阵列冲击射流+溢流冷却结构流动换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击+气膜复合冷却是现代航空发动机涡轮叶片所采用的典型冷却方式。本文以航空发动机涡轮叶片内部的冷却结构为研究背景,开展阵列冲击射流+溢流冷却结构流动换热特性的数值和实验研究,为精确设计高性能的涡轮叶片提供理论依据和技术支持。
     首先,本文对平板阵列冲击射流+溢流冷却结构流动换热特性进行了数值模拟和实验研究,针对不同冲击孔与气膜孔相对位置,气膜孔的倾斜角度等结构参数和不同射流雷诺数、初始横流与射流密流比以及气膜出流与初始横流密流比等流动参数对流动换热特性的影响规律进行了分析,发现:(1)不同的相对位置对流动特性的影响不大,而对换热略有影响,冲击孔位于气膜孔的正后方时的换热稍好;(2)气膜斜孔的换热优于气膜直孔,流动损失也更大;(3)射流雷诺数是决定换热的最主要因素,射流的增加使换热效果显著增强,流阻增大;(4)初始横流的引入有利于换热;(5)气膜出流越多,溢流作用越明显,换热越好;(6)实验结果与计算结果规律完全一致。
     然后,本文又对凹面阵列冲击射流+溢流冷却结构流动换热特性进行了数值模拟和实验研究,主要探讨了射流雷诺数和气膜出流与射流密流比等流动参数的变化对流动换热特性的影响规律,得到以下结论:(1)随射流雷诺数的增大,换热显著增强,总压损失系数增大;(2)随气膜出流量的增多,换热略有增强,但是总压损失系数变化不大;(3)实验结果与计算结果规律完全一致。
Composite cooling (impingement / filming ) of turbine blade is a typical cooling method. Based on internal cooling structures of turbine blade, numerical and experimental study are conducted to reveal flow and heat transfer characteristics of array impingement jet /outflow, inorder to provide theoretical basis and technical support for precise design of high-performance turbine blades.
     First, as for panel array impingement jet /over flow, the following conclusions are obtained: 1.different relative positions have little impact on flow characteristics, but a slight change over heat transfer ; heat transfer performance is slightly better when impingement hole located backside film hole; 2.film inclined hole has better heat transfer performance than upright hole with larger flow loss; 3. jet Reynolds number is the most important factor of heat transfer performance, the increment of jet contributes to significant enhancement of heat transfer effectiveness but with larger flow loss; 4.initial crossflow does good to heat transfer performance; 5. The more film outflow, the stronger the outflow effectiveness, the better hear transfer; 6. the experiment results are fully consistent with the calculation results.
     Afterwards, this paper put a study on concave plate array impingement jet /outflow and concludes several conclusions: 1. As the jet Reynolds number increases, heat transfer performance enhances greatly while total pressure loss coefficient increases too; 2. Increment of film outflow has slight impact on heat transfer and little contribution to total pressure loss coefficient; 3. the experiment results are fully consistent with the calculation results.
引文
[1]刘大响,程荣辉.世界航空动力技术的现状及发展动向.北京航空航天大学学报, 2002,28(5):490~496.
    [2]韩介勤(美),桑地普·杜达,纳斯·艾卡德.燃气轮机传热和冷却技术(程代京,谢永慧译).西安:西安交通大学出版社, 2005.
    [3]林左鸣.战斗机发动机的研制现状和发展趋势.航空发动机,2006,32(1):1~8.
    [4]Osama M. A.. Heat Transfer Distributions on the Wall of a Narrow Channel with Jet Impingement and Cross Flow. University of Pittsburgh, 1999.
    [5]Floschuetz Isoda. Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement with Initial Crossflow. ASME Journal of Engineering for power, 1983 ,VoL105:296~304.
    [6]Floschuezt,Truman. Stream wise Flow and Heat Transfer Distributions for Jet Array Impingement with Crossflow. ASME Journal of Heat Transfer,1981,Vol103: 337~342.
    [7]张泽远.半封闭通道内冲击射流换热特性和流量系数的实验研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [8]孔满昭,刘海涌,沈天荣.壁冷叶片冲击射流孔的流动特性实验研究.流体机械,2005,33(10):4-7.
    [9]Florsehuetz,Su C.C.. Effects of Crossflow Temperature on Heat Transfer within an Array of Impinging Jets. ASME Journal of Heat Transfer,1987,Vol.109:74~82.
    [10]Bouehez J.P., Goldstein R.J..Impingement Cooling from a Circular Jet in a Crossflow.International Journal of Heat and Mass Transfer,1975,18:719~730.
    [11]Ziegler H., Wooler P.T.. Analysis of Stratified and Closely Spaced Jets Exhausting into a Cross-flow. Rep.No.NASA CR-132297, NASA, Washington,D.C.1973.
    [12]Isaac,K.M.,Jakubouski,A.K..Experimental Study of the Interaction of Multiple Jets with a Cross flow. AIAA J.,1985,23(11):1679~1683.
    [13]Daeyoung Yu,M.S.Ali,Joseph H.W.Lee.. Multiple Tandem Jets in Cross-Flow. Journal of Hydraulic Engineering,ASCE 2006,9:971~987.
    [14]Andrew C.Chambers, David R.H.Gillespie,Peter T.Ireland,Geoffrey M.Dailey. The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel. Transactions of the ASME.2005, Vol.127:358~365.
    [15]H.Thomann.Effect of Streamwise Wall Curvature on Heat Transfer in a Turbulent Boundary Layer.J.Fluid,1968,33:283~292
    [16]P. Hrycak. Heat Transfer and Flow Characteristics of Jets Impinging on a Concave Hemispherical Plate. Proc.of Int. Heat Transfer Conf.3,1982:357~362.
    [17]毛军逵,刘震雄,郭文.小间距冲击凹柱面靶板换热特性实验.推进技术, 2008,29(4).
    [18]W.Tabakoff, et al.Heat Transfer by a Multipule Array of Round Jets Impinging Perpendicular to a Concave Surface.AD-727730,1970.
    [19]R. Ravuni, W. Tabakoff. Heat Transfer Characteristics of a Row of Air Jets Impinging on the Surfaces on the Inside of a Semi-circular Cylinder. AD718794,1971.
    [20]郑际睿,王宝官.模拟透平叶片冲击冷却的实验研究.工程热物理学报,1980,2:165~175.
    [21]王宝官,郑际睿.多排圆射流的冲击冷却实验研究.工程热物理学报,1982,3(3): 235~241.
    [22]康滢,邱绪光,周维.近距离散冲击射流换热实验研究.航空动力学报.1993,8(2).
    [23]T.J.Craft,H.Iacovides, N.A.Mostafa.Modelling of Three-dimensional Jet Arr- -ay Impingement and Heat Transfer on a Concave Surface. International Journal of Heat and Fluid Flow,2008,29:687~702.
    [24]Heyerichs K,Pollard A.Heat Transfer in Separated an Impinging Turbulent Flows.Int J Heat Mass Transfer,1996,39(12):2385~2400.
    [25]Chen Q,Modi V.Mass Transfer in Turbulent Impinging Slot Jets.Int J Heat Mass Trasfer,1999,42:873~887.
    [26]Hollworth,B.R.,Dagan,I.Arrys of Impingement Jets with Spent Fluid Removal through Vent Holes on the Target Surface PartI: Average Heat Trasfer.Journal of Engineering for Power,1980,Vol.102:994~999
    [27]Ekkad,S.V., Huang,Y.and Han J.C.Impingement Heat Transfer on a Target Plate with Film cooling Holes.ASME Journal of Thermophysics and Heat Transfer, 1999,Vol.13:522~528.
    [28]徐磊,常海萍,常国强,等.叶片弦中区内部气膜孔局部换热特性实验.航空动力学报,2006,21(2):331~335.
    [29]徐磊,常海萍,毛军逵.涡轮叶片内“冲击-气膜出流”局部换热特性数值模拟.南京航空航天大学学报,2006,38(2):148~152.
    [30]张镜洋,常海萍,徐磊,等.稀疏气膜冷气侧局部换热特性实验.航空动力学报,2006,21(5).
    [31]张净玉,常海萍.稀疏型气膜出流内部冷气侧换热特性实验研究.航空动力学报,2003,18(4).
    [32]毛军逵,刘震雄,郭文,等.双层壳型冲击/气膜结构内表面换热特性实验.推进技术,2007,28(3):235~239.
    [33]王开,徐国强,孙纪宁,等.直径比对冲击气膜组合冷却流动与换热的影响.航空学报,2008,29(4):823~827.
    [34]王开,徐国强,孙纪宁,等.冲击与气膜的组合形式对冷却效果的影响.北京航空航天大学学报.2008,34(7).
    [35]王开,徐国强,陶智,等.进气方式对冲击与气膜组合冷却效果的影响.工程热物理学报,2008,29(7):1185~1188.
    [36]M.E.Taslim,Y.Pan,S.D.Spring.An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes. Transactions of the ASME, 2001,Vol.123,10:766~772
    [37]吉洪湖,郑际睿.模拟叶片前缘的复合冷却实验研究.工程热物理学报,1986,7(2):147~150.
    [38]李立国,常海萍.圆弧腔内有气膜孔的多排射流冲击传热试验研究.航空动力学报,1986,1(1):79~82.
    [39]李朝晖,李立国.叶片前缘有气膜孔的冲击冷却研究.南京航空航天大学学报,1998,25(4):457~463.
    [40]陶智,丁水汀,徐国强,等.气膜叶片前缘内冲击冷却的共轭传热计算.航空动力学报,1996,11(1):60~62.
    [41]李鑫.狭小受限空间内冲击/稀疏气膜复合冷却特性研究.[硕士学位论文].南京:南京航空航天大学,2009.
    [42]张镜洋.带离散气膜孔叶片内壁面换热特性研究.[硕士学位论文].南京:南京航空航天大学,2005.
    [43]杨世铭,陶文铨.传热学.北京:高等教育出版社,2006.
    [44]陈懋章.粘性流体动力学基础.北京:高等教育出版社,2002.
    [45]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700