相平面价电子结构及其在合金研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以余(瑞璜)氏固体与分子经验电子理论(EET)和程(开甲)氏改进的TFD理论为基础定义了相平面价电子结构的概念,建立了平面价电子结构的计算方法,给出了相界面之间的相对电子密度差△p的数学表达式,为相界面电子密度连续的计算和应用奠定了基础。当合金中存在异相界面且按一定的位向关系相匹配时,对原子的定态除了考虑键距差|△D|的大小以外,同样要考虑△p的大小。综合考虑两种因素的影响,提出了原子状态判定因子w,并用它讨论了Fe-C奥氏体、Fe-C马氏体中铁原子的杂化状态和合金奥氏体Fe-C-Me晶胞中原子的杂化状态。结果表明,Fe-C奥氏体含碳结构单元中,Fe~c原子的杂化状态为乙种杂化第13阶(B13),Fe~f原子的杂化状态为乙种杂化第14阶(B14)。Fe-C马氏体含碳结构单元中,Fe_Ⅰ,Fe_Ⅱ及Fe_Ⅲ的杂化状态分别为甲种杂化第12(A12),10(A10)和9阶(A9)。对于合金奥氏体,Fe~c、Fe~f原子的杂化状态因Me(任一合金元素)原子的不同而发生改变。在Fe-C-Cr晶胞中,Fe~c、Fe~f、Cr的杂化状态分别为B14、B15、A7(或A8)阶;在Fe-C-W晶胞中,Fe~c、Fe~t、W原子的杂化状态分别为B13、B14、C1(或C2)阶;在Fe-C-Si晶胞中,Fe~c、Fe~f、Si原子的杂化状态分别为B15、B16(或B17)、A1(或A2、A3)阶;在Fe-C-Mn晶胞中,Fe~c、Fe~f、Mn原子的杂化状态分别为B14(或B13)、B15、C11阶。应用原子状态判定因子w来确定合金组成元素原子的杂化状态,是将程氏提出的各原子相接触的表面上电子密度必须连续这一电子运动的边界条件运用到余氏理论的计算中,不仅可使余氏确定原子杂化状态时解的多重性问题得以简化,而且在“异相界面电子密度连续”这一结合点上使余氏理论和程氏理论得到了衔接。
     分别对A_1,A_2和A_3型晶体结构的部分金属的价电子结构进行了计算,并给出了三种类型结构金属的平面价电子结构分析通式。定义了表征晶体沿晶面发生滑移难易程度的参数F,F值越小,滑移越容易进行;反之则滑移越难进行。通过对A_1,A_2和A_3型晶体结构中更多晶面的F值的计算表明,A_1,A_2和A_3型晶体结构中的F值最小的晶面分别为{111},{110}和{0001}面。由此在价电子结构的层次上解释了A_1,A_2和A_3型晶体发生滑移时的滑移面分别为{111),{110}和{0001}面的原因。
     把程氏改进的TFD理论中的电子运动边界条件运用于余氏理论中,计算了Fe-C奥氏体和Fe-C马氏体原子排列较密集的几个低指数晶面电子密度,通过对计算数据的分析,在价电子结构的层次讨论了马氏体相变时的位向关系。奥氏体向马氏体转变时,奥氏体的(111)晶面和马氏体的(110)晶面的相对电子密度差为6.95%,小于10%,即在一级近似下奥氏体的(111)面与马氏体的(110)面是连续的。按程氏理论指出的“固体中原子间的边界条件只是电子密度要连续”的量子力学条件,奥氏体向马氏体的转变其位向关系为:(111)_γ∥(110)_α。
     应用键能讨论了合金元素对奥氏体向马氏体转变相变点的影响,计算表明,当Mo、Cr、W、Mn、Ni等合金元素加入到奥氏体中后,合金奥氏体晶胞中共价键键能的最大值都比Fe-C晶胞中最大共价键键能值有不同程度的增加,因而需要更大的能量来打断合金奥氏体晶胞中的主干键以发生奥氏体向马氏体的转变,即这些合金元素的加入影响了奥氏体向马氏体的转变温度,共价键能值增加的越多,则所需的过冷度越大,相变温度就越低。Mn、Cr、Ni、Mo、W等合金元素对奥氏体向马氏体转变相变点影响的规律是:Mn、Cr、Ni降低相变点的作用较强,Mo、W次之,与金属学中的实验规律相吻合。
     基于平均晶胞模型和平均原子模型的思想分别给出了Fe基间隙固溶体和置换固溶体,Al-Mg置换固溶体的价电子结构详细的计算方法。在γ-Fe-C固溶体中,含碳晶胞的最强键络的共价电子对数n_A较基体(γ-Fe)的n_A值提高了近两倍;γ-Fe-N固溶体的含N晶胞的n_A值较基体(γ-Fe)的n_A值也提高了近1.4倍。然而在置换固溶体中,如Al-Mg固溶体的含Mg晶胞的n_A值和Fe-Si固溶体含Si晶胞的n_A值以及Fe-Mn固溶体含Mn晶胞的n_A值较基体几乎没有变化。间隙固溶体较置换固溶体强化效果之所以更为明显,可以从n_A值的变化找到答案。从而把固溶强化的机制追溯到固溶体的价电子结构上。
In this paper,based on Yu's empirical electron theory of solid and molecule,i.e.EET and Cheng's improved TFD theory,the conception and the calculation methods of plane valence electron structure is defined and established,and the mathematic expression of relative electron density difference△ρof phase interface is proposed.These lay foundation for the continuous calculation and application of electron density of phase interface.For the definite state of atoms in alloy if exiting biphase interface and arranging by definite phase relationship,the values of bond length difference(BLD)△D and△ρshould be both considered.The effect of two factors is considered simultaneously and atom state ascertainment factor w applied to study on the hybridization state of Fe atom in Fe-C austenite and Fe-C martensite and the hybridization state of atoms of Fe-C-Me unit cell in alloyed austenite is presented.The results indicate that in Fe-C austenite C-contained structure unit,the hybrid levels of Fe~c and Fe~f atoms are B13 and B14,respectively and in Fe-C martensite C-contained structure unit,the hybrid levels of Fe_Ⅰ,Fe_Ⅱand Fe_Ⅲatoms are A12,A10 and A9,respectively.For alloyed austenite,different Me(any alloying elements)atoms make the hybridization states of Fe~c and Fe~f atoms change accordingly. The hybridization states of Fe~c,Fe~f and Cr atoms in Fe-C-Cr unit cell are B14,B15 and A7(or A8),respectively;those of Fe~c,Fe~f and W atoms in Fe-C-W unit cell are B13,B14 and C1(or C2),respectively;those of Fe~c,Fe~f and Si atoms in Fe-C-Si unit cell are B15, B16(or B17)and A1(A2 or A3),respectively;those of Fe~c,Fe~f and Mn atoms in Fe-C-Mn unit cell are B14(or B13),B15 and C11,respectively,w is applied to ascertain the hybridization states of atoms of alloying elements,which made that the electron density of the contacting surface between atoms must be continuous(the boundary condition of the movement of electrons)by Cheng Kaijia applied to the calculation of Yu's theory,which can not only simplify the multiply solution ascertaining the hybridization states of atoms, but also join Yu's theory and Cheng's theory at the bonding point that biphase interface electron density is continuous.
     Valence electron structures of some metals of A_1,A_2 and A_3 model crystal structures are respectively calculated and the analytic general formula of plane valence electron structure of three models metal is presented.A new parameter "F" is taken as the difficulty coefficient of slipping along certain face.The smaller the value of F is,the easier the slipping;on the contrary,the slipping is much more difficult.In A_1,A_2 and A_3 model crystal structures,the F values of many other crystal planes are calculated and the results show that the crystal planes with the minimum F are {111},{110} and {0001} respectively.So in the level of valence electron structure,the reason that {111},{110} and {0001} are respective slip plane of A_1,A_2 and A_3 model can be explained.
     By applying the boundary condition of the movement of electrons in Cheng's improved TFD theory to Yu's theory,electron density of a few low index crystal face that the atoms arrange more dense in Fe-C austenite and Fe-C martensite is calculated.The calculate data are analyzed and the definite orientation relationship of martensite phase transformation is discussed in the level of valence electron structure.When austenite transformed to martensite,relative electron density difference between the plane of(111) of austenite and the plane of(110)of martensite is 6.95%,which is smaller than 10%,i.e. the plane of(111)of austenite and the plane of(110)of martensite is continuous under the first-order approximation.According to the quantum-mechanical condition that the boundary condition between atoms is only that the electron density must be continuous in solid presented in Cheng's theory,the definite orientation relationship is(111)_γ//(110)_αwhen austenite transforms to martensite,.
     The effect of alloying elements on the phase transformation point Ms of austenite is studied according to bond energy.The calculation shows that the maximum value of covalent bond energy of alloyed austenite unit cell is bigger than the one of Fe-C unit cell when the Mo,Cr,W,Mn,Ni etc.alloying elements melt into the austenite.So it needs more energy to break the most powerful bond of alloying austenite unit cell for the sake of the transformation from austenite to martensite,i.e.the alloying elements have affected the transformation temperature from austenite to martensite.The more the value of covalent bond energy is increased,the larger degree of supercooling is needed and the lower the phase transformation tempreture is.The rule that Ms from austenite to martensite is affected by Mn,Cr,Ni,Mo,W etc.alloying elements is that the function of Mn,Cr,Ni decreasing the Ms is stronger,while Mo and W take second place,which is in accord with the experimental rule in metallurgy.
     Based on the thought of average cell model and average atom model,the detailed calculation methods of valence electron structure of Fe-interstitial solid-solution and substitution solid-solution and Al-Mg substitution solid-solution are presented,respectively. Inγ-Fe-C solid-solution,the number of covalent electron pairs n_A of the most powerful bond of C-contained unit cell is increased about 2 times than the one of matrix(γ-Fe);the n_A ofγ-Fe-N solid-solution N-contained unit cell is increased about 1.4 times than the one of matrix(γ-Fe).In substitution solid-solution,however,the n_A of Al-Mg solid-solution Mg-contained unit cell,the one of Fe-Si solid-solution Si-contained unit cell and the one of Fe-Mn solid-solution Mn-contained unit cell are almost accord with the one of matrix.The reason interstitial solid-solution strengthening is stronger than substitution solid-solution's obviously is the variation of n_A.So the mechanism of solid-solution strengthening can be presented using the valence electron structures of the solid-solution.
引文
[1]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,23(4):217-224
    [2]Cheng Kaijia.Application of the TFD model and Yu's theory to material design[J].Progress in natural science,1993,3(3):211-230
    [3]Cheng Shuyu,Cheng Kaijia.Computation on heat of formation and EOS of alloy by a refined TFD model[J].Acta Physica Sinica(Overseas Edition),1993,2(6):439-448
    [4]Cheng Kaijia,Cheng Shuyu.Theoretical foundations of condensed materials[J].Progress in natural science,1996,6(1):1-15
    [5]程开甲,程漱玉.论材料科学的理论基础[J].自然科学进展,1996,6(1):12-20
    [6]程开甲,程漱玉.论少子对材料特性的影响[J].材料研究学报,1996,10(1):1-7
    [7]C.T.Sims.Superalloys 1984[M].ed.by Gell et.al.,MIME,Warrendale,PA,1984,1st ed:399.
    [8]张济山,崔华,胡壮麒.D电子合金理论及其在合金设计中的应用[J].材料科学与工程.1993,11(3):1-10
    [9]M.Morinaga,J.Saito,N.Yukawa and H.Adachi.Electronic effect on the ductility of alloyed TiAl compound[J].Acta metall mater,1990,38(1):25-28
    [10]D.L.Cocke.Design of New Materials[M].Plenum Press,1986,1st ed:2
    [11]国家自然科学基金委员会.金属材料科学[M].北京:科学出版社,1995,133-140
    [12]D.G.Pettifor,A.H.Cottrell,陈魁英译.合金设计的电子理论[M].沈阳:辽宁科学技术出版社,1997,序言.
    [13]Wang Chongyu,An Feng,Gu Binling et.al..Electron structure of the light-impurity(boron)-vacancy complex in iron[J].Phys.Rev.(B),1988,38(36):3905-3915
    [14]Wang Chongyu,Liu Shenying and Han Linguang.Electron structure of impurity(oxygen)-stacking fault complex in nickel[J].Phys.Rev.(B),1990,41(3):1359-1368
    [15]Wang Chongyu,Yue Yong and Liu Shenying.Electron structure of the YBa_2Cu_3O_(7-y)superconductor containing twin boundaries[J].Phys.Rev.(B),1990,41(10):6591-6599
    [16]Wang Chongyu,Wangbing,Feng Peng et.al..Localized electronic structure of boron impurity vacancy complex in Ni[J].Phys.Rev.(B),1992,46(5):2693-2701
    [17]Wang Chongyu,Liqun Chen,Keng Li et.al..Electronic structure of the impurity boron-vacancy complex intransitionmetal γ-Fe[J].J.Appl.Phys,1992,71(1):239-242
    [18]Wang Chongyu,Li Junqing,Qiu Wenyuan et.al..Electronic structure of the ReCo_5type intermetallic compound[J].Chinese science bulletin,1990,35(3):197-208
    [19]Wang Chongyu and Zeng Yueping.Electronic structure of grain boundary in transition metal Ni[J].Science in China(Series A),1992,35(12):1466-1471
    [20]Wang Chongyu and Yu Tao.Atomic structure and doping response of grain boundary in transition metal Ni[J].Science in China(SeriesA),1994,37(7):878-889
    [21]J.S.Zhang,Z.Q.Hu,Y.Murata et.al..Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory-Part I.Characterization of the phase stability[J].Metallurgical transactions(A),1993,24:2443-2450
    [22]J.S.Zhang,Z.Q.Hu,Y.Murata et.al..Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory-Part Ⅱ.Effect of refractory metals Ti,Ta and Nb on microstructures and properties[J].Metallurgical transactions(A),1993,24:2451-2458
    [23]Chen Kuiying,Liu Hongbo and Hu Zhuangqi.Local orientational order in binary liquid Li-In alloys[J].J.Phys,Condens Matter,1995,7:517-529
    [24]Changgong Meng,Jianting Guo and Zhuangqi Hu.Mechanism of macroalloying-induced Ductility in Ni_3Al[J].J.Mater,Sci.Tehcnol,1994,10:279-285
    [25]谢佑卿.固体中多原子相互作用的新势能函数[J].中国科学(A辑),1992,22(8):880-887
    [26]谢佑卿,张晓东,赵礼颖等.金属Cu的电子结构和物理性质[J].中国科学(A辑),1993,23(5):545-551
    [27]谢佑卿,张晓东.Ag-Cu合金的原子体积和体积函数[J].中国科学(E辑),1998,28(1):12-17
    [28]高英俊,陈振华,黄培云等.有序Al-Li金属间化合物的电子结构与结合性能[J].中国有色金属学报,1997,7(4):141-147
    [29]Gao Yingjun,Chen Zhenhua,Huang Peiyun et.al..Bond parameters and electronic structure of V,Nb and Ta metals[J].Trans.Nonferrous Met.Soc.Chian,1998,8(1):20
    [30]Liu Zhilin,Dai Tianshi,Yang Shuangliang et.al..Calculation of valence electron structure in L_2' -type complex solid solutions[J].Science in China(Series A),1989,32(11):1390-1397
    [31]Liu Zhilin,Dai Tianshi,Qu Yongbo.The model of valence electron theory of drag-like effect[J].Chinese science bulletin,1989,34(12):979-983
    [32]Liu Zhilin,Liu Chunhui,Zhao Lianman.Valence eIectron structure of 40CrNiMo and its influences on phase transformation[J].Science in China(Series A),1989,32(7):867-877
    [33]Dai Tianshi,Liu Zhilin,Zhang Ruilin.Valence electron structure of Cr in Fe-C austenite and behavior of Cr in kinetics of phase transformation[J].Chinese sciense bulletin,1989,34(21):1830-1833
    [34]L.Pauling.The Nature of the Chemical Bond[M].Cornell University Press,Ithaca,1960, 3rd.ed.,pp.393-448.
    [35]S.H.Yu.The empirical electron theory of solid and molecules—the hypothesis of equivalent valence electron[J].Kexue Tongbao,1981,26(7):506-513
    [36]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993,275-300,316,427-482
    [37]Yongquan Guo,Ruihuang Yu,Ruilin Zhang,et.al..Calculation of magnetic properties and analysis of valence electron structures of LaT_(13-x)Al_x(T=Fe,Co)compounds[J].J.Phys.Chem.B,1998,102(1):9-16
    [38]余瑞璜.铝-镁二元金相α、δ相以及γ-Al_(12)Mg_(19)相的价电子结构分析[J].吉林大学自然科学学报,1979,(4):54-75
    [39]S.H.Yu.Periodic table in the microscopic space of solids and molecules—fine structure of atomic valence:Ⅰ subgroup BⅠ,BⅡ,AⅢ elements in the periodic table[J].Science reports of Jinan University,1981,(supp.1):7-25
    [40]S.H.Yu.Periodic table in the microscopic space of solids and molecules—fine structure of atomic valence:Ⅱ subgroup AV elements As,Sb and Bi in the periodic table[J].Science reports of JinanUniversity,1981,(supp.1):26-29
    [41]S.H.Yu.Quantum mechanical foundation of discontinuous states hybridization hypothesis in the empirical electron theory of solids and molecules[J].Science reports of Jinan University,1981,(supp.1):30-40
    [42]S.H.Yu.Analyses of the valence electron structure of Mg and some Mg and Ag hop solid solutions in phase transformation under critical high pressure —direct evidence of the existence of discontinuous hybridization of states in solids[J].Science reports of Jinan University,1981,(supp.1):41-55
    [43]陈秀芳,余瑞璜,左秀忠.锕系元素单键半径R(1)公式一固体与分子经验电子理论扩展到周期表第七周期所应用的参数[J].科学通报,1986,31(9):663-667
    [44]余瑞璜.α-Fe、γ-Fe和Fe_4N的价电子结构和磁矩结构分析—α-Fe→γ-Fe相变、高温渗氮表面硬化、渗碳体石墨化及其它材料的电子理论[J].金属学报,1982,18(3):A337-349
    [45]余瑞璜,张瑞林.奥氏体低温分解形成下贝氏体中的ε-Fe_3C的价电子结构分析[J].金属学报,1982,18(4):444-450
    [46]余瑞璜.CrO_3、δ-CrO_2、Cr_2O_3、α-Al_2O_3的熔点、沸点和在水中及其它溶液中的溶解度的电子理论[J].结构化学,1984,(3):193-196
    [47]S.H.Yu.Electron theory of superconductivity and transition point Tc's of Tl_2Ba_2Ca_(n-1)Cu_nO_(2n+4)(n=1,2,3,4)and comparison with Tc's of T1Ba_2Ca_(n-1)Cu_nO_(2n+3)(n=1,2,3,4,5)[J].Published in Progress in high temperature superconductivity,1987,2:494-497
    [48]余瑞璜,刘兆芸.稀土镁球墨铸铁的共格球化[J].金属学报,1985,21(1):A203-207
    [49]余瑞璜,张瑞林,屈庸博等.Fe-C-Cr-Si合金的价电子结构与奥氏体相变动力学[J].吉林工业大学学报,1987,(4):31-39
    [50]余瑞璜,刘志林.A1型多元固溶体价电子结构的计算[J].金属科学与工艺,1988,7(2):1-7
    [51]余瑞璜.金属间化合物BiU价电子结构分析—固体与分子经验电子理论应用(Ⅰ)[J].吉林大学自然科学学报,1992,(特刊):113-117
    [52]金冶,张瑞林,余瑞璜.铁-碳、铁-氮系中几种固溶体的研究Ⅱ—γ-Fe-N固溶体的价电子结构与a~x曲线[J].吉林大学自然科学学报,1984,(1):56-60
    [53]张瑞林,金冶,余瑞璜.铁-碳、铁-氮系中几种固溶体的研究Ⅲ—ε-Fe-N固溶体的价电子结构与晶格常数~成份曲线[J].吉林大学自然科学学报,1984,(1):63-72
    [54]张瑞林,吴尚才,余瑞璜.由Nd_2Fe_(14)B的晶体直接给出其价电子结构的分析[J].中国科学(A辑),1988,18(2):197-203
    [55]邢胜娣,余瑞璜.金属化合物Ti_3Al的价电子结构及其力学性能[J].吉林大学自然科学学报,1985,(1):62-69
    [56]袁祖奎,余瑞璜.Fe-Crσ相价电子结构的分析[J].金属学报,1985,21(2):Al40-146
    [57]李文,支文,朴英锡.间隙杂质对Ti-Al合金相变的影响[J].兵工学报,2000,21(1):38-41
    [58]郑伟涛,张瑞林,余瑞璜.Ag-Au、Au-Cu二元合金形成能和高温相图的研究[J].科学通报,1989,34(9):705-711
    [59]郑伟涛.Cu-Ag、Cu-Au、Ag-Au二元合金的价电子结构、相平衡的电子理论[D].长春:吉林大学,1988
    [60]郑伟涛,余瑞璜,张瑞林.Cu-Au二元合金有序-无序相平衡的研究[J].科学通报,1991,36(2):179-181
    [61]吴非,余瑞璜,张瑞林.Fe-Mn合金相图的电子理论计算[J].中国科学(A辑),1990,20(8):889-896
    [62]丁涛.磁性转变相图和二元合金Al-Co相图的计算[D].长春:吉林大学,1994
    [63]Zhang Jianmin,Zhang Ruilin,Yu Ruihuang.The fracture of transgranular cleavage of Fe_3Al and the intergranular fracture of FeAI[J].Chinese Science Bulletin,1994,39(15):1315-1318
    [64]张建民,张瑞林,余瑞璜.氢致α-Fe脆性机理的电子理论研究[J].科学通报,1995,40(3):234-236
    [65]张建民.Fe-Al合金的电子理论研究[D].长春:吉林大学,1994
    [66]尹衍升,孙扬善,熊宏齐等.三元Fe_3Al金属间化合物的价电子结构分析[J].金属学报,1993,29(11):A479-486
    [67]尹衍升.合金化对铸态Fe_3Al材料的作用与机制的研究[D].南京:东南大学,1993
    [68]Yin Yansheng,Wang Wenxiang,Shi Zhongliang.Analysis of valence electron structure(VES)of Fe_3Al intermetallic compounds[J].Materials chemistry and physics,1995,39:243-247
    [69]Yin Yansheng,Fan Runhua,Xie Yongsheng.The effect of chromium on the valence electron structure of Fe_3Al intermetallic compounds[J].Materials chemistry and physics,1996,4:190-193
    [70]范润华.Fe_3Al金属间化合物材料的强韧化机制的研究[D].济南:山东工业大学,1998
    [71]张小英.高强球铁(QT600-3)Ni-Fe焊缝异质焊接接头强度的研究[D].长春:吉林工业大学,1991
    [72]孙大谦.奥.贝球铁焊接冶金、相变与其电弧焊焊条的研究[D].长春:吉林工业大学,1993
    [73]郑伟涛,柴卫平,胡安广.TiN的价电子结构及其力学性能的研究[J].科学通报,1992,37(7):657-660
    [74]王建强.快速凝固Al-Fe-Si-V和Al-Fe-Si-V-Mm合金薄带的微观结构与力学行为的研究[D].沈阳:东北大学,1996
    [75]J.Q.Wang,C.F.Qian,B.J.Zhang et.al..Valence electronstructure analysis of the cubic silicide intermetallics in rapidly dolidified Al-Fe-V-Si alloy[J].Scripta Materialia,1996,34(10):1509-1515
    [76]J.Q.Wang,C.F.Qian,X.F.Chen et.al..Crystal and valence electron structure of the α-(AlMnSi)phase[J].J.Matreialssci.letters,1996,(15):579-581
    [77]柴卫平.HCD离子镀TiN镀层的综合性能的研究及其经验电子理论分析[D].长春:吉林大学,1991
    [78]石萍.Ti_(50)Ni_(25)Cu_(25)形状记忆合金及其颗粒/铝基智能复合材料的研究[D].大连:大连理工大学,1998
    [79]李志林,刘志林,孙振国等.Cr,Mn低合金结构钢的相结构因子与C-曲线特性点的关系[J].自然科学进展,2000,10(1):74-79
    [80]屈华.钛与钛铝化合物基合金相变及力学性能的价电子理论研究[D].沈阳:东北大学,2006
    [81]刘志林,孙振国,李志林.余氏理论和程氏理论在合金研究中的应用[J].自然科学进展,1998,8(2):150-160
    [82]孙振国,李志林,刘志林.合金异相界面电子密度的计算[J].科学通报,1995,40(24):2219-2222
    [83]刘志林,孙振国,李志林.奥氏体/马氏体异相界面的电子密度[J].科学通报,1995,40(22):2040-2042
    [84]Liu Zhilin,Niu Hongjun,Jin Canfeng et.al..A theory of C-Si segregation in Fe-C-Si alloys[J].Chinese Science bulletin,1989,34(2):100-105
    [85]刘志林,牛洪军,王斌.C-Si偏聚对60Si_2Mn钢贝氏体相变的影响[J].金属学报,1988, 24(增刊1):SA36-39
    [86]屈庸博,杨双良,刘志林等.Fe-C-Cr-Si(Ni,W)合金中的C-Me偏聚现象[J].金属科学与工艺,1988,7(1):8-14
    [87]余瑞璜,张瑞林,金冶.铁-碳、铁-氮系中几种固溶体的研究Ⅰ—γ-Fe-C固溶体的价电子结构与a~x曲线[J].吉林大学自然科学学报,1984,(1):51-55
    [88]张瑞林,余瑞璜.Fe-C马氏体价电子结构分析[J].金属学报,1984,20(4):A279-285
    [89]刘志林.合金价电子结构与成份设计[M].长春,吉林科学技术出版社,1990:25-244
    [90]Liu Zhilin.C-Me segregating theory in solid alloys[J].Chinese science bulletin,1989,34(23):2006-2010
    [91]Dai Tianshi,Liu Zhilin,Qu Yongbo.The valence electron structure of austenite in low alloy ultrahigh-strength steels and its influences on kinetice of phase transformation[J].Science in China(SeriesA),1990,33(9):1132-1140
    [92]Liu Zhilin,Dai Tianshi,Niu Hongjun et.al..The application of Yu's theory in the study of phase transformation of industrial materials[J].Chinses journal of mechanical engineering,1989,2(2):147-155
    [93]Liu Zhilin.Valance electron structure and composition design of a low alloy ultra-high-strength steel[J].Chinese journal of mechanical engineering,1990,3(2):142-148
    [94]张福成,郑炀增.锰铬奥氏体钢中合金元素及碳的短程有序分布[J].科学通报,1991,36(5):382-385
    [95]Zheng Yangzeng,Zhang Fucheng.Effect of heterogeneous distribution of C and alloying elements on γ / α' transformation in a Fe-Mn-Cr-C alloy[J].Acta.Metallurgica sinica(series A),1991,4(6):467-470
    [96]Yianfu Jing,Fucheng Zhang,Yangzeng Zheng.Wear resistence and work-hardening of 6-Mn-2Cr metastable austenitic steel[J].Mechanical properties materials design conference.Boqun Wu volume editor,C-MRS international,Beijing China,1990:629-634
    [97]Zhu Ruifu,Lu Yupeng,Zhang Fucheng.Valence electron structure of high manganese steel and its intrinsic property[J].Chinese science bulletin,1996,41(15):1313-1316
    [98]Zhu Ruifu,Li Shitong,Wei Tao et.al..Dynamic observations on TEM in-situ tensile deformation[J].Chinese science bulletin,1996,41(23):2011-2015
    [99]朱瑞富,吕宇鹏,陈传忠等.Fe-C-Mn合金奥氏体的价电子结构分析[J].金属学报,1996,32(6):561-564
    [100]朱瑞富,李士同,刘玉先等.Fe-C-Mn合金中的C-Mn偏聚及其对相变和形变的影响[J].中国科学(E辑),1997,27(3):193-199
    [101]叶以富,尚玉侠,周香林等.球状石墨的晶核是“布基球”[J].科学通报,1996,41(19): 1815-1817
    [102]屈庸博.材料物理与材料设计[J].吉林工业大学学报,1989,(1):138-142
    [103]张振宇,张百刚.马氏体的价电子结构与马氏体的强度及塑性[J].试验技术与试验机,1991,31(4):20-21
    [104]耿平.新型高强高韧钢的微观结构与强韧性研究[D].沈阳:东北大学,1997
    [105]Sun Zhenguo,Li Zhilin,Liu Zhilin.Calculation of the covalent electron density of(001)crystal plane of Fe_3C[J].Chinese science bulletin,1997,42(1):80-82
    [106]孙振国,刘志林,李志林.论奥氏体和马氏体中的Fe原子杂化状态的确定[J].中国科学(E辑),1997,27(1):18-22
    [107]Pearsen W B.A handbook of Lattice Spacings and Structures of Metals and Alloys[M].New York:Pergamon Press,1958,121-123
    [108]胡庚祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2000,157-171
    [109]赵连城.金属热处理原理[M].哈尔滨:哈尔滨工业大学出版社,1987,42-155
    [110]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1997,248-276
    [111]Xu Wandong,Zhang Ruilin,Yu Ruihuang.Calculation of the binding energy of the compound crystal of transition elements[J].Science in China(series A),1989,32(3):351-361
    [112]胡德林.金属学原理[M].西安:西北工业大学出版社,1984,245-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700