阻燃剂的疏水改性对水性膨胀型防火涂料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性膨胀型防火涂料由于具有低挥发性有机化合物、低能耗等优点,成为膨胀型防火涂料发展的一个重要方向。但由于防火涂料中主要组分(聚磷酸铵、季戊四醇)耐水性差,从而导致水性膨胀型防火涂料的综合性能不佳。因此,非常有必要提高水溶性组分的耐水性。
     本论文采用工艺简捷、后处理方便且成本较低的物理方法,选用疏水性改性剂对耐水性差的防火助剂进行疏水改性。首先,考察改性剂包覆改性聚磷酸铵(APP)对防火涂料的耐水性能、热性能、耐火性能以及耐酸碱性能的影响;其次,考察甲基硅油疏水改性PER及其与改性后的APP相互作用对防火涂料耐水性的影响;最后,采用热失重分析法考察防火涂料组分之间的相互作用,并在此基础上,进一步考察防火助剂表面改性对防火涂料组分之间的相互作用的影响。本论文主要研究成果有:
     1、采用物理方法对APP进行疏水改性,有效地提高防火涂料的耐水性能。通过水溶性以及耐水性测试手段比较发现甲基硅油疏水效果较液态石蜡好,2 wt%甲基硅油改性后的APP制得的防火涂料经48 h耐水性实验后无起泡、脱层现象。甲基硅油改性APP提高了防火涂料高温残炭量,800℃时,残炭量提高5%。甲基硅油改性APP后,一定程度上降低了钢板背温,提高了防火涂料的耐火性能,但对耐酸碱性无明显的影响。随着甲基硅油含量的增加,炭化层发泡更均匀。
     2、甲基硅油疏水改性后的PER与改性后的APP协同作用对防火涂料耐水性的改善明显优于单独改性的APP、PER对防火涂料耐水性的影响。热失重分析结果显示,防火助剂之间以及防火助剂与BP108之间均具有协同作用,这种协同作用提高了残留物的高温热稳定性。甲基硅油与防火涂料的组分具有明显的协同作用,提高了高温残留量。甲基硅油对APP热行为的影响较PER大,800℃时,改性后的APP残留量提高了14%。单独改性APP制得的防火涂料残留量最大,800℃时,其残留量较单独改性PER制得的防火涂料及改性后的APP与改性后的PER制得的防火涂料提高约4%。
Water-borne intumescent fire retardant coatings become an important development trend because of its low energy consumption and low volatile organic compound. But their comprehensive properties may be influenced because of poor water resistance of the flame retardant. Therefore, hydrophobic modification of the flame retardant is needed.
     The surface of the flame retardant was treated by hydrophobic modifiers in physical methods which had the advantages of short-cut process, low cost and convenient post-processing in this dissertation. First, the water resistance, fire resistance, acid and alkali resistance of the fire retardant coatings have been investigated after ammonium polyphosphate (APP) modified by hydrophobic modifiers. Next, effect of interaction between modified PER and modified APP on the water resistance of the fire retardant coatings has been investigated. Finally, interaction among the components of the fire retardant coatings and effect of the surface modification of the flame retardant on this interaction has also been investigated by thermal gravimetric analysis. The key works and conclusions were listed as following:
     The water resistance was effectively improved with modified APP in physical method. Methylsilicone oil showed better hydrophobicity by the water-soluble and water resistance testing. Fire retardant coatings after modification showed better water resistance without bubbles after 48 h water resistance testing. The residual weight of the fire retardant coatings increased after adding methylsilicone oil. The residual weight increased by 5% at 800℃. Modified APP with methylsilicone reduced the back temperature, improved the fire resistance. But modified APP with methylsilicone had less effect on the acid and alkali resistance of the fire retardant coatings. Carbon foam became more uniform with increase of content of methylsilicone oil.
     The synergistic effect of modified APP and modified PER strongly improved the water resistance of the fire retardant coatings, which showed better water resistance than the fire retardant coatings with modified APP, as well as that with modified PER. Synergistic effect existed not only among the flame retardants, but also between the flame retardants and BP108. This synergy improved the high-temperature heat stability of the residues. The obvious synergy between silicone fluid and the components of fire retardant coatings improved the residual weight. The effect of methylsilicone oil on thermal behavior of APP was larger than PER. The residual weight of modified APP increased by 14% than unmodified APP at 800℃. The residual weight of the fire retardant coating with modified APP increased by 4% than that with modified PER, as well as that with modified APP and modified PER at 800℃.
引文
[1] Jing Y, Yinghua Z. Environrnent-friendly super thin fire-retardant coatings for steel structure[J]. China Paint, 2004, 10): 26-28.
    [2]加万里.水性超薄型钢结构防火涂料耐火性能的研究[D].西安;西北大学, 2010.
    [3]王华进,王坚明,管朝祥.薄型钢结构防火涂料[J].涂料工业, 2001, 3(2): 16-18.
    [4]张赟.膨胀型水性防火涂料的研究[J].现代涂料与涂装, 2000, (5): 12-13.
    [5]舒凯征.水性硅丙树脂超薄膨胀型钢结构防火涂料的研制[D].南京;南京工业大学, 2006.
    [6]王锦成.膨胀型阻燃剂的研制及其在聚氨酯涂料中的应用[D].上海;东华大学2003.
    [7] Li G, Liang G, He T, Et Al. Effects of EG and MoSi2 on thermal degradation of intumescent coating[J]. Polymer Degradation and Stability 2007, 92:569-579.
    [8] Wang Z, Han E, Ke W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating[J]. Progress in Organic Coatings, 2005, 53(1): 29-37.
    [9] Wang Z, Han E, Ke W. Fire-resistant effect of nanoclay on intumescent nanocomposite coatings[J]. Journal of Applied Polymer Science, 2007, 103(3): 1681-1689.
    [10] Wang Z, Han E, Ke W. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings[J]. Corrosion Science, 2007, 49(5): 2237-2253.
    [11]杨卫疆,诸秋萍,陆亨荣.膨胀型防火涂料炭化层形成过程的探讨[J].化学建材, 2001, (6): 20-23.
    [12]欧育湘,李建军.阻燃剂—性能、制造及应用[M].北京:化学工业出版社,2005.
    [13]杜建科,卢艳萍,陈建.差示扫描量热法分析防火涂料的膨胀体系[J].材料保护, 2002, 35(8): 5-7.
    [14] Camino G, Costa L, Cortemiglia Mpld. Overview of Fire Retardant Mechanisms [J]. Polymer Degradation and Stability, 1991, 33:131-154.
    [15] Jimenez M, Duquesne S, Bourbigot S. Intumescent fire protective coating: Toward a better understanding of their mechanism of action[J]. Thermochimica Acta, 2006, 449:16-26.
    [16] Jimenez M, Duquesne S, Bourbigot S. Characterization of the performance of an intumescent fire protective coating[J]. Surface & Coatings Technology, 2006, 201:979-987.
    [17] Duquesne S, Lebras M, Bourbigot S. Expandable graphite: a fire retardant additive for polyurethane coatings[J]. Fire and Materials, 2003, 27(3): 103-117.
    [18]王震宇,韩恩厚,柯伟.纳米阻燃母液提高APP/PER/MEL防火涂料耐水性研究[J].中国腐蚀与防护学报2006, 26(2): 103-107.
    [19] Wang Z, Han E, Ke W. Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP-DPER-MEL coating[J]. Polymer degradation and stability, 2006, 91(9): 1937-1947.
    [20] Wang Z, Han E, Ke W. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating[J]. Surface and Coatings Technology, 2006, 200(20-21): 5706-5716.
    [21]杨秦莉,李国新,周文英. MoO3对膨胀型防火涂料残炭的影响[J].涂料工业, 2006, 36(5): 24-29.
    [22]田春明,谢吉星,石建兵.氧化锌在膨胀阻燃体系中的协效作用[J].河北大学学报, 2004, 24(6): 600-604.
    [23]韦平,王建祺. 4A分子筛对APP/PER膨胀阻燃剂协同作用的TGA/XPS[J].高分子材料科学与工程, 2003, 19(3): 179-181.
    [24]覃文清,李风.钢结构防火涂料的研究和应用[J].涂料工业, 1999, (3): 31-34.
    [25]张军科.水性防火涂料的研究进展[J].上海涂料, 2008, 46(5): 20-23.
    [26]马洪涛.钢结构防火涂料现状及其发展趋势[J].山东建材, 2007, 3): 37-41.
    [27]刘学军.水性超薄膨胀型钢结构防火涂料的研制[D].北京;北京化工大学, 2005.
    [28]王国建,张小翠,汪新民.乳液型膨胀防火涂料的研究(Ⅰ)—树脂基料对防火涂料性能的影响[J].建筑材料学报, 1999, 2(1): 57-63.
    [29]张旭昀,王勇,孙丽丽,等.乳液种类对膨胀型防火涂料理化性能和防火性能的影响[J].材料保护, 2007, 40(4): 19-21.
    [30]许乾慰,孙栋,王国建,等.基料树脂对钢结构防火涂料防火性能的影响[J].涂料工业, 2010, 40(7): 53-56.
    [31]舒凯征,赵石林.水性钢结构防火涂料膨胀阻燃体系的研究[J].新型建筑材料, 2006: 46-49.
    [32] Hamdani S, Longuet C, Perrin D, etal. Flame retardancy of silicone-based materials[J]. Polymer Degradation and Stability, 2009, 94:465-495.
    [33] Zou M, Wang S, Zhang Z, etal. Preparation and characterization of polysiloxane-poly(butylacrylate-styrene) composite latices and their film properties[J]. European Polymer Journal, 2005, 41(11): 2602-2613.
    [34]赵艳红.水性超薄型钢结构防火涂料制备与性能研究[D].西安;西安科技大学, 2006.
    [35] Wang G, Yang J. Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure[J]. Surface and Coatings Technology, 2010, 204(8): 1186-1192.
    [36]龚建清,赵雷.树脂基料对水性超薄型钢结构防火涂料性能的影响[J].企业技术开发, 2009, 28(01): 18-20.
    [37]覃文清.水性超薄型钢结构防火涂料的研究及应用[J].新型建筑材料, 2007, (6): 65-68.
    [38]王雪峰,吴荣梁,孙春梅.膨胀型类磷酸酯蜜胺盐阻燃剂的合成及应用研究[J].功能高分子学报, 2004, 17(4): 630-634.
    [39]王升文,李飞飞,邱银香.“三位一体”膨胀型阻燃剂的研究进展[J].化工中间体, 2008, 5:23-29.
    [40]王睦铿.聚合型高分子阻燃剂[J].化工新型材料, 1995, 1:35-40.
    [41]马志领,高俊刚,秦江雷.微胶囊化法改善膨胀型阻燃剂与聚丙烯的相容性[J].塑料工业, 2004, 32(4): 32-34.
    [42]郝冬梅,林倬仕,陈涛,等. EP微胶囊化APP对阻燃PP性能的影响[J].现代塑料加工应用, 2008, (04): 37-40.
    [43]胡湧东,徐光卫.阻燃剂微胶囊技术的研究[J].聚氨酯工业, 2002, (04): 17-19.
    [44] F S, I V, G B, etal. Effects of Microparticales on isotactic Polypropylene: Thermomechanical and Thermal Properties[J]. JPolym,SciPart B-PolymPhys, 2008, 46:2566.
    [45]崔锦峰,用应萍.微胶囊技术在涂料中的应用[J].涂料工业, 2003, 33(11):
    [46] Ni J X, Song L, Hu Y A, etal. Preparation and characterization of microencapsulated ammonium polyphosphate with polyurethane shell by in situ polymerization and its flame retardance in polyurethane[J]. Polymers for Advanced Technologies, 2009, 20(12): 999-1005.
    [47]刘琳,张亚楠,李琳,等.环氧树脂包覆聚磷酸铵微胶囊的制备及表征[J].高分子材料科学与工程, 2010, 26(9): 136-138.
    [48] Wu K, Shen M-M, Hu Y. Synthesis of a novel intumescent flame retardantand its flame retardancy in polypropylene[J]. J Polym Res, 2010:
    [49] Wu K, Song L, Wang Z, etal. Preparation and characterization of double shell microencapsulated ammonium polyphosphate and its flame retardance in polypropylene[J]. J Polym Res 2009, 16(283-294.
    [50] Sun C, Zhang Q, Li B. The water resistance of surface-modified APP with melamine-TDI in LLDPE[J]. Journal of Polymer Research, 2007, 14(6): 505-509.
    [51]王国建,高堂铃,刘琳,等.海泡石对水性钢结构防火涂料性能的影响[J].建筑材料学报, 2007, 10(4): 459-462.
    [52]王震宇,韩恩厚,柯伟.纳米阻燃母液提高APP/PER/MEL防火涂料耐水性研究[J].中国腐蚀与防护学报, 2006, 26(2): 103-108.
    [53] Wang Z, Han E, Ke W. An investigation into fire protection and water resistance of intumescent nano-coatings[J]. Surface & Coatings Technology, 2006, 201(1528-1535.
    [54]时虎,张锦丽,时晨阳.新材料在钢结构膨胀型防火涂料中的应用[J].涂料工业, 2007, 37(10): 59-68.
    [55]邹敏,王琪琳,刘国钦,等.纳米ZnO晶须改善钢结构防火涂料性能研究[J].涂料工业, 2006, 36(8): 25-27.
    [56]刘琳,李琳,倪永.微胶囊化聚磷酸铵对防火涂料耐水性能的影响[J].建筑材料学报, 2010, 13(3): 367-370.
    [57] GB14907-2002,钢结构防火涂料[S].
    [58] Barfurth D, Mack H. Surface-modified flame retardants containing an organic silicon composition, their use, and process for their preparation [P]. EP 970985, 2000-01-12
    [59]刘琳,王国建,王铁宝.室外钢结构防火涂料的耐湿热性能研究[J].涂料工业, 2004, 34(3): 1-4.
    [60] G.Camino, N.Grassie, Ic.Mcneill. Influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly (methyl methacrylate)[J]. J Polym Sci, Polym Chem Ed, 1978, 16:95-106.
    [61] G.Camino, L.Costa, L.Trossarelli. Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part l--Thermal Degradation of Ammonium Polyphosphate-Pentaerythritol Mixtures [J]. Polymer Degradation and Stability 1984, 6:243-252.
    [62]张天仪.水性膨胀型防火涂料的热分析特性研究[D].沈阳;沈阳航空工业学院, 2007.
    [63] G.Camino, L.Costa, G.Martinasso. Intumescent Fire-retardant Systems [J]. Polymer Degradation and Stability, 1989, 23:359-376
    [64]冯圣玉,张洁,李美江.有机硅高分子及其应用[M].北京:化学工业出版社,2004.
    [65] G.Camino, R.Gobetto, G M. Thermal Degradation of Pentaerythritol Diphosphate, Model Compound for Fire Retardant Intumescent Systems: Part II Intumescence Step[J]. Polymer Degradation and Stability, 1990, 28:17-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700