宁夏弧形构造带中上地壳电性结构及其构造涵义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宁夏弧形构造带地处鄂尔多斯地块、阿拉善地块及祁连山碰撞造山带的交接部位,是青藏高原向北东生长的前锋地区,该地区自晚新生代以来一直遭受着地壳缩短和剪切,伴随着垂直差异性隆升作用,形成了典型的挤压盆山构造格架[11],加上没有过多遭受到后期地质事件的改造,因此宁夏弧形构造带成为研究青藏高原向北东生长的动力学机制的理想场所。同时,该区中强地震震活动频繁,历史记载曾发生过近30次7级以上强震,在弧形构造带区域发生过1920年的海原大地震和1927年的古浪大地震,该区也为研究中强地震的孕育环境提供了优越的历史遗产。基于以上原因,宁夏弧形构造带成为地质地球物理学者研究深部地球动力学和地震孕育机制的热点地区。
     本文在中国地质调查局计划项目“成矿带区域地球物理调查的工作项目“宁夏大地电磁测深剖面测量”(1212011120928)的支持下,在宁夏弧形构造带区域沿近南北向和近北东向布置两条大地电磁测深(MT)剖面,以大地电磁测深所获得的中上地壳精细电性结构剖面为主轴,结合研究区的重磁资料、地震资料、地表地质资料及收集到的前人所做大地电磁测深资料,研究弧形构造带内主要边界断裂和次级构造单元的深部电性结构及其空间变化规律,并探讨其地质涵义;同时,通过分析典型地震区的孕震构造,探讨地震孕育机制。通过上述研究,对研究区的深部电性结构、地震孕育构造及动力学特征等得出了一些新的认识:
     (1)对宁夏地区的重磁资料进行异常分离、向上延拓等处理,发现宁夏弧形构造带区域的低密度地块主要分布在宁夏西南部和中卫周缘地区,且呈现出西南深、北东浅的空间展布特征;通过对重磁资料进行方向导数求取及梯度算子模、拉普拉斯算子模等线性增强处理,勾画出了宁夏地区较详细的断裂体系及分布其间的盆山构造单元,与通过地质资料重新厘定的构造单元图较为一致;
     (2)宁夏弧形构造带精细中上地壳电性结构剖面显示出高阻与低阻地块相间排列及分布其间的电性梯度带,表现为碎块状的构造样式且在深部断续存在壳内低阻高导低速地层,是研究区中上地壳有别于层状电性结构和块状电性结构的最基本电性结构特征,可能是研究区强震或特大地震频发的深部构造背景,上述认识为研究区中上地壳构造解析提供了重要依据。进一步分析NE-11-MT剖面与NS-11-MT剖面中上地壳的电性结构,发现走廊构造带与鄂尔多斯西缘逆冲褶皱带具有相似的电性结构特征,相比于祁连山碰撞造山带,整体表现为相对低阻的特征,推断走廊构造带可能与鄂尔多斯西缘逆冲褶皱带同属于华北地块的西缘部分,上述结论还有待具有更大深度的电性剖面和地质等其它资料证实;
     (3)研究区中上地壳电性结构显示地块内部或地块之间存在明显的电性边界带,为局部构造的划分和地块边界位置的确定提供了新的证据。宁夏弧形构造带以西海原—海原—六盘山断裂带、青铜峡—固原断裂带为界,可以分为祁连山碰撞造山带、走廊构造带及鄂尔多斯西缘逆冲褶皱带三个主要构造单元;
     (4)祁连山碰撞造山带内的壳内低阻层深度介于20km~30km之间,往北终止于海原边界带并与香山逆冲推覆体下的滑脱层相交汇;兴仁堡—海原坳陷带内的壳内低阻层深度减小为10km~15km之间,往北东终止于中卫—同心断陷带内,并与鄂尔多斯逆冲推覆体下的早元古、中元古滑脱面交汇。宁夏弧形构造带内的壳内低阻层总体表现为西南深北东浅,且呈不连续分布的特征;
     (5)发现了中卫—同心断陷盆地内的弧形高阻地块,地震剖面及重力资料在高阻地区表现为高速高密度的特征,推断该高阻高速高密度地块为晚古生代或早中生代发育在盆地基底构造上的“岛链式”古隆起,该发现为地震灾害评估及青藏高原东北缘地区的动力学提供了可靠资料。从卫宁北山闪长玢岩中捕获到的磨圆锆石的年龄与金川矿集区龙首山群岩石中锆石的年龄测定结果较为一致,结合分析大地电磁剖面与地表地质,本文认为中卫—同心断陷带可能一直往西延伸到冷龙岭隆起区,即古浪地震不属于海原断裂带上的地震,而是中卫—同心断陷带内的地震;
     (6)通过实测剖面获得的中上地壳精细电性结构剖面,结合研究区的地质和地震资料,确认中上地壳存在有一系列逆冲推覆构造,主要有香山推覆构造、鄂尔多斯西缘逆冲推覆构造,总体呈叠瓦式组合,由北东往南西主滑脱面由浅变深,消失在壳内低阻层中。古生代石炭系滑脱面、早元古或中元古滑脱面及壳内低速高导层构成了研究区主要的动力学边界条件,宁夏弧形构造带中上地壳依托上述边界条件表现为北祁连碰撞造山带向东仰冲、逆冲推覆,阿拉善地块是向南俯冲,鄂尔多斯地块是向西俯冲的动力学态势;
     (7)论文证实了中祁连隆褶带、靖远—西吉坳褶带、海原边界带及鄂尔多斯西缘逆冲褶皱带中上地壳存在较完整的高阻刚性地块,发现了在中卫—同心断陷盆地基底上存在“岛链式”的古隆起,结合分析宁夏弧形带区域内壳内低阻层在空间上的分布规律,推断在宁夏弧形构造带及周缘地区存在海原边界带、中卫—同心断陷带及鄂尔多斯西缘逆冲褶皱带等地震潜在危险区。与该区中强地震的发生位置基本一致;
     (8)通过对比分析宁夏弧形构造带内主要地震震级与震源断裂附近高阻刚性地块的视电阻率值,发现地震震级的大小与视电阻率的大小成正比关系,这一发现在地震灾害评估中有着重要的意义。局限于统计资料的局限性,2012年与2013将进一步在宁夏地区开展大地电磁测量,获得更多的具有代表性的数据,对上述观点进行验证。
Ningxia Arc-shaped Structural belt located in the junction of the Ordos block, theAlxa block and the Qilian Mountains collision orogenic zone, is the forward regionwith the extension to northeast of Qinghai-Tibet Plateau. Since the late Cenozoic, theregions are subjected to crustal shortening and shear, with the function of verticaldifferences in uplifting, which formed a typical extrusion basin-range tectonicframework[11], coupled with not too much transformation of the later geological events,therefore Ningxia arc-shaped belt becomes the ideal place for researching the dynamicsmechanism with the extension to northeast in Qinghai-Tibet Plateau. Meanwhile,moderate-strong earthquakes occurred frequently in this region. As recordedhistorically, nearly30times strong earthquakes (M≥7.0) occurred, especially theHaiyuan earthquake in1920and the Gulang earthquake in1927in this arc structure belt,the regions also formed an excellent historic heritage for researching the seismogenicenvironment of moderate-strong earthquake. For the above reasons, Ningxiaarc-shaped belt has become a hotspots area for the research of the deep geodynamicsand the mechanism of earthquake preparation by geology and geophysics scholars.
     Under the support of the work project Ningxia magnetotelluric sounding profilemeasurement (1212011120928) in the programs metallogenic belt regionalgeophysical survey of China Geological Survey Bureau, two magnetotelluricsounding profiles are disposed, trending nearly from south to north, and north to eastin Ningxia Arc-shaped Structural belt. The upper crust fine electric structure from themagnetotelluric sounding as the main spindle, the deep electrical structure and thespatial variation of the main boundary fault and the sub-tectonic units in the arcuatestructure belt are studied, combined with the gravity and magnetic data, seismic data, surface geological data and the previous magnetotelluric sounding data in the studyarea. furthermore, the geological meaning is discussed; meanwhile, the earthquakepreparation mechanism is discussed by analysising the seismogenic structure of thetypical earthquake zone. Based on the above studies, some new recognition of deepelectrical structure, seismogenic structure and dynamics characteristics in the studyarea are proposed:
     (1) Processing the gravity and magnetic data of the Ningxia region by upwardcontinuation and gravity anomaly separation, we found that the crust low density layerof Ningxia Arc-shaped Structural belt distributed mainly in the Ningxia southwest andthe region around Zhongwei City, showing the features that deep in southwest andshallow in northeast; By calculating the diretional derivative of gnetravity&maganeticdata,and enhance the boundary information use Gradient and Laplace operator, we laysout a more detailed fault system in Ningxia region,which is similar to the tectonic unitsmap re-determined by the geological data.
     (2) Electrical structure profile of mid-upper crust in the Ningxia Arc-shapedStructural belt constituted by high impetance block and low resistivity vulk,withelectrical gradient belts between them, showing the structural styles of chunky totallyand intermittent exist low-impedance&high-conductivity layers in the mid-upper crust,which is the basic electrical structure that is different from the layered electricalstructure and block electrical structure in the mid-upper crust of the study area. It islikely to be the deep tectonic background that strong earthquakes or devastatingearthquakes occurred frequently in the study area. The above understandings offer animportant basis for structural analysis in middle-upper crust.corridor structural belt andthe thrust fold belt of Erdos western region have the similar electrical structure,thatshow a lower resistivity compared the Qilian Orogenic belt,we infer that corridorstructural belt and the thrust fold belt of Erdos western region are all belonged to thewest margin of North China Block.
     (3) The electrical structure in mid-upper crust in study area indicates that there areclear electrical boundaries between blocks, which offers new evidences for the divisionof local structure and the confirmation of blocks boundaries. Take the westernHaiyuan-Haiyuan-Liupan Mountains fault belt and Qingtongxia-Guyuan fault belt asthe boundary, Ningxia arc-shaped belt could be divided into Qilian Mountains collisionorogenic zone, Corridor structural belt and western thrusting folded zone ofOrdos.Further analysis of the electrical structure of the upper crust,found that corridorstructure belt and Edors western margin have the similar electrical structure,compared to the collisional orogenic belt of Qilian Mountains,performance for a relatively lowerresistance characteristics. corridor structure belt may belong to the western of northchina block.Above conclusions have yet to have electrical section of greater depth andother geological dataconfirm that.
     (4) The low resistance layer in the crust of Qilian mountains collision orogeniczone is between20to30km under the surface of the earth, which terminate at theHaiyuan boundary belt and intersect at the detachment layer under Xiangshan thrustnappe in north direction. The low resistance layer in the crust of the Xingren-Haiyuandepression zone reduces to10to15km under the surface of the earth, determinate atQingshui River depression zone in northeast direction, and intersect at the earlyProterozoic, middle Proterozoic detachment layer under Ordos thrust nappe. All in all,the low resistance layer in the crust of Ningxia arc-shaped belt, showing thecharacteristics of the deep southwest and the low northeast, and unconnected.
     (5) A high resistance block is discovered in Qingshui River depression basin.According to the high velocity and high density characteristic that seismic section andgravity data express in high resistance block, the high resistance block is likely to be an
     Island chain paleouplift which develop on the basin basement in Late Paleozoic andEarly Mesozoic ear. This discovery offers data for the estimation of earthquake hazardand the dynamics in the northeast margin of Qinghai-Tibet Plateau. Zircon thatcaptured from the diorite porphyrite at North Mountain of Weining has the same age asdating results of the zircon in the rock of Longshou mountain Group from Jinchuanmineralization concentration area, combined with analysising magnetotelluric profilesand surface geology. The paper maintains that Zhongwei-Tongxin depression belt islikely to extend to Gulang earthquake zone. It means Gulang earthquake didn`t occur inHaiyuan fault but in Zhongwei-Tongxin depression belt.
     (6)The paper confirmed the complete high impedance rigid block in the QilianFolded-Uplift belt,Jingyuan-Xiji Depression-Folded belt, Haiyuan boundary zone,andthe thrust fold belt of Ordos western margin, A high resistance block is found inZhongwei-Tongxin depression basin for the first time,and think that the high resistanceblock is likely to be an Island chain paleouplift which develop on the basin basementin Late Paleozoic and Early Mesozoic ear. Combined with analysis of the distributionof the crust low resistivity layer of Mid-upper crust in Ningxia Arc-shaped Structuralbelt, we infer that the region and boundary zone which have high impedance rigid blockmay be the earthquake potential danger zone,which is very similar to the place whereoccared earthquakes in history.
     (7) According to the fine electrical structure profiles in middle-upper crustdepend on measured profiles, combined with geology and seismic data in study area, aseries of thrust nappe structure exist in middle-upper crust, which include Xiangshannappe structure and the thrust nappe structure in west margin of Ordos with imbricatedcombination. The depth of their main detachment surface is gradually deep from thenortheast to the southwest, finally disappear in the low resistance layer in crust. ThePaleozoic carboniferous detachment surface, the early Proterozoic or MiddleProterozoic detachment surface and the low velocity and high conductive layerconstitute the main dynamics boundary conditions in study area. Relying on the aboveboundary conditions, Ningxia arc-shaped belt shows dynamic trend of north QilianMountains collision orogenic zone with eastward obduction (thrust nappe), Alxa blockwith southward subduction and Ordos block with westward subduction.
     (8) It is found that the size of earthquake magnitude is positive proportional to thesize of apparent resistivity by comparative analysis of earthquake magnitude and theapparent resistivity of high resistance rigid block near seismic source. This discoveryhas important significance for earthquake hazard assessment.Confined to thelimitations of the statistics,will be further carried out magnetotelluric in the Ningxiaregion, to get more representative data to verify the point of view.
引文
[1]马宗晋,汪一鹏,张燕平主编.青藏高原岩石圈现今变动与动力学[J].北京:地震出版社.2001,75-87.
    [2]汪一鹏.有关塔波尼亚的青藏高原运动学模型的要点及评述[J].国际地震动态,1998,229:9-14.
    [3]潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学[J].广州:广度科技出版社,1998.
    [4]张家声,李燕,韩竹军.青藏高原向东挤出的变形响应及南北地震带构造组成[J].地学前缘,2003,10(特刊)166-175.
    [5] Haosemen G. and England P..Crustal thicking versus lateral expulsion in the India~Asiancontimental collision[J]. J.Int.,1993,98:12233-12249.
    [6] Peltzer G. and Tapponnier P.Armijo R.Magnitude of late Quaternary left-lateraldisplacements along the northern edge of Tibet[J].Sience,1989,246:1285-1289.
    [7]王敏,沈正康,牛之俊,等.现今中国大陆地壳运动与活动块体模型[J].中国科学(D辑),2003,33(B04):21-32.
    [8]张震培,甘卫军,沈正康,王敏.中国大陆现今构造作用的地块运动和连续变形耦合模型[J].地质学报,2005,79(6):748-756.
    [9]沈正康,王敏,甘卫军,张祖胜.中国大陆现今构造应变力场及其动力学成因研究[J].地学前缘(中国.地质大学,北京),2003,10(Suppl):93-100.
    [10]袁道阳.青藏高原东北缘晚新生代以来的构造变形特征与时空演化[J].中国地震局地质研究所博士论文,2003.
    [11]詹艳.青藏高原东北缘地区深部电性结构及其构造涵义[D].中国地震局地质研究所博士论文,2008.
    [12]王国灿,曹凯,张克新,王岸等.青藏高原新生代构造隆升阶段的时空格局[J].中国科学:地球科学,2011(3):332-349.
    [13] Gu G x, LinT. and Shi Z. Catalogue of Chinese Earthquakes (1831BC~1969AD)[J]. SciencePress, Beijing,1989.
    [14] Deng Q D,etal.Variation in the geometry and amount of slip on the Haiyuan (Nanxihuashan)fault zone. China, and thesurface rupture of the1920Haiyuan earthquake, in EarthquakeSource Mechanics,Geophys[C]. Monogr. Ser.,edited by S. Das etal. AGU,Washington,D.C.1986,37:169-182.
    [15]徐锡伟,于贵华,马文涛,等.中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵[J].地学前缘,2003,10(特刊):160-167.
    [16]许至琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原造山带的崛起[J].地学前缘,1999,6(3):149-151.
    [17]肖序常,姜枚主编.中国岩石圈三维结构丛书之二《中国西部岩石圈三维结构及演化》[M].北京:地质出版社,2008.
    [18]崔军文,李鹏武,等.青藏高原的隆升:青藏高原的岩石圈结构和构造地貌[J].地质论评,2001,47(2):158-165.
    [19]赵文津,黄力言,熊嘉育.喜马拉雅和青藏高原深剖面研究的进展[J].地球物理学报,1997,40(增刊)140-152.
    [20]马宗晋,汪一鹏,张燕平.前言.见:马宗晋,汪一鹏,张燕平主编.青藏高原岩石圈现今变动与动力学[M].北京:地震出版社,2001.
    [21]马宗晋,杜品仁.现今地壳运动问题[M].北京:地质出版社,1995.
    [22] Molnar and Tapponnier. Cenozonic tectonics of Asia:Effects of a continental collision[J].Science,1975,189:419-426.
    [23] Tapponnier P, Xu Z Q, etal. Oblique stepwise rise and growth of the Tibet[J].Science,2001,294(23):1671-1677.
    [24] Tapponnier P., Peltzer G. and Le Dain. A. Y.. Propagating extrusion tectonics in Asia: newinsights from simple experiments with plasticine[J]. Geology,1982,10:611-616.
    [25] Lilley F.E.M. Magnetotelluric analysis using Mohr circles[J]. Geophysics,1993,58(10),1498-1506.
    [26]曾融生,孙为国,毛桐恩,等.中国大陆莫霍界面深度图[J].地震学报,1995,17(3):322-327.
    [27]邓起东.活动断裂带研究的进展和方向[M].北京:地震出版社,活动断裂研究,1991:1-6..
    [28]张震培,邓起东,张国民等.中国大陆的强震活动与活动地块.中国科学(D辑)[J],2003,33:12-19.
    [29] Meyer B,Tapponier P,Bourjot L,etal.Crustal thickening in Gansu~Qinghai, lithosphericmantle subduction, and oblique, strike slip controlled growth of the Tibet Plateau[J].Geophysical Journal International,1998,135:1-47.
    [30] Eangland and Molnar. The fileld of ceustal velocity in Asia calculated from Quaternary ratesof slip on faults[J]. Geophys. J. Int.,1997,130:551-582.
    [31] Houseman G. and England P.. Crustal thickening versus lateral expulsion in the India~Asiacontimental collision.J.Geophys.Res.,1993,98,12233-12249.
    [32]赵文津.青藏高原地壳上地幔地球物理调查研究成果综述[J].中国工程科学,2003,5(2):1-15.
    [33]腾吉文,熊邵柏,张中杰,等.青藏高原深部结构与构造地球物理研究的回顾与展望[J].地球物理学报,1997,40(增刊):121-139.
    [34]孔祥儒,王谦身,熊邵柏.青藏高原西部综合地球物理与岩石圈地球物理研究[J].中国科学(D辑),1996,26(4):308-315.
    [35]孔祥儒,王谦身,熊邵柏.青藏高原西部综合地球物理剖面和岩石圈结构与动力学[J].科学通报,1999,44(12):1257-1265.
    [36]吴功建,高锐,余钦范,等.西藏高原亚东—格尔木地学断面综合地球物理调查与研究[J].地球物理学报,1991,34(5):552-561.
    [37]高锐,成湘洲,丁谦.格尔木—额济纳旗地学断面地球动力学初探[J].地球物理学报,1995,38(增刊Ⅱ):3-14.
    [38]崔作舟,李秋生,孟令顺,等.格尔木—额济纳旗岩石圈结构与深部构造[J].北京:地质出版社,1999.
    [39]郑红伟,等.青藏高原北部新生代火山岩区深部结构特征及其成因探讨[J].现代地质,2010,24(1):131-139.
    [40]卢占武,高锐,李永铁,等.青藏高原羌塘盆地基底结构与南北向变化——基于一条270km反射地震剖面的认识[J].岩石学报,2011,21(11):3319-3327.
    [41]卢站武,高锐,熊小松,等.班公湖-怒江缝合带两侧-羌塘地块Moho变化——深地震反射大药量深井震源记录的揭示[C].中国地球物理年会2011会刊.
    [42]任爱华,石应俊,李宗舜,等.青藏高原那曲—亚东测线地壳上地幔的大地电磁研究[J].地球物理学报,1982,25(5):457-463.
    [43] Van Ngoc, P., D. Boyer, P. Therme, X. Cheng Yuan, L. Li, and G. Yuan Jin. Partial meltingzones in the crust in southern Tibet from magnetotelluric results[J]. Nature,1986,23:310-319.
    [44]范文科,袁学诚.羊八井—洛扎南北向剖面磁大地电流测深初步成果[M].见:李光岑,Mercier J L编.中法喜马拉雅考察成果,1980.北京:地质出版社,1984,413-419.
    [45]郭新峰,张元丑,程庆云.西藏高原亚东—格尔木地学断面岩石圈电性研究[J].中国地质科学院院报,1990,21:191-202.
    [46]白瑾,黄学先,戴凤岩,吴昌华.中国前寒武纪地壳演化[M].北京:地质出版社,1993:1-221
    [47]马杏垣,谭应佳,吴正文等.中国大陆壳的早期演化[C],国际交流地质学术论文集(为二十六届国际地质大会撰写)(构造地质,地质力学).北京:地质出版社,1980
    [48]秦国卿,陈九辉,刘大建,等.昆仑山脉和喀喇昆仑山脉地区的地壳上地幔电性结构特征[J].地球物理学报,1994,37(2):193-199.
    [49]马晓斌.青藏高原东部电性结构特征及其地球动力学意义[D].中国科学院研究生院博士学位论文,2004.
    [50]马晓斌,孔祥儒,于晟.青藏高原西部大地电磁测深探测结果[J].科学通报,1997,42(11):1185-1187.
    [51]王绪本,朱迎堂,赵锡奎等.青藏高原东缘龙门山逆冲构造深部电性结构特征[J].地球物理学报,2009,52(2):564-571.
    [52]王绪本,余年,朱迎堂等.龙门山逆冲构造带大地电磁测深初步成果[J].成都理工大学学报(自然科学版),2008,33(4):398-403.
    [53] Zhi Wang*, Runqiu Huang, Jian Wang, Shunping Pei, Wenli Huang, Regional flow in thelower crust and upper mantle under the Southeastern Tibetan Plateau[C], InternationalJournal of Geoscience,2,631-639,2011.
    [54] Zhi Wang*, Xuben Wang, Runqiu Huang, Wenli Huang, Structrual heterogeneities inSoutheast Tibet: Implications for regional flow in the lower crust and upper mantle[C],International Journal of Geophysics,2011.
    [55] Chen L S, Booker J R, Jones A G, etal. Eletically conductive crust in southern Tibet crust bymagnetotelluric surveying[J]. Science,1996,274:1694-1696.
    [56] Shenghui Li, Martyn J. Unsworth, John R. Booker, et al. Partial melt or aqueous fluid in themid-crust of Southern Tibet?Constraints from INDEPTH magnetotelluric data[J]. Geophys. J.Ini,2003,153:289-304
    [57] Unsworth M., W.Wei, A.G.Jones, S.Li, P.Bedrosian, J.Booker, S.Jin, M.Deng,H.Tan.Crustal and upper mantle structure of northern Tibet imaged with magnetotelluricdata[J]. J. Geophys.Res.,2004,109, B02403, doi:10.1029/2002JB002305.
    [58] Wei W.B., Unsworth M J., Jones A.. et al.. Detection of widespread fluids in the Tibet crustby magnetotellurlc studys[J].Science,2001,292:716-718.
    [59]谭捍东,魏文博,Martyn Unsworth,等.西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究[J].地球物理学报,2004,47(4):685-690.
    [60]魏文博,陈乐寿,谭捍东,等.关于印度板块俯冲的探讨—据INDEPTH-MT研究结果[J].现代地质,1997,11(3):379-386.
    [61]马宗晋,张家声,汪一鹏.青藏高原地壳结构和新构造运动的东西差异.马宗晋,汪一鹏,张燕平主编:青藏高原岩石圈现今变动与动力学[M].北京:地震出版社.2001,75-87.
    [62]沈正康,王敏,甘卫军,张祖胜.中国大陆现今构造应变率场及其动力学成因研究[J].地学前缘(中国地质大学,北京),2003,10(Suppl):93-100.
    [63]邓起东,张培震,冉勇康等.中国活动构造基本特征[J].中国科学(D辑),2002,32(12):1020-1030.
    [64]曾融生,孙为国,毛桐恩,等.中国大陆莫霍界面深度图[J].地震学报,1995,17(3):322-327.
    [65]张培震,邓起东,张国民等.中国大陆的强震活动与活动地块[J].中国科学(D辑),2003,33:12-19.
    [66] Gu G X, Lin T.and Shi Z.Catalogue of Chinese Earthquakes(1831BC-1969AD).SciencePress, Beijing,1989.
    [67]徐锡伟,于贵华,马文涛,等.中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵[J].地学前缘,2003,10(特刊):160-167.
    [68]邓起东,张维歧,汪一鹏等.海原断裂带和1920年海原地震断层的基本特征及其形成机制[J].现代地壳运动研究(3).北京:地震出版社.1987,9-25.
    [69]邓起东,张维歧,张培震,等.海原走滑断裂带及其尾端挤压构造[J].地震地质,1989,11(1):1-14.
    [70]闵伟.香山-天景山断裂带的构造演化及走滑断层尾端挤压构造的形成机制[D].国家地震局地质研究所硕士论文,1988.
    [71]闵伟,蔡炽章,王萍,杨平.罗山东簏断裂的几何学特征及全新世滑动速率[J].中国地震,1992,8(4):48-54.
    [72]王志才.青藏高原东北缘新生代以来的构造变形特征与时空演化:以陇西-武山地区为例[D].中国地震局地质研究所博士论文,2004.
    [73]宋方敏,袁道阳,陈桂华,程建武,张兰凤,何文贵,葛伟鹏,苏鹤军,陆斌.甘肃马衔山北缘断裂西北段几何结构及其新活动[J].地震地质,2006,28(4):548-559.
    [74]田勤俭,丁国瑜,申旭辉,等.拉分盆地与海原断裂带新生代水平位移规模[J].中国地震,2001,17(2):167-175.
    [75] Meyer B,Tapponnier P,Bourjot L,et al.Crustal thickening in Gansu~Qinghai,lithosphericmantle subduction,and oblique,strike slip controlled growth of the TibetPlateau[J].Geophysical Journal International,1998,135:1-47.
    [76]陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D].中国地震局地质研究所博士论文,2003.
    [77]陈志泰,腾瑞增,吕田保,张维歧,李孟銮.海原大震与断裂活动[M].北京:地震出版社,中国活动断裂,1982,206-~211.
    [78]侯康明,邓起东,刘百篪.对古浪8级大震孕育和发生的构造环境及发震模型的讨论[J].中国地震,1999,15(4):339-348.
    [79]傅征祥,刘桂萍,陈棋福.青藏高原北缘海原、古浪、昌马大地震间相互作用的动力学分析[J].地震地质,2001,23(1):35-42.
    [80]李吉均,方小敏,朱俊杰,等.临夏盆地新生代地层古地磁年代与模式序列[C].见:青藏项目专家委员会编,青藏高原形成演化、环境变迁与生态系统研究学术论文年刊[C].1994,北京:科学出版社,41-54.
    [81] Zheng D W, Zhang P Z, Wan J L, et al.. Rapid exhumation at-8Ma on the Liupan San thrustfault from apatite fission-track thermochronology:Implications for growth of the northeasternTibetan Plateau margin[J]. Earth and Planetary Science Letters,2006,248:183-193.
    [82]郑德文,张培震,万景林,等.青藏高原东北缘晚新生代构造变形的时序-临夏盆地碎屑颗粒磷灰石裂变径迹记录[J].中国科学(D辑),2003,33(增刊):190-198.
    [83]申旭辉,田勤俭,丁国瑜,等.宁夏贺家口子地区晚新生代地层序列及其构造意义[J].中国地震,17(2):156-166.
    [84]杨福忠,胡社荣.六盘山盆地中、新生代构造演化和油气勘探[J].新疆石油地质,2001,22(3):192-195.
    [85]刘少峰,杨士恭.鄂尔多斯盆地西缘南北差异及其形成机制[J].地质科学,1997,32(3):397-408.
    [86]李定方.六盘山盆地石油地质特征与勘探方向[J].新疆石油地质,2001,22(1):27-31.
    [87]国家地震局鄂尔多斯周缘活动断裂系课题组.鄂尔多斯周缘活动断裂系[M].北京:地震出版社,1998.
    [88]张进,马宗晋,任文军.鄂尔多斯西缘逆冲褶皱带构造特征及其南北差异的形成机制[J].地质学报,2004,78(5):600-611.
    [89]汤锡元,郭忠铭,王定一.鄂尔多斯盆地西部逆冲推覆构造带特征及其演化与油气勘探[J].石油与天然气地质,1988,9(1):1-10.
    [90]李建华,申旭辉.青藏高原东北隅弧束断裂与南鄂尔多斯环形构造[J].地震地质,2001,13(1):116-121.
    [91]甘卫军,程朋根,周德敏唐方头,李金平.青藏高原东北缘主要活动断裂带GPS加密观测及结果分析[J].地震地质,2005,27(2):177-187.
    [92]闵祥仪,周民都,郭建康,等.灵台-阿木去乎剖面地壳速度结构[J].西北地震学报,1991,13(增刊):29-36
    [93]林中洋,蔡文伯,陈学波,等.青海门源至福建宁德地学断面[M].北京:地震出版社,1992,30-35.
    [94]周民都,吕太乙,张元生等.青藏高原东北缘地质构造背景及地壳结构研究[J].地震学报,2000,22(6):645-653.
    [95]张元生,李清河,盛国英,等.河西走廊中部地壳三维速度结构.石特临等编《河西祁连山中段地震危险基础研究》[M].北京:地震出版社,1990,159-169.
    [96]孙武城,徐杰,杨主恩,等.上海奉贤至内蒙古阿拉善左旗地学断面[M].北京:地震出版社,1992,32-33.
    [97]李清河,郭守年,吕德徽.鄂尔多斯西缘与西南缘深部结构与构造[M].北京:地震出版社,1999.
    [98]李清河,郭建康,周民都,等.成县-西吉剖面地壳速度结构[J].西北地震学报,1991,13(增刊):37-43.
    [99]刘牧,刘自军,苗虎,等.宁夏地区构造单元划分及油气勘探有利区评价[J].石油化工应用,2011,30(4):65-84.
    [100]殷秀华,黎益仕,刘占坡.南北构造带北段重磁异常的对应分析[J].地震地质,1999,21(4):370-376.
    [101]江为为,郝天珧,宋海斌.鄂尔多斯盆地地质地球物理场特征与地壳结构[J].地球物理学进展,2000,15(3):45-52.
    [102]王椿镛,吴建平,楼海,等.川西藏东地区的地壳P波速度结构[J].中国科学(D),2003,33(增刊):181-189.
    [103]高锐,王海燕,张忠杰,等.青藏高原东北缘岩石圈缩短变形—深地震反射剖面再出来提供的证据[J].地球学报,2011,32(5):513-520.
    [104]金胜,张乐天,魏文博等.中国大陆深探测的大地电磁测深研究[J].地质学报,2010,84(6):808-817.
    [105]宁夏回族自治区地质矿产局,宁夏回族自治区区域地质志[M].北京:地质出版社,1990.
    [106]詹艳,赵国泽,陈小斌等.宁夏海原大震区西安州-韦州剖面大地电磁探测与研究[J].地球物理学报,2004,47(2):274-281.
    [107]汤吉,詹艳,赵国泽.青藏高原东北缘玛沁-兰州-靖边剖面地壳上地幔电性结构研究[J].地球物理学报,2005,48(5):1205-1216
    [108]詹艳,赵国泽,陈小斌等.宁夏海原大震区西安州-韦州剖面大地电磁探测与研究[J].地球物理学报,2004,47(2):274-281.
    [109]詹艳,赵国泽,汤吉等.新疆玛纳斯大震区地壳深部电性结构[J].地震地质,1999,21(2):159-166.
    [110]詹艳,赵国泽,王继军等.1927年古浪8级大震区及其周边地块的深部电性结构[J].地球物理学报,2008,51(2):511-520.
    [111]詹艳,赵国泽,王继军等.青藏高原东北缘海原弧形构造区地壳电性结构探测研究[J].地震学报,2005,27(4):431-440.
    [112]赵国泽,汤吉,詹艳等.青藏高原东北缘地壳电性结构和地块变形关系的研究[J].中国科学(D辑),2004,34(10):908-918
    [113]赵国泽,詹艳,王立凤等.鄂尔多斯断块地壳电性结构[J].地震地质,2010,32(3):345-359.
    [114]李松林,张先康,张成科等.玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究[J].地球物理学报,2002,45(2):210-217.
    [115]李松林,赖晓玲.青藏高原东北缘似三联点构造的初步研究[J].大地测量与地球动力学,2006,26(2):10-14.
    [116]李松林,张先康,任青芳等.西吉_中卫地震测深剖面及其解释[J].地震地质,2001,23(1):86-92.
    [117]李松林,张先康,张成科等.海原8.5级大震区地壳结构探测研究[J].中国地震,2001,17(1):16-23.
    [118]晋光文,孙洁,江钊.大地电磁阻抗张量不变量及其Mohr圆分析[J].地震地质,1995,17(4):439-445.
    [119]肖骑彬,大别一苏鲁造山带地壳一上地慢电性结构研究[D].中国地震局地质研究所博士后研究工作报告.
    [120]张珂,刘开瑜,吴加敏,等.宁夏中卫盆地的沉积特征及其所反映的新构造运动[J].沉积学报,2004,22(3):465-472.
    [121]王鑫,詹艳,赵国泽等.鄂尔多斯盆地西缘构造带北段深部电性结构[J].地球物理学报,2010,53(3):595-604.
    [122]石应俊,大地电磁测深法教程[M].北京:地震出版社,1985.
    [123]陈乐寿,刘国栋主编.大地电磁测深研究[M].北京:地震出版社.1985.
    [124]考夫曼AA,凯勒G V著。大地电磁测深法[M].刘国栋、赵国泽等译朱佐全校.北京:地震出版社,1990.
    [125]王家映.石油电法勘探[M].石油工业出版社,1992.
    [126]蔡学林,曹家敏,朱介寿等.龙门山岩石圈地壳三维结构及汶川大地震成因浅析[J].成都理工大学学报(自然科学版),2008,33(4):357-365.
    [127]蔡学林,王绪本,朱介寿等.汶川8.0级特大地震震源断裂特征及其动力学分析[J].中国地质,2010,37(4):952-966.
    [128]邓前辉,王继军,唐吉等.三河-平谷8.0级大震区地壳上地幔电性结构特征研究[J].地震地质,2001,23(2):178-185.
    [129]邓前辉,张木生,詹艳等.邢台7.2级地震震源区的电磁阵列剖面法测量与电性特征研究[J].地球物理学报,1998,41(2):218-225.
    [130]樊计昌,李松林,张先康等.海原断裂在地壳深处的几何形态及其动力学意义[J].地震学报,2004,26(增):42-49.
    [131]付征祥,刘桂萍,陈祺福.青藏高原东北缘海原,古浪,昌马大地震间相互作用的动力学分析[J].地震地质,2001,23(1):35-42.
    [132]郭守年,李勇.南北地震带北段地壳上地幔电性结构及有关资料问题的讨论[J].西北地震学报,1999,21(3):285-295.
    [133]国家地震局《鄂尔多斯周缘活动断裂西》课题组,鄂尔多斯周缘活动断裂系[M].北京:地震出版社,1988,302-304.
    [134]国家地震局地学断面编委会,青海门源至福建宁德地学断面(1:100万)说明书[M].北京:地震出版社,1992:1-64.
    [135]国家地震局兰州地震研究所,甘肃地震资料汇编[M].北京:地震出版社,1989:1-618.
    [136]侯康明,邓起东,刘伯箎.对古浪8级大震孕育与发生的构造环境及法震模型的讨论[J].中国地震,1999,18(4):339-348.
    [137]李清河,郭守年,吕德徽.鄂尔多斯西缘与西南缘深部结构与构造[M].北京:地震出版社,1999:1-255.
    [138]李天斌,孟方,王美芳等.宁夏中西部香山-天景山地区逆冲推覆构造的特征及演化[J],地质通报,2005,24(4):309-315.
    [139]梁桂培,李渭娟.南北地震带北段深部构造特征[J].地震学报,1990,12(2):176-185.
    [140]刘勇,李廷栋,王彦斌等.宁夏卫宁北山金场子闪长玢岩岩脉地质特征及SHRIMP锆石U_Pb年龄[J].中国地质,2010,37(6):1575-1583.
    [141]刘少峰,柯爱蓉,吴丽云等.鄂尔多斯西南缘前陆盆地沉积物物源分析及其构造意义[J].沉积学报,1997,15(1):156-160.
    [142]马海山,毛金海,周振环等.祁连山地区地质[C]/中国地质图集,北京:地质出版社,2002:89-92.
    [143]马杏垣,中国岩石圈动力学地图集[M].北京:中国地图出版社,1989:1-68.
    [144]梅建明,邵洁涟.宁夏金场子金矿床氧化带中针铁矿矿物学研究[J].矿物岩石,1991,11(3):1-6.
    [145]聂政,林伟凡.中卫-同心断裂带中段:香山-天景山断裂带1709年7.5级地震形变带特征[J].地震地质,1993.
    [146]屈健鹏,朱佐全,杨国栋等.鄂尔多斯块体西南定边-大罗山大地电磁剖面解释[J].西北地震学报,1996,18(4):32-37.
    [147]屈健鹏,朱佐全,杨国栋等.鄂尔多斯地块西缘定边-景泰地壳和上地幔电性结构分析[J].西北地震学报,1998,20(2):70-75.
    [148]屈健鹏.鄂尔多斯块体西缘及西南缘深部电性结构与该区地质构造的关系[J].内陆地震,1998,12(4):312-319.
    [149]任雪梅,高孟潭,延海军等.宁夏固原1306和1622年地震考证[J].中国地震,2011,27(3):319-326.
    [150]石应俊,张朝文,寸树仓.甘肃永昌-独青山地电断面及其地质上的新发现[J].成都理工学院学报,1995,22(1):47-51.
    [151]宋新华,李红宇.宁夏中卫市大铜沟铜矿地质特征及控矿因素浅析[J].矿产与地质,2009,23(2):118-123.
    [152]宋友桂,方小敏,李吉均等.晚新生代六盘山隆升过程初探[J].中国科学(D辑),2001,31(增):142-148.
    [153]汪素云,高阿甲,许忠淮等.青藏高原东北地区地震重新定位及其活动特征[J].地震学报,2000,22(3):241-248.
    [154]王椿镛,林中洋.青海门源-福建宁德地学断面综合地球物理研究[J].地球物理学报,1995,38(5):590-598.
    [155]王士政,廖华瑞,顾其昌等.宁夏回族自治区地质(C)/中国地质图集,北京:地质出版社,2002:311-316.
    [156]夏林圻,夏祖春,徐学义.北祁连山构造-火山岩浆演化动力学[J].西北地质科学,1995,16(1):1-28.
    [157]杨树锋,陈汉林,程晓敢等.祁连山北缘冲断带的特征与空间变化规律[J].地学前缘(中国地质大学(北京);北京大学),2007,15(5):211-221.
    [158]杨振德,潘行适,杨易福.阿拉善断块及邻区地址构造特征及矿产[M].北京:科学出版社,1988:1-254.
    [159]殷秀华,黎益仕,刘占坡.南北构造带北段重磁异常的对应分析[J].地震地质,1999,21(4):370-376.
    [160]张国伟,郭安林,姚安平.中国大陆构造中的西秦岭-松潘大陆构造结[J].,2004,11(3):23-31.
    [161]张维岐,焦德成,柴炽章.宁夏香山-天景山弧形断裂带新活动特征及1709年中卫南71/2级地震形变带[J]地震地质,1988,10(3):12-20.
    [162]张永庭,张晓东,刘建兵.宁夏卫宁北山地区多元信息综合成矿预测[J].宁夏工程技术,2010,9(1):71-74.
    [163]张云琳,刘晓玲,安海静等.祁连山中段深部电性结构及潜在震源危害区的研究[J].中国地震,1994,10(1):62-71.
    [164]长庆油田石油地质志编写组,长庆油田[M].北京:石油工业出版社,1992:1-490.
    [165]赵瑞斌,沈军,李军.1902新疆阿图什81/4级地震形变特征与发震模式初探[J].地震地质,2001,23(4):495-500.
    [166]郑文俊,袁道阳,张冬丽等.1927年古浪8级地震的破裂习性及破裂机制的数学模拟[J].中国地震,2004,20(4):353-363.
    [167]国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带[M].北京:地震出版社,1990.
    [168]汪一鹏,宋方敏,李志义,尤惠川,安平.宁夏香山-天景山断裂带晚第四纪强震重复间隔的研究[J].中国地震,1990,6(2):15-24.
    [169]闵伟,张培震,邓起东.中卫—同心断裂带全新世古地震研究[J].地震地质,2001,23(3):357-366.
    [170]李传友.青藏高原东北部几条主要断裂带的定量研究.中国地震局地质研究所博士论文,2005.
    [171]韩竹军,谢富仁,万永革.断层间相互作用与地震触发机制的研究进展[J].中国地震,2003,l9(1):67-76.
    [172]徐锡伟.活动断层、地震灾害与减灾对策问题[J].震灾防御技术,2006,1(1):7-14.
    [173]徐锡伟,于贵华,马文涛等.活断层地震地表破裂“避让带”宽度确定依据与方法[J].地震地质,2002,24(4):471-483.
    [174]刘光中,等.1920年海原大地震与构造关系的讨论[J].西北地震学报,2001,23(1):93-98.
    [175]樊计昌,李松林,张先康,等.海原断裂在地壳深处的几何形态及其动力学意义[J].地震学报,2004,26(增刊):43-48.
    [176]鲁霞.龙门山构造带及川西坳陷中段地壳电性结构研究[D].成都理工大学,2011.
    [177]马胜利,刘力强,马瑾,巴晶,王凯英,扈小燕.基于实验结果讨论断层破裂与强震物理过程的若干问题[J].地学前缘,2003,10(Suppl):226-232.
    [178]马瑾,马胜利,刘力强,邓志辉,马文涛,刘天昌.断层几何结构与物理场的演化及失稳特征[J].地震学报,1996,18(2):200-207.
    [179] Gaudemer Y,Tapponnier P,et al.Partitioning of crustal slip between linked,active faults in theeastern Qilianshan,and evidence for a major seismic gap,the Tianzhu Gap,on the westernHaiyuan fault,Gansu(China)[J].Geophys.J.int.,1995,120:599-645.
    [180]师学明.二维大地电磁拟波动方程反演法研究.中国地质大学博士论文,2000..
    [181]谭捍东.大地电磁三维快速松弛反演.中国地质大学(北京)博士论文,2000.
    [182]余年,龙门山构造带中段地壳电性结构研究.成都理工大学,2008.
    [183]王绪本,李永年,高永才.大地电磁测深二维地形影响及其校正方法[J].物探与化探计算技术,1999,21(4):328-332.
    [184]袁道阳,张培震,刘小龙,等.青海鄂拉山断裂带晚第四纪构造活动及其所反映的青藏高原东北缘的变形机制[J].地学前缘(中国地质大学,北京).2004,11(4):393-402.
    [185] Theodora K.Volti.Magnetotelluric mearsurements on the Methana Peninsula(Greece):modeling and interpretation[J].Tectonophysics,1999,301:111-132.
    [186] Miller H G, Sing h V. Po tent ial field tilt: a new con-cept for locatio n of potential fieldsource[J]. Jo urnal of Applied Geophysics,1994,32:213-217.
    [187] Verduzco B, Fair head J D, Green C M, et al. New in-sights into magnetic der iv atives fo rstr uctur al mapping [J]. The Leading Edg e,2004,23:116-119.
    [188] Wijins C, Perez C, Kow alczyk P. Theta map: edge detectio n in magnetic data [J]. Geophysics,2005,70(4):39-43.
    [189]肖峰,吴燕冈,孟令顺.重力异常图中的边界增强与提取技术[J].吉林大学学报(自然科学版),2011,41(4):1198-1203.
    [190]赵国泽,刘国栋,詹艳,等.张北—尚义地震区及其邻区地壳上地幔结构[J].地震地质,1998,2001,20(2):155-162.
    [191]张震培,沈正康,王敏,甘卫军.青藏高原及周边现今构造变形的运动学[J].地震地质,2004,26(3):367-377.
    [192]闵伟,蔡炽章,王萍,杨平.罗山东簏断裂的几何学特征及全新世滑动速率[J].中国地震,1992,8(4):48-54.
    [193]袁道阳,刘百篪,张培震,等.兰州庄浪河断裂带的新构造变形与地震活动[J].地震学报,2002,24(4):441-444.
    [194]程方道,刘东甲,姚汝信等.划分重力区域场与局部场的研究[J].物化探计算技术,1987,9(1):1-8.
    [195]文百红,程方道.用于划分磁异常的新方法插值切割法[J].中南矿冶学院学报,1990,21(3):229-235
    [196]徐世浙,张研,文白红,杨辉,等.切割法在陆东地区磁异常解释中的应用[J].石油物探,2006,45(3):316-318.
    [197]杨金玉,徐世浙,余海龙,李海侠.视密度反演在东海及邻区重力异常解释中的应用[J].地球物理学报,2008,51(6):1910-1916.
    [198]段本春,徐世浙,阎汉杰,张建世,等.划分磁异常场的插值切割法在研究火成岩体分布中的应用[J].石油地球物理勘探,1998,33(1):126-131.
    [199]程建华,尹秉喜.宁夏月亮山西麓找矿远景预测中的重磁资料应用研究[J].物探化探计算技术,2011(1):57-62.
    [200]余海龙.位场异常三维视物性快速反演[D].浙江大学,2009.
    [201]刘勇,李廷栋,王彦斌,肖庆辉,等.宁夏卫宁北山金场子闪长玢岩岩脉地质特征及SHRIMP锆石U-Pb年龄[J].中国地质,2010,37(6):1576-1583.
    [202]邓起东,冉勇康,杨晓平,等.中国活动构造图(1/4000000)[M].北京:地震出版社,2007.
    [203]马宗晋.地震与断裂关系的讨论[M].北京:地震出版社,中国活动断裂,1982,14-18.
    [204]沈正康,王敏,甘卫军,张祖胜.中国大陆现今构造应变率场及其动力学成因研究[J].地学前缘(中国地质大学,北京),2003,10(Suppl):93-100.
    [205]孙洁,晋光文,白登海,等.青藏高原东缘地壳、上地幔电性结构探测及其构造意义[J].中国科学(D辑),2003,33(增刊):174-180.
    [206]白登海,滕吉文,马晓冰,等.大地电磁观测解释青藏高原东部存在两条地壳物质流[J].中国基础科学研究进展,2011.
    [207]魏文博.大陆岩石圈导电性的研究方法[J].地学前缘(中国地质大学,北京),2003,10(1):15-22.
    [208]王家映.我国大地电磁测深研究新进展[J].地球物理学报,1997,40(增刊):206-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700