残膜分离与输送装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阐述了论文选题的背景及研究的目的和意义,介绍课题来源和主要研究内容。分析了目前我国农田残膜污染的状况和残膜清理装备的研究进展,通过分析现有残膜回收与输送装置的工作性能、技术特点以及存在的主要问题,研究了清田整地联合作业机的结构原理和试验方法。运用模糊优化设计、多刚体运动学和动力学理论、虚拟样机技术与仿真的方法和理论,对起膜铲、搂膜连杆机构、齿形刮板等新型的残膜分离与输送装置进行了深入系统的研究,解决了残膜缠绕工作部件的技术难题,为农田残膜污染治理装备的研究开发提供关键技术和理论。
     研究起膜铲结构原理,分析起膜铲工作阻力,建立了起膜铲模糊综合评价模型。通过试验优化结构参数和工作参数,得出起膜铲面板上孔的最佳尺寸和铲的理想工作角度;分析残膜等物料在筛面上的运动规律,建立残膜分离筛运动数学模型,通过分析与仿真优化分离筛机构的结构参数和运动参数;分析弹齿的运动,建立了搂膜连杆机构模糊优化设计模型,实现了预期的理想运动轨迹;研究齿形刮板式残膜输送装置的结构原理,分析计算刮板组工作行程的阻力、功耗和动能。以刮板组工作行程的能量消耗最小为目标函数,建立优化设计的数学模型,得出刮板的结构尺寸、配置间距、工作速度、工作倾角的最优化设计结果。运用多刚体系统建模理论,建立了该系统运动学和动力学数学模型并进行了仿真,分析了系统的运动规律和动力学特性。通过试验验证,设计合理、理论模型正确。
     最后,总结本文的研究成果与创新点,提出了进一步研究方向。
This paper describes the background and significance of the research topic, introduced the source of the research topic and the contents of the research. This work used fuzzy optimization method and theory, multi-body kinematics and dynamics and virtual prototyping technology, method and theory to carry out machine analysis, modeling and simulation. Experimental tests show that the theoretical model is accurate and design results are reasonable.
     Due to the lack of appropriate machinery and labor, large quantity of remnant plastic film can not be recycled thereby left as residues on arable land, causing serious pollution to the soil and ecological environment. Depending on the manual use of hand picking of remnant plastic film is labor intensive, work efficiency is low and recovery rate is low, therefore mechanical cleaning of farmland remnant plastic film is the most effective way possible. Based on this, the study of farmland remnant plastic film pollution handling technology and equipment for agricultural production is one of the most important factors for this present study.
     As a result of the remnant plastic film contamination of the soil and the environment, foreign countries use less plastic film. The plastic film in use in Japan, the United States and some European countries are generally thicker (0.02 - 0.05mm), the strength is large thereby using roller-type plastic film recycling machine. The main locally developed machineries for mechanical cleaning and recovery of remnant plastic film are film–tearing machine during seedling and spring-tooth film rake after harvest. According to the main working mechanism, plastic film recovery machinery can be divided into spring-tooth, telescopic rake,fixed tilt-tooth, , and a variety of pneumatic equipment. At present in China plastic films (0.006-0.008mm) are in use and remnant plastic films have strong adhesion on the working part, tying and hanging on the teeth, a key technical problem yet to be resolved. During the use of pneumatic method to recover remnant plastic film, it is difficult for the air to separate out plastic films mixed within the soil. Therefore, this study developed plastic films loosening shovel and rake machine structure, zigzag scraper with other new model for remnant plastic film separation and transportation devices. The parts structural principles and trajectory movement design prevented the remnant plastic film from winding around the working parts thereby solving the technical problems of winding around the working parts. These devices provided key techniques and theories for studies on farmland remnant plastic film pollution control devices, research and development. For field cleaning and land preparation operations overall design, Pro / Engineer software was used to achieve movement entity model, the test assembly is accurate. Tests showed that the design results are correct, reasonable and working performance is reliable.
     Machine transmission pressure angle, remnant plastic film recovery rate, soil resistance, remnant plastic film tensile strength, machinery mechanical reliability and others have fuzzy attributes and fuzzy optimization method and theory was used for design. The design is practical, economical and satisfactory mechanically. Using multi-body system dynamics modeling basic theory, Pro / E and ADAMS software functions, kinematics and dynamic forces analysis, modeling, simulation, the design was carried out. This improved design efficiency and reduced prototype manufacturing costs. Fuzzy optimal design is based on fuzzy mathematics and mechanical design optimization theory to develop new design methods and theories for use in the field of agricultural machinery design. This can solve many traditional design and precision design insurmountable problems. The three basic elements of fuzzy optimal design are objective function, constraint function and design variables. In engineering design these elements are often "vague", therefore using fuzzy method to solving the problem, can be more in line with the actual engineering design optimization results.
     The plastic film loosening shovel main function is to collect remnant plastic film from the soil. During operation, it will go down up to 120mm below arable land surface to lift up remnant plastic film, crop residues, soil and other mixed up materials. Some soil is separated through the holes on the shovel and most materials are transported by the scraper conveyor to the back separating sieve . The loosening shovel working speed, soil penetration angle and soil characteristics have enormous impact on working resistance and soil conditions. By analyzing the structure and principle of film loosening shovel working resistance, established film loosening shovel fuzzy evaluation model. In order to optimize the structural parameters and operating parameters, a large number of tests were carried out and concluded that loosening shovel panel best hole size and best working angle areφ66 and 35°respectively.
     Remnant plastic film separating sieve device are equipped to clean the field and prepare the soil. During operation, this device will separate remnant plastic film and crop residues from soil then conveyed them to the film box. Through the analysis of separating sieve device structure movement and the plastic film materials on the separating sieve surface movement pattern, a mathematical model was developed for remnant plastic film separating sieve movement. Pro / Engineer software was used to establish remnant plastic film separating sieve 3D model for movement simulation. Through analysis of the simulation experiments and optimizing the separating sieve structural parameters and motion parameters, the rate of remnant plastic film separation rate effectively increased and the separating sieve reciprocating inertial force caused by the vibration decreased. Tests showed that the vibration frequency for remnant plastic film separating sieve has great impact on the rate of separation. At the flywheel speed of 175r/min, separating sieve has better separation ability and the operation is more stable. Tests show that the design is reasonable and the remnant plastic film separation performance is reliable.
     Remnant plastic film rake link pole structure is spring-tooth of four-links pole support, spring-tooth is fixed on the links mechanism pole to transport and collect remnant plastic film. Analyzing the spring tooth movement and with the aim of obtaining spring-tooth optimal trajectories, links mechanism structural optimized mathematical design model was established. Fuzzy optimization principles and methods was used for the constraint function allowable pressure angle, spring tooth trajectory maximum height, avoiding spring tooth reverse film allowable angle with fuzzy treatment, established fuzzy optimization model design and use optimal level set to solve fuzzy optimization problem. With known crank mechanism, machine frame and spring-tooth structure size, design calculation revealed that optimal links mechanism pole and optimal rocker links mechanism pole size of 0.39m and 0.385m which is less than the original size by 13.3% and 8.3% respectively. Fuzzy optimal links mechanism design achieved the expected trajectory motion, the operation of spring tooth, its functional position and angle met working requirements effectively preventing remnant plastic film winding and clogging.
     Zigzag scraper for remnant plastic film, crop residue and soil transportation devices structure and principles were studied. With scraper set minimum operational energy consumption taken as the objective function, established optimal mathematical design model using optimization calculation to determine scraper structural size, configuration space, the working speed and the working angle for optimal design results. According to the multi-body system modeling theory and using Cartesian system method developed the device system kinematics and dynamic mathematical model with the use of ADAMS software simulation, carried out in-depth analysis of the system movement and kinetic characteristics. From experiments, it was discovered that when the scraper set and shovel locations are not properly arranged, it is easy for loosening shovel soil have sharp increase in working resistance which at serious times lead to operation breakdown. Therefore, through trials confirmed that the best scraper set location to loosening shovel is c = 300mm. Test results show that optimal design result is reasonable, under certain operating speed can completely meet the design requirements and in the testing process no remnant plastic film is wrapped around the scrapper.
     To conduct more in-depth studies on farmland remnant plastic film pollution control key technology and equipment, comprehensive use of fuzzy design optimization, neural network, virtual prototyping technology, intelligent design and digital design methodologies and theories are needed. Finally, to conclude the present study results and innovation, areas for further research were highlighted.
引文
[1] 王 频.残膜污染治理的对策和措施[J].农业工程学报,1998,14(3):185-188.
    [2] 麻世华,叶东平,麻成军,等.农用塑料薄膜的残留危害及控制措施 [J].现代化农业,1997,(10):5-6.
    [3] 杨晓涛.农膜污染的防治对策[J].农业环境与发展,2000,(1):28-29.
    [4] 张东兴.农用残膜的回收问题[J].中国农业大学学报,1998,3(6):103-106.
    [5] 李明思,邢海峰,篮明菊.节水灌溉技术对农田土壤环境的影响[J].中国科协 2005年学术年会论文集,农村实用工程技术,2005,增刊:75-79.
    [6] 候书林,胡三媛,孔建铭,等.国内残膜回收机研究的现状[J].农业工程学报,2002,18(3):186-189.
    [7] 那明君,董 欣,候书林,等.残膜回收机主要工作部件的研究[J].农业工程学报,1999,15(2):112-115.
    [8] R.L.Parish.An automated machine for remove of plastic mu1ch.Transactivns of ASAE.1998.Vo1.42 (1):49-51.
    [9] Brooks, T.W.Apparatus for removing and baling plastic mulch.U.S.Patent No.5452652.1995.
    [10]Brooks, T . W . Apparatus for recycling previously used agricultural plastic film mulch.U.S.Patent No.54535224.1997.
    [11]Chrysler, R.W.Apparatus for removing plastic film from raised plant beds.U.S.Patent No.4796711.1989.
    [12]Lamont, W.J.Plastic mulches far the production of vegetable crops.Hort Technol.1993.3 (1):35-39
    [13]Lavo, G . Machine for removing protective ground covers from a cultivated field.U.S.Patent No.5386876.1995.
    [14]Parry, J.R.Farm machine for removing protective ground covers form a cultivated field.U.S.Patent No.3687392.1972.
    [15]Sawyer, A.G.and R.L.Roberson.Plastic sheet ‘take-up implement.U.S.PatentNo.5236051.1993.
    [16]Witter, S.H.World-wide use of plastic in horticultural production.Hort Technol.1993.3 (1):6-19
    [17]Berglund, Rake.Impact of plastic mulch and poultry manure on plant establishment in organic strawberry production.Journal of Plant Nutri- tion.2006.Vol.29:103-112.
    [18]周福君,纪文义,杨树森.2001.玉米苗期收膜机的研制[J].农机化研究.(8):76-77.
    [19]薛文瑾,王春耀,朱振中,等.卷膜式苗期残膜回收机的设计[J].农业机械学报,2005,36(3): 148-149.
    [20]娄秀华,张东兴,张淑敏,等.1MS-III 型地膜回收机起膜铲动力性能试验分析[J].农业机械学报,2004,35(5): 67-69.
    [21]张东兴.残膜回收机的设计[J].中国农业大学学报,1999,(6): 41-43.
    [22]娄秀华,张东兴,耿瑞阳,等.残膜回收机起膜器的设计与试验研究[J].农业工程学报,2002,18(6): 88-90.
    [23]候书林,张淑敏,孔建铭,等.弹齿式收膜机的主要结构设计[J].中国农业大学学报,2004,9(2):18-22.
    [24]安世才,魏宏安.梳齿转筒式废膜捡拾回收机的研制[J].农业机械学报,2000,31(4): 109-111.
    [25]那明君,董 欣,杨晓丽,等.收膜整地联合作业机主要工作部件研究[J].农机化研究,2000,(8):87-89.
    [26]卢博友,杨 青,薛少平,等.圆弧形弹齿滚筒式残膜捡拾机构设计及捡拾性能分析[J].农业工程学报,2000,16(6): 68-71.
    [27]卢博友,杨 青,薛少平,等.弹齿滚筒式残膜捡拾机构捡拾性能分析[J].西北农业大学学报,2000,(5): 50-54.
    [28]建 中.残膜回收机集锦[J].山西农机,2000,(1): 14.
    [29]安世才.1FMJ-850 型废膜捡拾机[J].农机与食品机械,1999,(5): 20-21.
    [30]王春耀,陈 发,郭小军,等.弧形挑膜齿残膜清理滚筒运动分析[J].农业机械学报,2005,36(8): 38-39.
    [31]刘 晨,薛文瑾.MSM-3 型苗期残膜回收机[J].新疆农机化,1999,(4): 13.
    [32]鲁亚云, 杨志诚, 杨宛章,等.气吹式秋后残膜回收机的研究[J].新疆农业大学学报,2005,28(1): 57-60.
    [33]秦朝民,王序俭.三种典型收膜机具简介[J].新疆农垦科技,1998,(4): 24-25.
    [34]徐良庆.新型杆齿栅筒式残膜捡拾装置[J].新疆农机化,1998,(2): 26.
    [35]贾理江,吴兆宗.4CM-150 型齿链式悬挂收膜机试验与改进[J].新疆农机化,1997,(5):17.
    [36]胡建胜.新疆常用的地膜覆盖机和残膜回收机[J].新疆农业科技,1996,(6):25-26.
    [37]倪国庆,谢陈平.4MSM—3 苗期残膜回收机[J].农机与食品机械.1999,(1):27-29.
    [38]张德云,李亚雄.4FS-2 型残膜联合回收机的改进设计[J].农牧与食品机械,1994,(4):23-25.
    [39]张木林,王纬.1MS 一 800 塑料残膜回收机[J].农牧与食品机械,1992(2):7-11.60.
    [40]范旭平,杜士华.垄作玉米苗期收膜机的研究[J].农机化研究,1995,(2):21-22.
    [41]徐正太.气吸式残膜回收机的研制与试验[J].新疆农机化,1993,(4):31.
    [42]白圣男.弹齿式收膜机拾膜装置的试验研究[D].东北农业大学.2006.6.
    [43]李家宝,覃明,马素媛,等.薄膜几种重要力学性能的评价[J].理化检验-物理分册,2003,39(9):441-446.
    [44]易新文,赵斌元,李如燕,等.LLSPE/LDPE 薄膜老化程度的表征方法[J].材料科学与工程,2002,20(2):203-206.
    [45]聂理君.残膜回收机弧形挑膜齿的应用研究[D].新疆大学.2006.
    [46]陈 发,史建新,王学农,等.弧型齿残膜捡拾滚筒捡膜的机理[J].农业机械学报,2006,37(6):36-41.
    [47]陈 发,史建新,赵海军,等.固定凸轮残膜捡拾机构的优化设计[J].农业机械学报,2005,36(12):43-46.
    [48]赵海军.残膜捡拾滚筒的运动学和动力学研究[D].新疆大学.2005.
    [49]王晓明.抖动链式残膜回收机传动系统与膜土分离机构的研究[D].中国农业大学.2005.
    [50]杨德秋.抖动链式残膜回收机起膜与集膜机构的研究[D].中国农业大学.2005.
    [51]大卫 G.乌尔曼[美].机械设计过程[M].黄靖远,刘莹[译].北京:机械工业出版社.2006.
    [52]张立彬.微小型农业机械产品可重构模块化—设计方法及其应用[M].北京:科学出版社.2007.
    [53]王玉新.数字化设计[M].北京:机械工业出版社.2003.
    [54]王成焘.现代机械设计思想与方法[M].上海:上海科学技术文献出版社.1999.
    [55]廖远清.机械设计方法学[M].重庆:重庆大学出版社.1996.
    [56]臧 勇.现代机械设计方法[M].北京:冶金工业出版社.1998.
    [57]尹朝庆,尹 皓.人工智能与专家系统[M].北京:中国水利水电出版社,2002.
    [58]敖志刚.人工智能与专家系统[M].合肥:中国科学技术大学出版社,2002.
    [59]北京农业工程大学主编.农业机械学(下册)[M].北京:农业出版社,1999.
    [60]李宝筏主编.农业机械学([M].北京:中国农业出版社,2003.
    [61]高秀华,李炎亮,邓洪超,冯增铭.机械三维动态设计仿真技术—Pro/Engineer 和Pro/MECHANICA 应用[M].北京:化学工业出版社.2003:10-12.
    [62]黄恒星.Pro/ENGINEER 参数实体模型学习实务[M].北京.中国青年出版社.2000.
    [63]林清安.Pro/ENGINEER2000i 零件设计:高级篇[M].北京:清华大学出版社,2001.
    [64]黄圣杰,张益三,洪立群.Pro/ENGINEER20001 高级开发实力[M].北京:电子工业出版社,2001.
    [65]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003.
    [66]陈 魁.试验设计与分析[M].北京:清华大学出版社.1996.
    [67]邓 勃.分析测试数据的统计处理方法[M].北京:清华大学出版社.1995.
    [68]殷晨波.铲刀参数对土壤流动特性的影响[J].建筑机械.1994(4).
    [69]王国安.铲土运输机械总体性能的模糊综合评判[J].建筑机械.1995(10).
    [70]黄洪钟.机械设计模糊优化原理及应用[M].北京:科学出版社.1997.
    [71]汪培庄, 李洪兴.模糊系统理论与模糊计算机[M].北京:科学出版社.1996
    [72]陈水利, 李敬功,王向公.模糊集理论及应用[M].北京:科学出版社.2005.
    [73]邹开其,徐扬.模糊系统与专家系统[M].西南交大出版社.1989.
    [74]王彩华,宋连天.模糊论方法学[M].北京:中国建筑工业出版社.1988.
    [75]Cang Ye, Nelson H.C.Yung and Danwei Wang.A fuzzy control with supervised learning assisted reinforcement learning algorithm for obstacle avoidance.IEEE Trans.On systems, Man and Cybernetics.2003, 33{1):17-27.
    [76]Seung Ju Lee, Chang-Gi Hong, Tack-Su Han, et al.Application of fuzzy control to start-up of twin screw extruder.Food Control.2002, 13:301-306
    [77]Kiyotaka Izumi, Keigo Watanabe.Fuzzy behavior-based control trained by module learning to acquire the adaptive behaviors of mobile robots.Mathematic and Computers inSimulation.2000, 51:233-243
    [78]余云燕,陈仁朋,陈云教,等.一种基于模糊数学的桩基质量综合评定方法[J].中国公路学报.2002,15(2):68-71.
    [79]Ling Zhang, Bo Zhang.Fuzzy reasoning model under quotient space structure.Information sciences.2005, 173:353-364
    [80]G.K.I.Mann, R.G.Gosine.Three-dimensional min-max-gravity based fuzzy PID inference analysis and tuning.Fuzzy Sets and Systems.2005, 156: 300-323
    [81]商建东,陈康宁.质量驱动的产品设计质量模糊评价及方案决策方法研究[J].中国机械工程.2000, 11(12):1394-1398
    [82]戴西超,张庆春.综合评价中权重系数确定方法的比较研究[J].煤碳经济研究.2003(11):37
    [83]于 洋,李一军.基于多策略评价的绩效指标权重确定方法研究[J].系统工程理论与实践.2003(8):
    [84]欧 伟.结构多目标模糊优化设计[D].重庆大学.2006.
    [85]张志涌.精通 MATLAB6.5[M].北京:航空航天大学出版社,2003.
    [86]宋兆基.MATLAB6.5 在科学计算中的应用[M].北京:清华大学出版社,2005.
    [87]孙 恒,陈作模.机械原理(第五版)[M].北京:高等教育出版社,1996.
    [88]陈翠英,王志华,李青林.油菜脱出物物理机械特性及振动筛参数优化[J].农业机械学报,2005,36(3):60-63.
    [89]康凤举,杨惠珍,高立娥.现代仿真技术与应用[M].北京:国防工业出版社,2005.
    [90]熊光楞,郭 斌,陈晓波,等.协同仿真与虚拟样机技术[M].北京:清华大学出版社.2005.
    [91]王志伟,孟玲琴,刘丹,等.振动筛选机的优化设计[J].农业机械学报,2006,37(5):67-71.
    [92]贾晶霞,张东兴,杨德秋.薯类收获机振动筛伤薯机理计算机模拟与分析[J].农业机械学报,2005,36(12):67-70.
    [93]王志华,陈翠英.基于 ADAMS 的联合收割机振动筛虚拟设计[J].农业机械学报,2003,34(4): 53-56.
    [94]姚新胜.满意优化原理及其在机械工程领域中的应用研究[D].西南交通大学.2006.
    [95]李永华.稳健可靠性理论及优化方法研究[D].大连理工大学.2005.
    [96]曾黄麟.智能计算关于粗集、模糊逻辑、神经网络的理论及其应用[M].重庆:重庆人学出版社.2004.
    [97]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版.2004.
    [98]陈举华.机械结构模糊优化设计方法[M].北京:机械工业出版社.2001.
    [99]梁海顺,胡巧娥,王贯超,等.四连杆打纬机构的 Fuzzy 优化设计[J].机械设计与研究,2005,21(2):72-74.
    [100] 顾 玲,管荣根,张瑞宏,等.链板式连续运输机械的现代设计方法研究[J].工程设计学报,2003,10(3):149-153.
    [101] 刘延柱,洪嘉振,杨海兴.多刚体动力学[M].北京:高等教育出版社.1989.
    [102] 洪嘉振.计算多体系统动力学[M].北京:高等教育出版社.1989.
    [103] 袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1992.
    [104] Andrew·Jaan Kiusalaas.Engineering Mechanics DYNAMICS Second Edition(影印版) [M].北京: 清华大学出版社,2001.
    [105] D.S.Base,R.S.Hwang,E,J.Haug.A Recursive Formulation for Real-Time Dynamic Simulation.Proceedings of the l988 ASME Design Automation Conference, 1988.
    [106] R.E.Roberson.On the Ways to Use Normalized Euler Parameters as Kinetic State Variable in Dynamic Simulation.Z.Angew.Math.Mech.Vol.718, 1985.
    [107] R.E.Roberson.On Recursive Determination of Body Frames for Multibody State Dynamic Simulation.J.Appl.Mech.Vol.62,No.3,1985.
    [108] R.E.Roberson.On the Practical Use of Euler-Rodrigues Parameters in Multibody System Dynamic Simulation.Ing.Arch.Vol.54,1985.
    [109] J . Wittenburg , U . Wolz . The Program Mesa Verde for Robot Dynamics Simulations.Robotics Research: The Third International Symposium,1986.
    [110] W.Schiehlen,E.Kreuzer.Symbolic Computerized Derivation of Equations of Motion.Dynamics of Multibody Systems.Symposium Munich/Germany,1977.
    [111] W.Schiehlen.Computational aspects in multibody system dynamics.Computer Methods in Applied Mechanics and Engineering,30,1991.
    [112] T.R.Kane,D.A.Levinson.The Use of Kane’s Dynamical Equations in Robots.The International Conference on the Applied Mechanics 9th,Canada June,1983.
    [113] R.L.Huston,C.E.Passerello.Multibody Structural Dynamics including Translationbetween the Bodies.Comput.Struct.Vol.18.1984.
    [114] 陈立平,张云清,任卫群,等.机械系统动力学分析及 ADAMS 应用教程[M].北京:清华大学出版社.2005.
    [115] 郑建荣.ADAMS—虚拟样机技术入门与提高[M].北京:机械工业出版社.2001.
    [116] 李 军,邢俊文,覃文洁,等.ADAMS 实例教程[M].北京:北京理工大学出版社.2002.
    [117] 宁 芋.机电一体化产品虚拟样机协同建模与仿真技术研究[D].四川大学.2006.
    [118] 王 政.基于交互驱动的虚拟样机动力学建模技术研究与应用[D].浙江大学.2005.
    [119] 梁喜凤.番茄收获机械手机构分析与优化设计研究[D].浙江大学.2005.
    [120] 孙裕晶.虚拟样机技术及其在精密排种部件设计中的应用[D].吉林大学.2005.
    [121] 蒙艳玫.基于可视化虚拟设计的甘蔗收获机械设计开发若干关键技术研究[D].合肥工业大学.2003.
    [122] 麻芳兰.智能设计关键技术的研究及其在甘蔗收获机械中的应用[D].重庆大学.2006.
    [123] E.J.Haug; K.K.Choi; J.G.Kull et.al.Virtual prototyping simulation for design of mechanical systems[J].Transactions of ASME.Special 50th Anni- versary Design Issue June 1995.Volll7: 63-70.
    [124] 陈定方,罗亚波,等.虚拟设计[M].北京: 机械工业出版社,2002.
    [125] 熊光楞,李伯虎,柴旭东,等.虚拟样机技术[J].系统仿真学报,2001.13(1): 114-117.
    [126] Martin Schulz, Thomas Reuding, Thomas Ertl.Analyzing engineering simulation in virtual environments[J].IEEE Cornputer Gradhics and Application, l998.18(6}: 46-52.
    [127] Modeling and simulation of a hierarchical, distributed, dynamic invention management scheme [J].Simulation, Vol.69, No.5 1997.11: 191-193.
    [128] 王行仁.面向二十一世纪,发展系统仿真技术[J].系统仿真学报.1999(2).
    [129] 梁崇高.平面连杆机构运动分析通用程序 SKAL[C].全国第一届机构学学术讨论会论文.1983.
    [130] 张纪元,沈守范.计算机构学[M].北京:国防工业出版社.1996.
    [131] 张 旭.机械系统虚拟样机技术的研究[D].北京:中国农业大学.1999.
    [132] 张 彤.机械系统运动仿真软件前处理的研究[D].北京:中国农业大学.1999.
    [133] 航 伟.机械系统运动仿真结果可视化的研究[D].北京:中国农业大学.1999.
    [134] 熊启蒙.基于空间算子代数理论的链式多体动力系统递推动力学研究[D].南京航空航天大学.2003.8.
    [135] 张 旭,毛恩荣.机械系统虚拟样机技术的研究与开发[J].中国农业大学学报,1999(2):94-98.
    [136] 李勇,曾志新,等.虚拟样机技术在小型农用装载机设计中的应用[J].农业工程学报,2004,20(5): 134-137.
    [137] 周克栋.复杂机械的虚拟样机技术[D].南京理工大学.2002.
    [138] 谭立东.牧草高密度压捆过程的计算机分析与仿真[D].内蒙农业大学.2003.
    [139] 陆 林,李耀明.虚拟样机技术及其在农业机械设计中的应用[J].中国农机化.2004(4):59-61.
    [140] 刘贤喜.机械系统虚拟样机仿真软件的实用化研究[D].北京:中国农业大学.2001.
    [141] 王国强,张进平,马若丁.虚拟样机技术及其在 ADAMS 上的实践[M].西安:西北工业大学出版社.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700