复方姜黄素脂质立方液晶的制备、表征与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姜黄素(curcumin)是从姜黄中提取的一种天然有效成分,同时也广泛存在于姜黄属的其他植物中,目前被广泛用作色素、食品添加剂及调味品,其来源广泛、安全无毒。近年的研究表明,姜黄素具有广泛的药理作用,如抗肿瘤、改善心血管功能、抗炎、抗病毒、保肝、增强免疫力等,具有良好的药理活性和应用前景,但是姜黄素存在疏水性强、口服吸收少、稳定性差以及体内生物利用度低等缺陷,严重影响了其在临床上的使用。
     脂质立方液晶纳米粒(cubic liquid crystalline nanoparticles, LCNP)是由两亲性脂质和表面活性剂在水中自发形成的液晶纳米分散体系,具有能够包结各种不同极性和剂量的药物;提高药物的稳定性,免受机体酶和免疫系统的影响;生物亲和性、粘附性好以及控制药物释放和提高药物生物利用度等优点。
     本论文从两个方面着手共同提高姜黄素的生物利用度:基于胡椒碱为天然葡萄糖醛酸酶抑制剂,将姜黄素与胡椒碱联合应用,降低姜黄素在体内的生物转化;针对姜黄素在水中溶解度低、稳定性较差、生物利用度低等问题,将姜黄素与胡椒碱制备成立方液晶纳米粒。本论文主要从复方姜黄素理化性质、稳定性、脂质立方液晶制备、结构表征、药剂学特征、药动学及其细胞跨膜吸收机制等方面进行研究,具体如下:
     1、姜黄素和胡椒碱理化性质和稳定性研究。采用高效液相色谱法建立了姜黄素和胡椒碱原料的含量测定方法并测定姜黄素和胡椒碱原料的含量,在此基础上,对姜黄素和胡椒碱在有机溶剂中的饱和溶解度、表观溶解度以及汕水分配系数进行了考察,结果表明姜黄素和胡椒碱均为脂溶性药物,在PEG400中饱和溶解度均最高。姜黄素在不同pH值磷酸盐缓冲液中均不溶解,而胡椒碱随着pH值的增加,溶解性逐渐提高。最后对姜黄素和胡椒碱原料热稳定性进行考察,结果表明姜黄素和胡椒碱水溶液对热不稳定,但在乙醇溶液含量未发生显著性变化。
     2、复方姜黄素脂质立方液晶的制备与表征。筛选了复方姜黄素脂质立方液晶不同的包封率测定方法,在此基础上选择前体注入法制备了复方姜黄素脂质立方液晶,通过单因素试验,考察搅拌温度、搅拌转速、搅拌时间、超声次数等因素对复方姜黄素脂质立方液晶包封率的影响,确定了复方姜黄素脂质立方液晶最佳制备工艺参数,最后对复方姜黄素脂质立方液晶处方工艺进行了研究,以药物的包封率和载药量为评价指标,采用均匀设计优化处方工艺,得到了包封率和载药量均较佳的脂质立方液晶纳米粒。通过偏)光显微镜、扫描电镜、激光粒度仪、小角度X散射、红外光谱和差式扫描量热分析等方法对复方姜黄素脂质立方液晶光学特性、形貌、晶型结构、分子间作用以及热量变化进行表征。
     3、复方姜黄素脂质立方液晶药剂学特性研究。主要从脂质立方液晶纳米粒混悬液的pH、渗漏率、体外释放、生物粘附性以及稳定性等几个方面对复方姜黄素脂质立方液晶的药剂学特性进行考察。结果显示复方姜黄素脂质立方液晶纳米粒pH和渗漏率均较为稳定;与原料药相比,复方姜黄素脂质立方液晶生物粘附性和稳定性也有了较大的提高。在体外释放方面,复方姜黄素脂质立方液晶药物释放均符合Higuchi方程,且pH和无机盐对其体外释放无显著性影响。
     4、复方姜黄素脂质立方液晶小鼠体内药动学及组织分布。运用药动学软件对不同时间点的样品浓度进行房室模型拟合,确定最佳房室模型并计算相关药动学参数。结果显示,两给药组中的血液和各组织器官药物药时曲线均符合二室开放模型(C=Ae-α t+Be-βt)。复方姜黄素脂质立方液晶纳米粒给药后达峰浓度显著高于原药组。同时LCNP组药物达峰时间相比原药组显著延后,其相对生物利用度相比原料药提高了近15倍,达到了试验预期要求。药物制备成脂质立方液晶纳米粒后,主要分布于脾脏、肝脏和肺组织中,尤其是脾脏,其组织摄取率相比其他组织增加近20倍。
     5、复方姜黄素脂质立方液晶透膜吸收机制研究。建立了Caco-2单层细胞模型并考察了原料药和复方姜黄素脂质立方液晶(LCNP)对细胞存活率的影响,确定了药物安全浓度范围。通过对原料药和LCNP的细胞摄取试验发现,LCNP随着浓度的增加,摄取逐渐增加,而原料药具有饱和现象。加入维拉帕米后,原料药摄取率有一定程度的增加。最后考察不同的孵育时间和维拉帕米对细胞转运的影响,结果与上述结果一致。
     综上所述,本文采用了前体法注入法制备了复方姜黄素脂质立方液晶,不仅提高了制备效率,而且制备工艺稳定,重现性良好,质量可控,具有较好的生物粘附性,可以明显提高姜黄素体内生物利用度,达到了试验预期的目的,同时也为其他药物脂质立方液晶纳米粒的制备提供了较好的借鉴作用。
     本论文的创新点主要包括以下几个方面:
     1、首次将姜黄素和胡椒碱联合制备成脂质立方液晶纳米粒,不仅解决了姜黄素水溶性、稳定性以及生物利月用度差的问题,而且.为脂质立方液晶作为药物载体研究提供了一个新的思路。
     2、首次采用多种方法和手段对复方姜黄素脂质立方液晶进行体内外评价。采用了光谱、色谱、DSC、SAXS等方法对复方姜黄素脂质立方液晶进行结构表征,同时对其体外释放,体内生物利用度,细胞吸收和转运机制等方而进行了较为系统和全而的研究。
Curcumin is a natural active ingredient that extracted from the Carcuraa longa, and the other plants with the carcuma species. Curcumin had been widely used as pigment, food additives and spices, which proved to be sufficient and safe. In recent years, the research had shown that curcumin had extensive pharmacological effects, such as anti-tumor, improving cardiovascular function, anti-inflammatory, antiviral,liver protection, boosting immunity, etc. In spite of the good pharmacological activity and application prospects, the curcumin had the problems, such as hydrophobic, oral absorption, poor stability and low bioavailability in vivo,which exerted a serious influence on its clinical use.
     Cubic liquid crystalline nanoparticles (LCXP), was spontaneously formed by the amphiphilic lipids and surfactants in the water, which had lots of advantages, such as encapsulation of different polarity and dose of the drug, improvement of the stability of the drug against from the influence of the enzymes and the immune system, good biological affinity and adhesivity, the characteristic of drug controlled release, improvement of drug bioavailability, etc.
     This paper was aimed to improve the bioavailability of curcumin from two aspects:based on the piperine was natural inhibitors of glucuronic acid, the curcumin was used with piperine to decrease the biological transformation of curcumin in the body. For the low solubility in the water, poor stability, and low bioavailability, the curcumin with piperine cubic liquid crystalline nanoparticles was established. The content of the paper mainly included: physical and chemical properties of the compound curcumin, preparation and stability of compound curcumin lipid cubic liquid crystalline nanoparticles, characterization of structure, features of pharmaceutics, pharmacokinetic and the absorption mechanism of transmembrane and so on, details as below:
     1.The study on the physical and chemical properties and stability of the compound curcumin. High performance liquid chromatography (HPLC) method was established to determine the content of curcumin and piperine. And then, saturated solubility in organic solvent, apparent solubility and oil/water partition coefficient of the curcumin and piperine were investigated. The results showed that both curcumin and piperine were fat soluble drugs, and had the highest saturated solubility in the PEG400. The curcumin was insoluble in different pH phosphate buffer, and the solubility of piperine gradually improved with the increase of pH. From the study on the thermal stability of curcumin and piperine, the results showed that curcumin and piperine was not stable in water, but the content of drugs had no significant change in ethanol solution.
     2. Preparation and characterization of compound curcumin lipid cubic liquid crystalnanoparticles. On the basis of screening different coating rate measurement method of compound curcumin lipid cubic liquid crystalline nanoparticles, ethanol injection was selected for the preparation of the compound curcumin lipid cubic liquid crystalline nanoparticles.The influence of stirring temperature, speed, time and ultrasonic frequency on the encapsulation efficiency of the compound curcumin lipid cubic liquid crystalline nanoparticles was investigated by single factor experiment.the optimum preparation technology parameters of compound curcumin lipid cubic liquid crystalline nanoparticles were identified. Finally, the prescription process of compound curcumin lipid cubic liquid crystalline nanoparticles was also studied. With encapsulation efficiency and drug loadings as evaluation index, the prescription was optimized by using uniform design process, and compound curcumin lipid cubic liquid crystalline nanoparticles was achieved with the optimal encapsulation efficiency and drug loadings. And then the polarizing microscope,scanning electron microscopy, laser particle size instrument, small Angle X-ray scattering, infrared spectroscopy and differential scanning calorimetric analysis was adopted to the characterization of Compound curcumin lipid cubic liquid crystalline nanoparticles by the optical properties,morphology, crystalline structure, molecular interaction and heat changes.
     3. Characteristic study in pharmacy of Compound curcumin lipid cubic liquid crystalline nanoparticles. The research was conducted mainly including the pH value, leakage,the release rate in vitro,biological adhesion and stability of compound curcumin lipid cubic liquid crystalline nanoparticles. And the results showed that the pH and the leakage rate of compound curcumin lipid cubic liquid crystalline nanoparticles is relatively stable. Compared with the crude ingredients, compound curcumin lipid cubic liquid crystalline nanoparticles had better biological adhesion and stability and in terms of in vitro release, compound curcumin lipid cubic liquid crystalline nanoparticles had the feature of controlled release consistent with Higuchi equation, and would not be impacted by the pH and inorganic salt on the in vitro release.
     4. pharmacokinetic and tissue distribution in mice of compound curcumin lipid cubic liquid crystalline nanoparticles. The sample concentrations at different time points was conducted by atrioventricular model fitting using pharmacokinetic software, and the pharmacokinetic parameters of the best atrioventricular models was determined. According to the results of two groups of the drug, the blood and the tissues distributed in accordance with2rooms open model (C=Ae-αt+Be-βt). The peak concentration of compound curcumin lipid cubic liquid crystalline nanoparticles was significantly higher than the crude drug. and tmax was delayed as well. In addition, the relative bioavailability of compound curcumin lipid cubic liquid crystalline nanoparticles increased nearly by15times, which reached the expectation of the cubsomes. Compound curcumin lipid cubic liquid crystalline nanoparticles mainly distributed in the spleen, liver and lung tissues, especially the spleen. The tissue uptake rate increased by nearly20times compared to other groups.
     5. The absorption mechanism of compound curcumin cubic liquid crystal. Caco-2monolayer cell model was established and the effect on the cell survival rate of compound curcumin lipid cubic liquid crystalline nanoparticles was investigated to identify the range of the safe concentration. During the cell uptake test, we found that the intake of compound curcumin lipid cubic liquid crystalline nanoparticles gradually increased with the enhancement of concentration, however, the intake of the crude drug showed phenomenon of saturation. After joined verapamil, the intake rate of crude drug had increased to a certain extent. Finally, the influence of the different incubation time and verapamil on the cell membrane was consistent with the results above.
     In conclusion, the compound curcumin lipid cubic liquid crystalline nanoparticles was prepared by the ethanol precursor.The method proved to be high efficiency, stable, good reproducibility, quality controlled,and good biological adhesive. The compound curcumin lipid cubic liquid crystalline nanoparticles could obviously increase the bioavailability of curcumin in the body and achieve the aim of the trial. Meanwhile, it also provided a good reference to the other drugs for lipid cubic liquid crystalline nanoparticles.
     The innovation of the paper mainly including:
     1. The compound curcumin lipid cubic liquid crystalline nanoparticles was prepared for the first time, which not only solved water-soluble problem, poor stability and bioavailability of the curcumin and also provided a new idea for lipid cubic liquid crystalline nanoparticles as drug carrier.
     2. A variety of methods and technology was adopted for the evaluation in vivo and in vitro of compound curcumin lipid cubic liquid crystalline nanoparticles for the first time. The structure characterization of compound curcumin lipid cubic liquid crystalline nanoparticles was carried out by the spectroscopy, chromatography, DSC, SAXS, and so on. In addition, in vitro release, in vivo bioavailability, cell absorption and transport mechanism was also been studied systematically and comprehensively.
引文
[1]崔晶,翟光喜,娄红祥.姜黄素的研究进展[J].中南药学,2005,3(2):108-111.
    [2]Bernabe-Pineda M, Ramirez-Silva M T, Romero-Romo M, et al. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition[J]. Spectrochim Acta A Mol Biomol Spectrosc,2004,60(5):1091-1097.
    [3]罗红霞,方清茂,潘晓鸥.姜黄素的提取及其含量测定研究进展[J].中国药业,2004,13(6):74-75.
    [4]王旗,王夔.姜黄素的代谢研究[J].中国药理学通报,2003,19(10):1097-1101.
    [5]Wang Y J, Pan M H, Cheng A L, et al. Stability of curcumin in buffer solutions and characterization of its degradation products[J]. J Pharm Biomed Anal,1997,15(12):1867-1876.
    [6]C L X. Curcumin nano-lipid injection liquid, preparation method and application[P]. CN:101548946,2009-02-17.
    [7]Kim T H, Jiang H H, Youn Y S, et al. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity[J]. Int J Pharm,2011,403(1-2)285-291.
    [8]I P E, J K S, T K V. Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, [beta]-cyclodextrin and modified starch[J]. Food Chemistry,2011,125(3):913-922.
    [9]山东绿叶天然药物研究开发有限公司.姜黄素乳剂及其制备方法和用途[P].中国专利:1736369A,2006-02-22.
    [10]韩刚,张永,孙广利,等.姜黄索滴丸的制备及体外溶出研究[J].中成药,2006,28(12):1832-1833.
    [11]高振坤,王兰.姜黄素-羟丙基-β-环糊精包合物的制备及其理化性质研究[J].中国药房,2007,18(13):999-1000.
    [12]C L C, Y L H, C C H. Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions[J]. Food Chemistr,2009,116(4):923-928.
    [13]中山大学.姜黄素固体分散体及其制备方法与应用[P].中国专利:100352430C,2007-12-05.
    [14]Wang D, Veena M S, Stevenson K, et al. Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor kappaB by an AKT-independent pathway[J]. Clin Cancer Res,2008,14(19):6228-6236.
    [15]Anitha A, Maya S, Deepa N. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells[J]. Carbohydrate Polymers,2011,83(2):452-461.
    [16]山东大学.姜黄素磷脂复合物及其制备方法[P].中国专利:1283237C,2006-11-08.
    [17]Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat[J]. Acta Pharmacol Toxicol (Copenh),1978,43(2):86-92.
    [18]Holder G M, Plummer J L, Ryan A J. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat[J]. Xenobiotica,1978,8(12):761-768.
    [19]Ravindranath V, Chandrasekhara N. Absorption and tissue distribution of curcumin inrats[J]. Toxicology,1980,16(3):259-265.
    [20]Ravindranath V, Chandrasekhara N. In vitro studies on the intestinal absoiption of curcumin in rats[J]. Toxicology,1981,20(2-3)251-257.
    [21]曾晓会,陈玉兴,黄雪君,等.胡椒碱对大鼠原代培养肝细胞β-GD活性的影响[J].中药药理与临床,2010(2).
    [22]Pan M H, Huang T M, Lin J K. Biotransformation of curcumin through reduction and glucuronidation in mice[J]. Drug Metab Dispos,l 999,27(4):486-494.
    [23]Shoba G, Joy D, Joseph T, et aL Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers[J]. Planta Med,1998,64(4)353-356.
    [24]Shah J C, Sadhale Y, Chilukuri D M. Cubic phase gels as drug delivery systems[J]. AdvDrug Deliv Rev,2001,47(2-3)229-250.
    [25]Cook A G, Wardell J L, Imrie C T. Carbohydrate liquid crystals:synthesis and characterisation of the methyl-6-O-(n-acyl)-a Ipha-D-glucopyranosides[J]. Chem Phys Lipids,2011,164(2):118-124.
    [26]Lopes L B, Ferreira D A, de Paula D, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides:in vitro and in vivo skin penetration of cyc losporin A[J]. Pharm Res,2006,23(6):1332-1342.
    [27]Abraham T, Hato M, Hirai M. Glycolipid based cubic nanoparticles:preparation and structural aspects[J]. Colloids Surf B Biointerfaces,2004,35(2):107-117.
    [28]Wang H, Zhang G, Du Z, et al. Effect of temperature on dynamic rheological behavior of discontinuous cubic liquid crystal[J]. J Colloid Interface Sci,2006,300(1):348-353.
    [29]Guo C, Wang J, Cao F, et al. Lyotropic liquid crystal systems in drug delivery[J]. Drug Discov Today,2010,15 (23-24):1032-1040.
    [30]刘斌.环孢素A立方立晶分散体抑制大鼠角膜移植排斥反应的实验研究[J].
    [31]肖羽君.立方液晶前体缓释胶囊的研究[D].中山大学,2010.
    [32]Caboi F, Amico G S, Pitzalis P, et al. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein;water system. I. Phase behavior[J]. ChemPhysLipids,2001,109(1):47-62.
    [33]Ganem-Quintanar A, Quintanar-Guerrero D, Buri P. Monoolein:a review of the pharmaceutical applications[J]. Drug Dev Ind Pharm,2000,26(8):809-820.
    [34]毕晓黎,孙冬梅,罗文汇,等.HPLC法同时测定复方姜黄微囊中姜黄素和胡椒碱的含量[J].中国实验方剂学杂志,2010,16(2):20-22.
    [35]仲明远,全山丛,胡晋红.HPLC法同时测定姜黄胶囊中姜黄素和胡椒碱的含量[J].药学服务与研究,2006,6(1):54-56.
    [36]高伟祺,栾淑伟,王锐利,等.青蒿素在不同溶剂中平衡溶解度和表观油水分配系数的测定[J].药物评价研究,2013(1):35-38.
    [37]李雪,王芳,赵晓宏,等.丹皮酚溶解性能的测定[J].中医学报,2013(2):221-223.
    [38]国家药典委员会.中国药典一部(凡例)[M].中国医药科技出版社,2010.
    [39]陶涛,赵雁,陈庆华.石杉碱甲的解离常数、表观溶解度和表观油/水分配系数的测定[J].中国医药工业杂志,2005(8):487-489.
    [40]张琪,龚耘,劳嘉泳,等.非布索坦平衡溶解度、表观油水分配系数及解离常数的测定[J].中国新药杂志,2013(1):103-106.
    [41]国家药典委员会.中国药典(二部)附录XVD缓冲液[M].中国医药科技出版社,2010.
    [42]吴芸,陈志鹏,肖璐,等.延胡索乙素平衡溶解度及表观油水分配系数的测定[J].南京中医药大学学报,2012(2):178-180.
    [43]Yang D, Armitage B, Marder S R. Cubic liquid-crystalline nanoparticles[J]. Angew Chem Int Ed Engl,2004,43(34):4402-4409.
    [44]Guo C, Wang J, Cao F, et al. Lyotropic liquid crystal systems in drug delivery[J]. Drug Discov Today,2010,15 (23-24):1032-1040.
    [45]Lisensky G, Boatman E. Colors in Liquid Crystals [J]. Journal of Chemical Education,2005,82(9):1360A.
    [46]Jeong K, Knapp B S, Ge J J, et aL Structures and phase transformations of odd-numbered asymmetric main-chain liquid crystalline polyesters[J]. Polymer,2006,47(10):3351-3362.
    [47]周莉玲,王岩,刘清飞,等.青藤碱脂质体包封率的测定[J].中国中药杂志,2006(9):731-734.
    [48]陈桐楷,李园,林华庆,等.氢溴酸高乌甲素固体脂质纳米粒包封率的测定方法[J].中国医院药学杂志,2011(7):557-560.
    [49]贾乐姣,张典瑞,王言才.水飞蓟宾纳米结构脂质载体中主药含量及包封率测定[J].中国药学杂志,2009(18):1400-1403.
    [50]黄义昆,杜娟,李志.凝胶过滤法和离心法测定盐酸川芍嗪脂质体包封率比较[J].华夏医学,2007(2)1212-213.
    [51]罗云敬,沈含熙,等.紫外分光光度法测定头孢他啶脂质体的包封率与渗漏率[J].中国抗生素杂志,1998,23(3)203-204.
    [52]胡鹏翼,郑琴,杨明,等.主动载药法制备槐定碱脂质体[J].中国实验方剂学杂志,2011,17(13):5-8.
    [53]侯冬枝,刘长科,平其能,等.牛血清白蛋白脂质体包封率的测定方法研究[J].药学学报,2007(5):545-549.
    [54]王素芳,刘利萍,边可君.微柱凝胶离心-HPLC测定酮康唑醇质体包封率[J].中国现代应用药学,2011(6):527-530.
    [55]金鑫,王绛玉,张娜,等.微柱离心-高效液相色谱法测定莪术醇脂质体的包封率[J].中国药剂学杂志(网络版),2010(1):27-32.
    [56]周丽娟,刘清飞,陈曦,等.尼莫地平微乳的包封率和体外释药特性的研究[J].中国药事,2008(7):564-567.
    [57]岳鹏飞,郑琴,胡鹏翼,等.测定及提高亚微乳载药系统包封率的研究进展[J].中国医药工业杂志,2010(6):464-467.
    [58]陈桐楷,李园,林华庆,等.氯溴酸高乌甲素固体脂质纳米粒包封率的测定方法[J].中国医院药学杂志,2011(7):557-560.
    [59]王新春,侯世祥,李文,等.白藜芦醇小麦醇溶蛋白纳米粒包封率测定方法研究[J].中国中药杂志,2007(13):1355-1357.
    [60]马晓莉,邢建国,工新春,等.天山雪莲传递体包封率测定方法的研究[J].中成药,2012(2):360-362.
    [61]Sagalowicz L, Leser M E, Watzke H J, et aL Monoglyceride self-assembly structures as delivery vehicles[J]. Trends in Food Science & Technology,2006,17(5):204-214.
    [62]Barauskas J, Landh T. Phase Behavior of the Phytantrio I/Water System[J]. Langmuir,2003,19(23)9562-9565.
    [63]Dong Y D, Larson I, Hanley T, et al. Bulk and dispersed aqueous phase behavior of phytantriol:effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure[J]. Langmuir,2006,22(23) 9512-9518.
    [64]Caffrey M. Kinetics and mechanism of the lamellar gel/lamellar liquid-crystal and lamellar/inverted hexagonal phase transition in phosphatidylethanolamine:a real-time X-ray diffraction study using synchrotron radiation[J]. Biochemistry,1985,24(18):4826-4844.
    [65]王志宁.甘油单油酸酯/水立方液晶体系作为药物载体体系的研究[D].山东大学,2005.
    [66]Rizwan S B, Dong Y D, Boyd B J, et al. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM)[J]. Micron,2007,38(5):478-485.
    [67]刘少杰,工连成,张晋,等.立方液晶作为药物载体的研究[J].山东大学学报(理学版),2005(3)95-100.
    [68]Landh T. Phase Behavior in the System Pine Needle Oil Monoglycerides-Poloxanier 407-Water at 20.degree[J]. J. Phys. Chem,1994,98(34):8453-8467.
    [69]Muller F, Salonen A, Glatter O. Phase behavior of Phytantriol/water bicontinuous cubic Pn3m cubosomes stabilized by Laponite disc-like particles[J]. J Colloid Interface Sci,2010,342(2):392-398.
    [70]王志宁,郑利强.类脂立方液晶作为药物载体的研究[J].化学进展,2005,17(3):417-422.
    [71]彭新生,杨志文,陈美婉,等.辣椒碱立方液晶凝胶的制备、表征及含量测定[J].中国中药杂志,2010,35(23):3123-3126.
    [72]水玲玲.双子表而活性剂的表而活性及含MO体系的立方液晶作为药物载体[D].山东大学,2003.
    [73]Fong W K, Hanley T, Boyd B J. Stimuli responsive liquid crystals provide 'on-demand' drug delivery in vitro and in vivo[J]. J Control Release,2009,135(3):218-226.
    [74]张晋.类脂立方液晶及咪唑类离子液液晶的研究[D].山东大学,2008.
    [75]Yang D, Armitage B, Marder S R Cubic liquid-crystalline nanoparticles[J]. Angew Chem Int Ed Engl,004,43(34):4402-4409.
    [76]Spicer P T, Small W B, Small W B, et al. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)[J]. Journal of Nanoparticle Research,2002,4(4):297.
    [77]Boyd B J, Khoo S M, Whittaker D V, et al. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats[J]. Int J Pharm,2007,340(1-2):52-60.
    [78]孙维彤,黄桂华,叶杰胜,等.鱼精蛋白凝聚法测定脂质体和纳米脂质体包封率[J].中国药学杂志,2006,41(22):1716-1720.
    [79]甘莉,甘勇,沈锦秋,等.地塞米松纳米立方液晶眼用制剂家兔房水药代动力学[J].中国药科大学学报,2009(4).
    [80]Nakano M, Sugita A, Matsuoka H, et al. Small-Angle X-ray Scattering and 13C NMR Investigation on the Internal Structure of " Cubosomes " [J]. Langmuir,2001,17(13):3917-3922.
    [81]Minoru Nakano T T A S, Taniguchi A, Kamo T, et al. Dispersions of Liquid Crystalline Phases of the Monoolein/Oleic Acid/Pluronic F127 System[J]. Langmuir,2002,18(24):9283-9288.
    [82]Chung H, Kim J, Um J Y, et al. Self-assembled "nanocubicle" as a carrier for peroral insulin delivery[J]. Diabetologia,2002,45(3):448-451.
    [83]Um J Y, Chung H, Kim K S, et al. In vitro cellular interaction and absorption of dispersed cubic particles[J]. Int J Pharm,2003,253(1-2):71-80.
    [84]Zhaoa X Y, Zhanga J, Zheng L Q, et al. Studies of Cubosomes as a Sustained Drug Delivery System[J]. Journal of Dispersion Science and Technology,2005,25 (6) 795-799.
    [85]Nguyen T H, Hanley T, Porter C J, et al. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water-soluble drugs . In-vivo evaluation[J]. J PharmPharmacol,2010,62(7):856-865.
    [86]Dolgova L, Yaroshchuka O, Qiub L. SEM Investigations of the Polymer Morphology in the Liquid Crystal-Polymer Composites with Different Polymer Contents[J]. Molecular Crystals and Liquid Crystals,468(1):687-696.
    [87]Rizwan S B, Assmus D, Boehnke A, et al. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines[J]. Eur J Pharm Biopharm,2011,79(1):15-22.
    [88]Pan C, Tang J J, Weng Y J, et al. Preparation, characterization and anticoagulation of curcumin-e luting controlled biodegradable coating stents[J]. J Control Release,2006,116(1):42-49.
    [89]王小亮,傅强,绳金房,等.近红外光谱技术在制药过程分析中的应用进展[J].西北药学杂志,2009(3)228-230.
    [90]H Z A, R S R, H N A A. STABILISAION OF CURCUMIN WITH γ-CYCLODEXTRIN-PHASE SOLUBILITY STUDY AND ITS CHARACTERISATION[C].2011 2nd International Conference on Biotechnology and Food Science,2011.9-13
    [91]徐阳,傅燕翔,王龙.差示扫描量热仪校准方法[J].计量与测试技术,2012(8):14-16.
    [92]Ho K Y, Ord M, Dodou K. Effect of drug-polymer binary mixtures on the in-vitro release of ibuprofen from transdermal drug-in-adhesive layers[J]. Drug Discov Ther,2008,2(5)277-281.
    [93]Matschke C, Isele U, van Hoogevest P, et al. Sustained-release injectables formed in situ and their potential use for veterinary products[J]. J Control Release,2002,85(1-3):1-15.
    [94]Kanehashi S, Kusakabe A, Sato S, et al. Analysis of permeability; solubility and diffusivity of carbon dioxide; oxygen; and nitrogen in crystalline and liquid crystalline polymers[J]. Journal of Membrane Science,2010,365(1):40-51.
    [95]de Groen M, Vlugt T J, de Loos T W. Phase behavior of liquid crystals with C02[J]. J Phys Chem B,2012,116(30):9101-9106.
    [96]Wu S T, Lackner A M, Efron U. Optimal operation temperature of liquid crystal modulators[J]. Appl Opt,1987,26(16):3441-3445.
    [97]Negrini R, Mezzenga R. pH-responsive lyotropic liquid crystals for controlled drug delivery[J]. Langmuir,2011,27(9):5296-5303.
    [98]Boyd B J. Characterisation of drug release from cubosomes using the pressure ultrafiltrationmethod[J]. Int J Pharm,2003,260(2):239-247.
    [99]Boyd B J, Whittaker D V, Khoo S M, et al. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems[J]. Int J Pharm,2006,309(1-2)218-226.
    [100]Shaikh J, Ankola D D, Beniwal V, et al. Nanoparticle encapsulation improves oral bio availability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer[J]. Eur J Pharm Sci,2009,37(3-4):223-230.
    [101]贺红军,孔保华,孙承锋,等.乳糖酶生物黏附纳米微囊的制箅及剩附性评价[J]. 食品工业,2011(10):55-58.
    [102]Gan L, Han S, Shen J, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone:Improving preocular retention and ocular bio availability [J]. Int J Pharm,2010,396(1-2):179-187.
    [103]Boyd B J, Khoo S M, Whitaker D V, et aL A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats[J]. Int J Pharm,2007,340(1-2):52-60.
    [104]Lian R, Lu Y, Qi J, et al. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices:physical characterization and enhanced oral bioava iability [J]. AAPS PharmSciTech,2011,12 (4).1234-1240.
    [105]Goudail F, Terrier P, Takakura Y, et al. Target detection with a liquid-crystal-based passive Stokes polarimeter[J]. Appl Opt,2004,43(2):274-282.
    [106]Liu A, Lou H, Zhao L, et al. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study ofphospholipid complex of curcumin[J]. J Pharm Biomed Anal,2006,40(3):720-727.
    [107]Sharma R A, Steward W P, Gescher A J. Pharmacokinetics and pharmacodynamics of curcumin[J]. Adv Exp Med Biol,2007,595:453-470.
    [108]Shoba G, Joy D, Joseph T, et al, Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers[J]. Planta Med,1998,64(4):353-356.
    [109]Maiti K, Mukherjee K, Gantait A, et al. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats[J]. Int J Pharm,2007,330(1-2):155-163.
    [110]Shehzad A, Wahid F, Lee Y S. Curcumin in cancer chemoprevention:molecular targets, pharmacokinetic s, bioavailability, and clinical trials[J]. Arch Pharm (Weinheim),2010,343 (9):489-499.
    [111]Tsai Y M, Chien C F, Lin L C, et al. Curcumin and its nano-formulation:the kinetics of tissue distribution and blood-brain barrier penetration[J]. Int J Pharm,2011,416(1):331-338.
    [112]Anand P, Kunnumakkara A B, Newman R A, et al. Bioavailability of curcumin: problems and promises[J]. MolPharm,2007,4(6):807-818.
    [113]Ravindranath V, Chandrasekhara N. Absorption and tissue distribution of curcumin in rats[J]. Toxicology,1980,16(3)259-265.
    [114]Lee K W, Nguyen T H, Hanley T, et al. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs[J]. Int J Pharm,2009,365(1-2):190-199.
    [115]Nguyen T H, Hanley T, Porter C J, et al. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water-soluble drugs II. In-vivo evaluation[J]. J Pharm Pharmacol,2010,62(7):856-865.
    [116]闫文丽.姜黄素在大鼠单向肠灌流模型和Caco-2细胞模型中吸收机制研究[D]. 广州中医药大学,2012.
    [117]贾晓燕.氨基多糖纳米微粒在Caco-2细胞模型中的吸收机制及其在荷瘤小鼠体内分布的研究[D].浙江大学,2009.
    [118]韩旻,韩丽妹,王青松,等.三七皂苷的口服吸收机制[J].药学学报,2006(6):498-505.
    [119]贝永燕,管敏,周奕,等.去甲基斑蝥素N-乳糖酰壳聚糖纳米粒的吸收机制及小鼠抑瘤作用研究[J].中国药房,2012,23(1):26-28.
    [120]谢社平,谭晓婧,毕开顺,等.盐酸巴马汀在Caco-2细胞中的吸收机制[J].中国实验方剂学杂志,2011(3):209-213.
    [121]白宇,秦晶,王建新,等.芦丁在Caco-2细胞模型中吸收和外排机制的研究[J].中国医药工业杂志,2011(9):655-659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700