many kinds of currents. Delayed rectifying potassium current and Ca2+ activated potassium current were the main parts. Delayed rectifying potassium current in DSMC with DI was higher than that of control. There were many kinds of potassium channels expressed in Wistar rat detrusor, such as Kv 1.2, 1.3, 1.4, 1.5, 2.1, 3.2, and 4.2, BKCa, SKCa and KATP. The expression of Kv2.1 in BOO and SCI were much lower than that of control, and the expression of KATP in BOO and SCI were much higher than that of control. Potassium channels can affect the excitability of cells, so changes of function and expression of potassium channel may be one of the cause in the occurring of DI. The calcium current of DSMC was composed of many kinds of currents, t
引文
1. 吴阶平主编。泌尿外科,第一版,济南,山东科学技术出版社,1993,801-831
    2. 吴阶平,马永江主编。实用泌尿外科学,第一版,北京,人民军医出版社,1991,358-392
    3. ICS First report on the standardization of terminology of lower urinary tract function. Br J Urol, 1976, 48:39
    4. Ouslander M, Palmen MH, Rovnen K. Urinary incontinence in nursing homes: incidence remission and associated factors. J Am Geriatr Soc, 1993; 42(10): 1083-1089
    5. Madersbacher H. Conservative therapy of neurogenic disorders of maturation. Urology A 1999 Jan; 38(1): 24-29
    6. Daniel EE, Cowan W, Daniel VP. Structural basis for neural and myogenic control of human detrusor muscle. Canadian Journal of Physiology and Pharmacology 1983; 61: 1247-1273
    7. Sekar P, Wallace DD, Waites KB, et al. Comprison of long-term function after spinal cord injury using different urinary management methods. Arch Phys Med Rehabil, 1997 Sep; 78(9): 992-997
    8. 王子栋,徐恒主编。植物性神经递质的受体。植物性神经系统生理学-基础与临床。第一版;北京,科学出版社科学出版,1994:134
    9. 金锡御,宋波主编。不稳定膀胱。临床尿动力学。第一版;北京,人民卫生出版社,2002:165-179
    10. W. H. Turner, A. F. Brading. Smooth Muscle of the Bladder in the Normal and the Diseased State: Pathophysiology, Diagnosis and Treatment. Pharmacology & Therapeutics, 1997, 75(2): 77-110
    11. Anderson KE. Recent advance in the physiology and pharmacology of the bladder. Current opinion in urology .1996,6:196
    12. Anderson KE. The overactive bladder: pharmacological basis of drug treatment . Urology.1997, 50(6A suppl), 74-84
    13. Wein AJ. Pharmacology of incontinence. Urol Clin North Am 1995; 22: 557-577
    14. Madersbacher HG. Neurogenic bladder dysfunction. Curr Opin Urol 1999 Jul; 9(4): 303-307
    15. Bagby R, Young A, Doston R, et al. Contraction of single smooth muscle cells from Bufo marinus stomach. Nature 1971, 234:351
    
    
    16. Brading AF, Mostwin JL, Sibley GN, et al. The role of isolated smooth muscle and its possible involvement in disease of the lower urinary tract. Clin Sci 1986, 70:7
    17. Benham CC, Bolton TB, Denbigh JS, et al. Inward rectification in freshly isolated single smooth muscle cells of the rabbit jejunum. Physiology 383, 461-476
    18. 景亮。气道平滑肌:基础与临床。临床麻醉学杂志,2001,17(9):522-525
    19. Bruce SI, Chris Fry. The action potential and net membrane currents in isolated human detrusor smooth muscle cells. J Urol 1992, 147:176-184
    20. Char-chang Shieh, Michael Coghlan, James P. Suiilivan, et al. Potassium channels: molecular defects, diseases, and therapeutic Opportunities. Pharmacol Rev 2000, 52(4): 557~593,
    21. Chuanli Xu, Guanhua Tang, Yanjie Lu, et al. Molecular Basis of voltage-dependent rectifier K+ channels in smooth muscle cells from rat tail artery. Life Sciences, 2000, 66(21): 2023~2033
    22. Lee Ym, Peng YY, Sheu JR, et al. The effects of a newly synthesized ATP-sensitive potassium channel opener, MJ-335, on blood pressure and myocardial ischemia-reperfusion injury in rats. Jpn J Pharmacol, 1999, 81(20): 185~189
    23. NelsonM, QuayleJ. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol, 1995, 268 (4pt1)∶C799-822
    24. LiuY, HudetzA, KnausH, et al. Increased expression of Ca2+-sensitive K+ channels in the cerebral microcir-culation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm. Circ Res, 1998, 82(6)∶ 729~737
    25. 何加强、郑永芳。平滑肌钙通道的研究进展。中华心血管病杂志,1996,24(6):468~470
    26. Harry A. Fozzard. Cardiac sodium and calcium channels: a history of excitatory currents. Cardiovascular Research, 2002, 55(1): 1~8
    27. Jae Hoon Sim, Young Chul Kim, Sung Joon Kim, et al. Capsaicin inhibits the voltage-operated calcium channels intracellular in the antral circular myocytes of guinea-pig stomach. Life Sciences, 2001, 68(12): 2347~2360
    28. Mark Goepel, Josef A. Hoffmann, Maria Piro, et al. Prevalence and physician awareness of symptoms urinary bladder dysfunction. European Urology, 2002, 41(2): 234~239
    29. Malmgren A, Sjogren C, Uvelius B, et al. cystometrical evaluation of bladder instability in rats with infraxesical outflow obstruction. J Urol, 1987, 173: 191~194
    
    
    30. Steers W, Dgrot W C. Effect of bladder outlet obstruction on maturation reflex pathways in the rat. J Urol, 1988, 140: 864~871
    31. Saito M. Effect of partial outlet obstruction on contractility: comparison between severe and mild obstruction. Neurourol Urodyn, 1993, 12(6): 573~581
    32. Lee J. Urodynamic characterization of maturation in neurohormonally induced excremental prostates growth in the rat. Neurourol Urodyn, 1998, 17(1): 55~63
    33. Kaplan SA, Chancellor MB, Blaivas JG. Bladder and sphincter behavior in patients with spinal cord lesions. J Urol 1991, 146(1): 113~117
    34. David A, Michael B, Bin Huang, et al. Autonomic dysreflexia in a rat model spinal cord injury and the effect of Pharmacological agents. Neurourology and urodynamics 1995, 14(2): 141~152
    35. Yablonsky F, Savasta M, Feuerstein C, et al. Effect of transection of the spinal cord in the rat: cystometric and autoradiographic studies. J Urol 1994, 152(7): 1315~1322
    36. Walter JS, Wheel JS, Cai W, et al. Evaluation of suture electrode for direct bladder stimulation in a lower motor neuron lesioned animal model. IEEE Trans Rehabil Eng 1999 Jun; 7(2): 159~166
    37. 李炎唐主编。泌尿外科高科技。第一版,北京:军事医学科学出版社,1998,159
    38. Morrison J F B. Reflex control of the lower urinary tract In: the physiology of the lower urinary tract. Edited by M torrens and JFB morrson, London: spinger-verlag, chat 7, 1987, 209~212
    39. Cooper KE, Tang JM, Rea JL, et al. A cation channel in frog lens epithelia responsive to pressure and calcium. Journal of Membrane Biology 1986, 93(2): 259~269
    40. Fry CH, Wu C, Mundy AR. Bladder instability and detrusor smooth muscle function. Experimental Physiology 1999; 84: 161~169
    41. Elbadawi A. Ultructure of vesicourethral innervation. I. Neuro effectors and cell junctions in the male internal sphincter. J.Urol, 1982,128:180
    42. Zimmen PE, Lin VK. Smooth-muscle physiology. Vrol clin North Am, 1996. 23: 211~220
    43. 曹润福,彭试平,张时纯,等。BPH患者逼尿肌不稳定与M受体密度的关系。中华泌尿外科杂志。1999,20:105~107
    44. Mills IW, Greenland JE, and McMurray G: Studies of the pathophysiology of idiopathic detrusor instability: the physiological properties of the detrusor smooth muscle and its pattern of innervation. J Urol, 2000, 163(3): 646-651
    
    
    45. Charlton RG, Morley AR, and Chambers P: Focal changes in nerve, muscle and connective tissue in normal and unstable human bladder. Br J Urol, 1999, 84: 953~960
    46. Bayliss M, Wu C, Newgreen D, et al: A quantitative study of atropine-resistant contractions in human detrusor smooth muscle, from stable, unstable and obstructed bladders. J Urol, 1999, 162: 1833-1839
    47. Wu C, Bayliss M, and Newgreen D: A comparison of the mode of action of ATP and carbachol on isolated human detrusor smooth muscle. J Urol, 1999, 162: 1840~1847,
    48. 陈宇东,宋波,金锡御,等。血管活性肠肽对大鼠离体逼尿肌肌条自发性收缩作用的实验研究。河北医科大学学报,2001;22(3):273~278
    49. Brading AF. A myogenic basis for the overactive bladder. Urology 1997; 50(6A Suppl): 57~67
    50. Fry CH, Cooklin M, Birns J, et al: Measurement of intercellular electrical coupling in guinea-pig detrusor smooth muscle. J Urol, 1999, 161(3): 660~664
    51. 刘贵生,武惠珍,李淑荣,等。平滑肌细胞超微结构的共性与异性。电子显微学报,2000,19(3):281~282
    52. Zimmen PE, Lin VK. Smooth-muscle physiology. Vrol clin North Am, 1996. 23(2): 211~220
    53. 张镜如主编。生理学。第四版,北京,人民卫生出版社,1998:7~53
    54. 陈军主编。膜片钳实验技术。第一版,北京,科学出版社,2001,1~113
    55. 陈军译。膜片钳技术的原理和操作。神经解剖学杂志,1994,10(4):360~369
    56. 陈军译。全细胞记录法和穿孔膜片钳法。神经解剖学杂志,1995,11(1):87~94
    57. 康华光。细胞电生理与膜片钳技术。中国医疗器械杂志,2000,24(3):155~160
    58. 康华光。单通道和全细胞记录技术细胞电生理与膜片钳技术。中国医疗器械杂志,2000,24(4):221~226
    59. 陈军译。组织切片膜片钳技术。神经解剖学杂志,1995,11(1):81~86
    60. 涂娅莉,阴正勤,刘应兵。建立大白鼠视皮层脑片膜片钳全细胞记录技术。第三军医大学学报,2001,23(5):610~611
    61. 胡志安,李思本,黎海蒂。脑片盲法全细胞记录技术的应用。第三军医大学报。1999,21(12):933~935
    62. 张莉。脑片膜片钳法——改进的盲法和离子孔道法。华西医大学学报,1998;29(3):338~342
    63. 刘振伟,李立君,刘传缋。海马脑片盲法膜片钳全细胞记录技术。生理学报,2001,53(5):405~408
    
    
    64. Lu Yan, Hirue Inokuchi, Hideche Higashi, et al. Blind patch-clamp recordings from neurons of dorsal commissural nucleus in a novel adult spinal slice preparation. Chinese journal of Neuoanatomy, 1998, 14(1): 1~7
    65. Lynne A. Oland, Thomas Muller, Helmut Kettenmann, et al. Preparation of primary cultures and acute slices of the nervous system of the moth Manduca sexta. Journal of Neuroscience Methods, 1996, 69(1): 103~112
    66. Shan Chen, Jeffrey S. Diamond. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. The Journal of Neuroscience, 2002, 22(6): 2165~2173
    67. L Hyllienmark, T. Brismar. Effect of hypoxia on membrane potential and resting conductance in rat hippocampal meurons. Neuroscience, 1999, 91(2): 511~517
    68. Alison M. Gurney. Electrophysiological recording methods used in vascular biology. Journal of Pharmacological and Toxicological Methods, 2000, 44 (2): 409~ 420
    69. 梁勇,钟乃川。水杨酸钠与细胞外钾离子对豚鼠单离外毛细胞外向钾电流和静息电位的影响。第一军医大学学报,2002,22(2):137~140
    70. 王航雁,彭立明,衣京梅,等。缺氧性损伤时新生鼠脑离体薄片海马回神经元全细胞膜片钳记录。中国病理生理杂志,2001,17(12):1261~1262
    71. Spigelman I, Zhang L and Carlen PL. Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: membrane excitability and K+ currents. J Neurophysiol , 1992, 68(1): 55-69
    72. Zhou FM and Hablitz JJ. Postnatal development of membrane properties of layer I neurons in rat neocortex. J Neurosci, 1996, 16(5): 1131-1139
    73. Bramich NJ, Brading AF. Electrical properties of smooth muscle in the guinea-pig urinary bladder. J Physiol(Lond), 1996, 492(1):185~198
    74. German K, Bedwani J, Davies J, et al. Physiological and morphometric studies into the pathophysiology of detrusor hyperreflexia in neuropathic patients. J Urol, 1994, 153(7): 1678~1683
    75. Zhi-Gen Jiang, Jianhua Qiu, Tianying Ren, et al. Membrane properties and the excitatory junction potentials in smooth muscle cells of cochlear spiral modular artery in guinea pigs. Hearing Research, 1999, 138 (2): 171~180
    76. Jurandir J. Dalle Lucca, Antonio C.R. Borges, Renato Ponchirolli, et al. Role of smooth muscle cell membrane potential in neointima formation in arteries of spontaneously hypertensive rats. Pathophysiology, 2001, 7 (2): 245~250
    
    
    77. Antonio C.R. Borges, Teresa Feres, Lucia M. Vianna, et al. Cholecalciferol treatment restores the relaxant responses of spontaneously hypertensive rat arteries to bradykinin. Pathophysiology, 2002, 8(1): 263~268
    78. 程宏伟,张立藩,余志斌,等。模拟失重4周大鼠心肌细胞动作电位的改变及其离子机理中华航空航天医学杂志,2000,11(4):217~220
    79. Rebecca Rimini, Joseph M. Rimland, Georg C. Terstappen. Quantitative expression analysis of the small conductance calciumactivated potassium channels, SK1, SK2 and SK3, in human brain. Molecular Brain Research, 2000, 85(1): 218~220
    80. Victoria P. Korovkina, Sarah K. England. Detection and implications of potassium channel alterations. Vascular Pharmacology, 2002, 38 (1): 3~12
    81. 任亚军,佟晓永,王晓良。ATP敏感钾通道亚单位在大鼠组织中的表达。中国药理学通报,2000,16(2): 148~150
    82. J.M. Mienville, J. L. Barker. Potassium current expression during prenatal corticogensis in the rat. Neuroscience, 1997, 81(1): 163~172
    83. 李泱,程岚,姚伟星。苄基四氢巴马汀对豚鼠心室肌细胞钾电流及钙、钠电流的作用药学学报,2000,35(2):85~89
    84. 张晋,任亚军,陆菁,等。大鼠肺内动脉平滑肌细胞钾通道的研究。药学学报,2000,35(9):654~658
    85. 韦日生,石刚刚。碘化N-正丁基氟哌啶醇对大鼠胸主动脉平滑肌钾通道作用的研究。中国药理学通报,2001,17(5):551~555
    86. Robert H. Cox. Changes in the expression and function of arterial potassium channels during hypertension. Vascular Pharmacology, 2002, 38(1): 13~ 23
    87. 张庆利,郝丽英,王丽娟,等。大鼠肺动脉平滑肌细胞的外向钾电流及四乙基铵对此电流作用的量效关系。中国医科大学学报, 1997, 26(2): 111~114
    88. 蔡绍曦,邹飞,佟振清,等。豚鼠气管平滑肌细胞钾离子通道动力学特性及对拮抗剂的敏感性中国药理学与毒理学杂志。1997,11(3):206~210
    89. 蔡绍曦,邹飞,佟振清,等。哮喘豚鼠气管平滑肌钾离子通道特性的改变中华结核和呼吸杂志,1997,20(1):16~19
    90. Chiu-Yin Kwan, Yuk-Man Leung, Tony K. Kwan. Tetrandrine inhibits Ca2+ release-activated Ca2+ channels in vascular endothelial cells. Life Sciences, 2001, 68 (4): 841-847
    91. E. Kenneth Weir, Zhigang Hong, Valerie A. Porter, et al. Redox signaling in oxygen sensing by vessels. Respiratory Physiology & Neurobiology, 2002,132 (1): 121~130
    
    
    92. X. X. CHI, Z. C. XU. Alterations of single potassium channel activity in Ca1 pyramidal neurons after transient forebrain ischemia. Neuroscience, 2001, 108(4): 535~540
    93. Santosh K. Mishra, Philip I. Aaronson. A role for a glibenclamide-sensitive, relatively ATP-insensitive K current in regulating membrane potential and current in rat aorta. Cardiovascular Research, 1999, 44(2): 429~435
    94. 裴德安。心肌钾通道的研究进展。国外医学生理、病理科学与临床分册 1997,17(1):78~81
    95. 牛小伟,曾涛,康华光。心肌背静内向整流钾通道。心脏起搏与心电生理杂志,1994,8(4):215~216
    96. Nelson MT, Patlak JB, Worley JF, at al. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle. Am J Physio, 1990, 268(1): C3~18
    97. 陈文彬,程德云,杜国清。低氧性肺动脉高压大鼠肺动脉平滑肌细胞钾通道基因表达的研究。中华内科杂志,2000,39(6):405~406
    98. Tsaur ML, Sheng M, Lowenstein DH, et al. Differential expression of K+ mRNAs in the rat brain and down regulation in the hippocampus following seizures. Neuron, 1992, 8(6): 1055~1067
    99. Archer, S.L., Souil E., Dinh-Xuan A.T., Schremmer B., et al. Molecular dentification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J. Clin. Invest. 1998. 101(10): 2319~2330
    100. Dayle S. Hogg, Andrew R.L. Davies, et al. Kv 2.1 channels mediate hypoxic inhibition of IKv in native pulmonary arterial smooth muscle cells of the rat. Cardiovascular Research, 2002(55): 349~360
    101. 桂培春。血管平滑肌钙激活钾通道及其调控高血压杂志。1997,5(2): 150~152
    102. 沈建中,郑秀凤。血管平滑肌钙激活钾通道及其调节机制。中国药理学通报,1998,14(6): 488~491
    103. 祝芬,马季骅。ATP敏感性钾通道与心肌低氧损伤。武汉科技大学学报(自然科学版)。2001,24(10):418~420
    104. Harri J. Ranki, Russell M. Crawford, Grant R. Budas, et al. Ageing is associated with a decrease in the number of sarcolemmal ATP-sensitive K+ channels in a gender-dependent manner. Mechanisms of Ageing and Development, 2002, 123 (6): 695~705
    孟繁学,焦晓慧,韩大英。ATP敏感钾通道在心血管系统中的作用。中国病理生
    
    105. 理杂志,2000,16(1):94~96
    106. 陈琦,王晓良。不同钾通道阻滞剂对大鼠血管平滑肌的影响。药学学报,1999,34(2):95~98
    107. Mehran Mandegar, Jason XJ. Yuan. Role of K+ channels in pulmonary hypertension. Vascular Pharmacology, 2002(38): 25~33
    108. Andersson KE. Treatment of overactive bladder: other grug mechanism. UROLOGY, 2000, 55 (Suppl 5A): 51~57
    109. Hsin-I. Chiu, Yen-Chung Lin, Chen-Yu Cheng, et al. N-Acyl-1,2,3,4a5,10b -hexahydro-[1]benzopyrano-[3,4-b][1,4]oxazine-9-carbonitriles as bladder selective potassium channel opener. Bioorganic & Medical Chemistry, 2001(9): 383~393
    110. 陈志刚,王佩,徐建华。钾通道药理的研究进展。中国药理学通报, 1998,14(2): 100~102
    111. Boyu Huang, Dayi Qin, Lili Deng, et al. Reexpression of T-type Ca channel gene and current in post-infarction remodeled rat left ventricle. Cardiovascular Research, 2000(46): 442~449
    112. S. Kaab, J Dixon, J Due, et al. Molecular of transient outward potassium current down regulation in human heart failure. Circulation, 1998, 98(6): 1383~1393
    113. 魏文利,关永源,孙家钧。血管平滑肌和内皮细胞Ca2+内流机制及其与Cl-通道的关系。中国药理学通报,1999,15(3): 212~215
    114. David J. Triggle. The pharmacology of ion channels: with particular reference to voltage-gated Ca2+ channels. European Journal of Pharmacology, 1999, 375: 311~325
    115. 李玉秀。不同组织钙通道的研究概况。国外医学·生理、病理科学与临床分册。2000,20(6):464~467
    116. McDonald TF, Pelzer S, Trautwein W, et al. Regulation and modulation of calcium channels in cardiac, skeletal and smooth muscle cells. Physiol Rev, 1994,74(2): 365~374
    117. Marks AR. Calcium channels expressed in vascular smooth muscle. Circ, 1992, 86(Suppl3): 61~69
    118. Benham CD, Tsien RW. Calcium-permeablechannelsinvascularsmoothmuscle: voltage-activated, receptor-operated, and leak channels. Soc Gen Physiol Ser, 1987, 42(1): 45~56
    119. Singer D, Biel M, Lotan , et al. The roles of the sub-units in the function of the calcium channel. Science, 1991, 253(8):1553~1568
    
    
    120. 刘恭鑫,杨英珍,顾全保,等。大鼠心肌细胞L型和T型钙通道的特性上海医科大学学报,1998,25(2):146~147
    121. Jae Hoon Sim,Young Chul Kim, Sung Joon Kim, et al. Capsaicin inhibits the voltage-operated calcium channels intracellular in the antral circular myocytes of guinea-pig stomach. Life Sciences, 2001, 68(12): 2347-2360
    122. 宁可,王正国,朱佩芳,等。新生大鼠培养神经元电压依赖性钙通道的膜片钳记录。第三军医大学学报,1996,18(8):367~368
    123. 宁可,王正国,朱佩芳,等。脑伤早期神经细胞钙通道变化及其机理研究。第三军医大学学报,1996,18(8):353
    124. 陈红勤,陈鹏慧。缺氧对大鼠心肌细胞钙通道的影响高原医学杂志,2001,11(2):12~14
    125. 王中峰,薛春生。“缺血”对大鼠大脑皮层神经元钙通道的影响。中国应用生理学杂志,1998; 14(2):150~153
    126. Yingbo Yang, Xiongwen Chen, Kenneth Margulies,et al. L-Type Ca2+Channel Isoform Switching in Failing Human Ventricular Myocardium. Journal of Molecular and Cellular Cardiology, 2000, 32(6): 973~984
    127. Daniel L. Burgess, Jeffrey L. Noebels. Single gene defects in mice: the role of voltage-dependent calcium channels in absence models. Epilepsy Research, 1999(36): 111~122
    128. T. Smani, A. Hernandez, J. Urena, et al. Reduction of Ca channel activity by hypoxia in human and porcine coronary myocytes. Cardiovascular Research, 20029 53): 97~104
    129. David J. Triggle. The Physiological and Pharmacological Significance of Cardiovascular T-Type, Voltage-gated Calcium Channels. AJH 1998;11(1): 80S-87S
    130. J. Lo′pez-Barneo, R. Pardal, R.J. Montoro, et al. K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Respiration Physiology, 1999, 115(2): 215~227
    131. Van Breemen C, Saida K. Cellular mechanisms regulating Ca2+ in smooth muscle. Annu Rev Physiol, 1989, 51: 315-319
    132. Tao FC, Tolloczko B, Eidelman DH, et al. Enhanced Ca2+ mobilization in airway smooth muscle contributes to airway hyper responsiveness in an inbred strain of rat. Am J Respir Crit Care Med. 1999, 160 (2): 446-453
    Boyu Huang, Dayi Qin, Lili Deng, et al. Re-expression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovascular Research,
    
    133. 2000(46): 442-449
    134. Koichi Takimoto, Danqing Li, Jeanne M. et al. Distribution, splicing and glucocorticoid-induced expression of cardiac α1c and α1D voltage-gated Ca2+ channel mRNA. J Mol Cell Cardiol, 1997(29): 3035-3042
    135. Anderson KE. The overactive bladder: pharmacologic basis of drug treatment. Urology. 1997;50(6A suppl):74-84
    136. Chambers P; Neal DE; Gillespie JI. Ca2+ mobilization in cultured human bladder smooth muscle cells in response to hypotonic stimuli. Exp Physiol, 1997 Jul,82(4):677-86
    137. Ahmet Ayar, Claire Storer, Emma L. Tatham, et al. The effects of changing intracellular Ca2+ buffering on the excitability of cultured dorsal root ganglion neurons. Neuroscience Letters, 1999, 271: 171~174
    138. 韩勇,徐晖,王云杰。酸灌注对食管下端括约肌平滑肌细胞收缩功能的影响。中国胸心血管外科临床杂志,2000,7(4):252~255
    139. 段重高,李宏伟,修瑞娟,等。应用激光共聚焦扫描显微镜测定缺氧对大鼠脑微血管内皮细胞Ca2+含量的影响。微循环学杂志,1996,6(3):8~10
    140. 姚亚其,许欧,毛履琰。激光共聚焦显微镜观察磷酸肌酸促缺氧心肌细胞钙离子通道恢复的作用。上海医科大学学报,1999,26(增刊):4~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700