果园土壤铜素分异特征及化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜是作物生长发育必需的营养元素,也是污染环境的重金属元素。果园生产中由于大量施用波尔多液等含铜杀菌剂,造成铜在土壤中大量累积,破坏了土壤环境中的营养元素平衡,降低了果品的产量和质量,威胁着人、畜的健康。铜对土壤-植物环境的污染受到了广泛的重视。
    本文采用路线调查的方法对山东主要果园产区土壤含铜状况进行调查,采样分析了果园土壤铜的形态分级、剖面变异特性。深入研究了山东四种主要土壤类型的果园土壤对铜的吸附-解吸和缓冲性能特征,并用Langmuir等温吸附方程和非线性阻尼振动方程分别对其曲线进行了拟合,确定了土壤最大吸附量和对铜缓冲性能的大小。测定了果园土壤铜的空间变异特征,绘出等值线图,准确细致的反映了铜在土壤中的空间相关性。对解决果园土壤普遍存在的外源铜污染问题,及发展优质、高效农业都有积极的指导意义。
    1.果园土壤铜素状况
    供试果园土壤全铜和有效铜含量明显高于对照土壤。表层土壤全铜含量是对照土壤的1.53倍,6.7%的果园土壤超过国家二级标准(200mg·kg-1,6.5<pH<7.5)。表层和亚表层有效铜平均含量分别是对照土壤的6.92和3.80倍。有效铜及表层土壤的全铜含量与对照土壤的差异都达到极显著水平。
    2.果园土壤铜形态分级
    供试果园土壤中交换态铜的含量最低,占全铜的2%弱。各种形态的铜的含量都高于对照,以表层有机结合态铜最为明显,最高达68.79mg·kg-1,占全铜的22.07%。说明果园土壤铜的有效性明显提高。矿物残留态铜是土壤中铜的主要存在形态,占全铜的60%以上。
    3.果园土壤铜剖面分布
    随着剖面层次的加深,果园土壤中各形态的铜的含量都迅速下降,以全铜和有机结合态铜表现最为突出。与对照相比,果园表层和亚表层土壤各形态铜的含量明显升高,而60cm以下土层变化不大,说明外源铜主要影响果园表层和亚表层土壤中铜的含量和分布。
    4.土壤对铜的吸附-解吸特性
    
    
    用Langmuir等温吸附方程对供试土壤铜的等温吸附曲线进行拟合达到很好的相关性。供试果园土壤的按最大吸附量大小依次为:潮土>盐土>褐土>棕壤。解吸量远小于吸附量,其大小的顺序与吸附量的相反。解吸相对于吸附表现出明显的滞后效应,滞后圈的大小与土壤对铜的吸持作用大小成正相关。相对于对照,果园土壤最大吸附量明显降低,解吸量略有增加,对铜的吸持作用减弱。
    5.吸附-解吸的时间效应
    供试土壤对铜的吸附-解吸都是快反应,吸附和解吸过程都在约20 -30min内达到基本平衡。平衡时解吸的量远小于吸附量。果园土壤吸附达到平衡的时间略早于对照土壤,达到平衡时的吸附量小于对照土壤。
    6.土壤对铜的缓冲性能
    供试土壤对外源铜的缓冲能力随铜浓度的增大而逐渐减小,高浓度外源铜条件下缓冲能力降低明显。不同类型果园土壤对外源铜的缓冲能力大小依次为:潮土>盐土>褐土>棕壤,同种土壤类型上果园土壤缓冲能力小于对照。缓冲速率随时间变化的曲线符合非线性阻尼振动方程。
    有机肥能够明显的提高土壤对外源铜的缓冲能力,施用Ca肥也有一定的正效应。施加Fe肥降低了土壤对铜的缓冲能力。
    7.果园土壤铜的空间变异特性
    确定了供试果园土壤有效铜和全铜含量的变异大小及分布类型。供试果园土壤有效铜在东西向上表现出良好的自相关性,全铜为弱的自相关性。果园土壤铜的自相关性弱于对照。做半方差分析,确定岱岳区姜庄果园有效铜的空间相关域为9.64 m,红庙果园的为12.78 m,两者都小于对照的18.87 m,都属于中等空间相关性。红庙果园及对照土壤全铜的相关域分别为1.74m和22.22m,前者属于弱相关性,后者为中等相关性。果园土壤的铜素的空间相关性降低。采用Kriging插值法,并结合拟合的方程绘制了供试土壤有效铜和全铜的等值线图。果园土壤铜的空间变异明显的大于对照,等值线分布密集,有以多点同心圆形规则或散乱的分布特点。
Copper are both an essential nutrition element for crops and a heavy metallic element polluting the environment. Copper accumulated in orchards soils for long time used the bactericides containing copper, such as Bordeaux mixture, destroyed the balance of nutrition of soils, depressed the quality and quantity of fruits, and threatened the health of both human and domestic animals. It has been always attached to the pollutions of external copper on the soil-plant surroundings.
    Route inspection was used to investigate the copper contents in orchard soils of mainly fruit product areas of Shandong province. The form classification and section variance of copper in orchard soils were analyzed to conclude the characters of distribution and transform of external copper in soils. The ability of absorption-desorption and buffering of external copper in orchard soils were researched and respectively fit with the equations of Langmuir or nonlinear damped vibration equation. The geo-statistics was used to study the copper special variance characters in orchard soils and the isolines were painted to nicely reflect the content and special relativity of copper in the soils.
    1. Characters of copper in orchard soils
    The contents of T-Cu and DTPA-Cu in orchard soils are obviously higher than that of controls. The mean content of T-Cu in orchard top soils is 1.53 times as high as that of controls. And 6.7% of orchard soils are over the national second critical criterions. The contents of DTPA-Cu in top and second
    
    soils are 6.92 and 3.80 times as high as that of controls respectively. The content differences of DTPA-Cu and T-Cu in top soils between orchards and controls are notability.
    2. Forms classification of copper in orchard soils
    The content of EX-Cu is the lowest in orchard soils, and less than 2% of T-Cu. Contents of all forms copper are increased compared with controls, especially OC-Cu, which content is 68.79mg·kg-1, 22.07% of T-Cu. That indicates that the copper availabilities in orchard soils are higher than controls. The mainly form of copper in soils is RES-Cu, more than 60% of T-Cu.
    3. The section distribution of copper in orchard soil
    With the depth adding, the contents of all forms copper in orchard soils decreased, especially T-Cu and DTPA-Cu, which contents in all sections are notably higher than controls. The contents of copper under the second sections don't change great as top soils, which shows that the external copper mainly affects the contents and distribution of copper in orchard surface soils.
    4. Absorption-desorption of copper in soils
    The absorption curves of copper in orchard soils were notably fit for Langmuir equation. The ordinal max absorption of soils in test was: aquert >saline-alkali soil > drab soil >burozem. The desorptions were reverse and far smaller than absorption. The desorptions, compared with absorption, showed obvious lag phenomena. And the lag circles had positive correlation with the abilities of absorption. Compared with controls, the max absorption notably decreased, while the desorptions increased.
    5. The characters of absorption-desorption with time
    Both absorption and disorption were rapidness actions and would extend the balance within 20 min in orchard soils. The desorptions were far smaller than absorption. The time of extended the max in orchard soils was a little earlier than that of controls, and the adsorption in orchard soils was lower than controls.
    
    
    6. The buffering of copper in soils
    The buffering abilities of copper in tested soils were decreased with the content of external copper increased, especially under the condition of high copper content. The order of buffering abilities in tested soil was: aquert > saline soil>drab soil>burozem. The buffering abilities of copper in orchard soils were obviously decreased compared with controls for lots of buffering places were occupied by the copper which accumulated in the orchard soils. The curves of buffering rates changing with time were fit for nonlinear damped vibration eq
引文
1. Abed F. A., El Khir R.A., Kamh R.N. et al., Soil Zn and Cu responses to N form, organic matter and moisture in calcareous soils [J], Desert Institute Bulletin, 1999, 46(1):153-166
    2. Arrouays D., Martin S., Lepretre A., Bourennane H., Short-range spatial variability of metal contents in soil on a one hectare agricultural plot [J], Communication in Soil Science and Plant Analysis, 2000, 31(3/4):387-400
    3. Atanassova I, Adsorption-desorption characteristics of Cu and competition with Cd, Zn and Ni in Gleyic Acrisol clay [J], Bulgarian Journal of Agricultural Science, 1999, 5(1):162-165
    4. Berti W. R., Jacobs L. W., Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge applications [J], Journal of Environment Quality, 1996, 25(5):1025-1032
    5. Besnard E., Chenu C., Robert M., Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils [J], Environmental-Pollution, 2001, 112(3):329-337
    6. Boekhold A.E., Zee-SEATM-van-der, Van-der-Zee-SEATM, Field scale variability of cadmium and zinc in soil and barley [J], Environmental Monitoring and Assessment, 1994, 29(1):1-15
    7. Boggs K, Classification of community types, successional sequences, and landscapes of the Copper River Delta, Alaska, General Technical Report of Pacific Northwest Research Station, 2000, 469, 244
    
    
    8. Cassel D. K., Wendroth O., Nielsen D. R., Assessing spatial variability in an agricultural experiment station field: opportunities arising from spatial dependence [J], Agronomy Journal, 2000, 92(4):706-714
    9. Cela S., Sumner M. E., Critical concentrations of copper, nickel, lead, and cadmium in soils based on nitrification [J], Communications in Soil Science and Plant Analysis, 2002, 33 (1/2):19-30
    10. Chaignon V., Bedin F., Hinsinger P., Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil [J], Plant and Soil, 2002, 243(2):219-228
    11. Chatterji S., Dipak-Sarkar, Das T. H., Halder A. K.; Sarkar D., Available iron, manganese and copper in different agro-ecological sub-regions of West Bengal in relation to soil characteristics [J], Journal of the Indian Society of Soil Science, 1999, 47(3):463-465
    12. Couto E.G., Klamt E., Spatial variability of microelements in soil under center pivot irrigation system in Southern Mato Grosso State [J], Pesquisa Agropecuaria Brasileira, 1999, 34(12): 2321-2329
    13. Darmawan, Wada S.I., Kinetics of speciation of copper, lead, and zinc loaded to soils that differ in cation exchanger composition at low moisture content [J], Communications in Soil Science and Plant Analysis, 1999, 30(17/18):2363-2375
    14. Epstein L., Bassein S., Pesticide applications of copper on perennial crops in California [J], Journal of Environment Quality, 2001, 30(5):1844-1847
    15. Franssen HJWMH, Van-Eijnsbergen A.C., Stein A., Eijnsbergen AC van, Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants [J], Geoderma, 1997, 77(2/4):243-262
    16. Garcia M.J.M., Moreno-Grau S., Garcia J.J.M., Moreno J., Bayo J., Perez J.J.G.; Moreno-Clavel,-J., Distribution of the metals lead, cadmium, copper, and zinc in the top soil of Cartagena, Spain [J], Water Air and Soil Pollution, 2001, 131 (1/4):329-347
    17. Graham R. D., E. K. S., Nambiar, Aust [J], Agriculture Research., 1981, 32:1009-1037
    
    
    18. Han CunZhi, Jing JieXian, Zhao XianWen et al, Classification and prognostic value of serum copper/zinc ratio in Hodgkin's disease [J], Biological Trace Element Research. 2001, 83(2):133-138
    19. Han F. X., Banin A., Fractional loading isotherm of heavy metals in an arid-zone soil [J], Communications in Soil Science and Plant Analysis, 2001, 32(17/18):2691-2708
    20. Han F. X., Kingery W. L., Selim H. M., Gerard P. D., Accumulation of heavy metals in a long-term poultry waste-amended soil [J], Soil Science, 2000, 165(3):260-268
    21. Haugland T., Steinnes E., Frontasyeva M. V., Trace metals in soil and plants subjected to strong chemical pollution [J], Water Air & Soil Pollution, 2002, 137(1/4):343-353
    22. Huang C. H., Yang Y. L., Adsorption characters of Cu(Ⅱ) on humus-kaolin complexes [J], Water research, Oxford, 1995, 29(11):2455-2460
    23. Iaena Atanassova & Masanori Okazaki, Adsorption-desorption characteristics of high levels of copper in soil clay fractions [J], Water, air and soil pollution, 1997, 98(3):213-228
    24. James R. O., Copper reaction with inorganic components of soils in cluding uptake by oxide and silicate minerals [J], Copper in soils and plasnts, 1981, 4:47-68
    25. Jayarama, Know your Bordeaux mixture [J], Indian Coffee, 2000, 64(8):13-16
    26. Lepp, N. N., Effect of heavy metal pollution on plants [J], Applied Sci. Pub., 1981, 1:111-143
    27. Leusch A., Holan Z. R., Volesky B., Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae [J], Journal of Chemical Technology and Biotechnology, 1995, 62 (3):279-288
    28. Markov E., Transfer of heavy metals from polluted irrigation water in Leached Cinnamonic forest soil, Pochvoznanie, Agrokhimiya I Ekologiya, 1999, 34(4/5):136-139
    29. McBride M. B., Martinez C. E., Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials [J], Environmental Science and Technology, 2000, 34(20): 4386-4391
    
    
    30. Mchkenzie, The sorption of some heavy metals by the lower oxides of manganese [J], Geoderma, 1972, 8:29-35
    31. Meier L. P., Kahr G., Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine [J], Clays and Clay Minerals, 1999, 47(3):386-388
    32. Mesquita M. E., Carranca C, Menino M. R., Influence of pH on copper-zinc competitive adsorption by a sandy soil [J], Environmental Technology, 2002, 23(9):1043-1050
    33. Moolenaar S. W., Beltrami P., Heavy metal balances of an Italian soil as affected by sewage sludge and Bordeaux mixture applications [J], Journal of Environment Quality, 1998, 27(4):828-835
    34. Msaky J. J., Calvet R., Adsorption behavior of copper and zinc in soils: influence of pH on adsorption characteristics [J], Soil Science, 1990, 150(2):513-522
    35. Niu -H., Xu -S., Wang -J. H., Volesky,-B, Removal of lead from aqueous solutions by Penicillium biomass [J], Biotechnology and Bioengineering, 1993, 42 (6):785-787
    36. Okamoto T, Form and behavior of some heavy metals in a soil with long-term applications of limed sewage sludge [J], Japanese Journal of Soil Science and Plant Nutrition, 2000, 71(2):231-242
    37. Owen C. A., Prohaska J. R., Biochemical Aspects of copper [M], Noyes Publications, 1982, 1-205
    38. Padmanabham M., Absorption-desorption behavior of copper (Ⅱ) at the goethite-solution interface [J], Soil Resource, 1983, 21:309-320
    39. Parat C., Chaussod R., Leveque J., Dousset S., Andreux,-F, The relationship between copper accumulated in vineyard calcareous soils and soil organic matter and iron [J], Europe Journal of Soil Science, 2002, 53 (4) :663-669
    40. Paz A,Taboada M.T., Gomez M.J., Hood T.M., Benton-Jones-J J. r., Spatial variability in topsoil micronutrient contents in a one-hectare cropland plot [M], Soil and plant analysis in sustainable agriculture and environment. 1996, 305-329
    Paz-Gonzalez A., Taboada M.T., Nutrient variability from point sampling on 2 meter grid in cultivated and adjacent forest land [J], Communications in Soil Science and
    
    41. Plant Analysis, 2000, 31(11/14):2135-2146
    42. Prohaska J. R., Biochemical changes in copper deficiency [J], Journal of Nutrition Biochemitry, 1990, 1:452-461
    43. Roberts B., Crouse D. A., Mikkelsen R.L. et al, Spatial variability of soil pH, phosphorus, copper and zinc in fields receiving long-term applications of animal manure [J], Animal, Agricultural and Food Processing Wastes, 2000, 5:597-601
    44. Samaras V., Kallianou C., Effect of sewage sludge application on cotton yield and contamination of soils and plant leaves [J], Communication in Soil Science and Plant analysis, 2000, 31(3/4):331-343
    45. Sauve S., McBride, M. B., Norvell, W. A., Hendershot, W. H., Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter [J], Water, Air and Soil Pollution, 1997, 100(1/2):133-149
    46. Schalscha E.B., Escudero P., Salgado P. et al., Chemical forms and sorption of copper and zinc in soils of central Chile [J], Communications in Soil Science and Plant Analysis, 1999, 30(3-4):497-507
    47. Shuman L. M., Fractionation method for soil microelements [J], Soil Science, 1985, 140(1):11-22
    48. Singh A.K., Nongkynrih P., Khan S.K., Adsorption and desorption of copper in wetland rice soils of Meghalaya [J], Journal of the Indian Society of Soil Science, 1999, 47(3):458-462
    49. Springer A. E., Petroutson W. D., Semmens B. A., Spatial and temporal variability of hydraulic conductivity in active reattachment bars of the Colorado River [J], Grand Canyon, 1999, 37 (3) : 338-344
    50. Staccioli G., Sturaro A., Rella R., Cation exchange capacity tests on some lignocellulosic materials highlight some aspects of the use of copper as wood preservative [J], Holzforschung, 2000,54(2):133-136
    51. Stadler H, Schindler P. W., The effect of dissolved ligands on the sorption of Cu (Ⅱ) by Ca-montmorillonite [J], Clays and Clay Minerals, 1994, 42(2):148-160
    52. Tessler A., Campbell P. G. C., Bisson M., Sequential extraction procedure for the speciation of particle trace metals [J], Analytical Chemistry, 1979, 51(7):844-851
    
    
    53. Utset A., Cid G., Soil Penetrometer resistance spatial variability in a Ferralsol at several soil moisture conditions [J], 2001, 61(3/4):193-202
    54. Yuan G., Lavkulich L. M., Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties [J], Communication in Soil Science and Plant Analysis, 1997, 28(6/8):571-587
    55. Zabowski D., Henry C. L., Zheng Z., Zhang X., Mining impacts on trace metal content of water, soil, and stream sediments in the Hei River Basin [J], Water, Air and Soil Pollution, 2001, 131(1/4):261-273
    56. Zhideeva V. A., Vasenev II, Shcherbakov A.P., Special features of distribution of different pesticide derived copper forms in orchard soils of Kursk oblast [J], Agrokhimiya, 1999,28(9):68-78
    57. Zhu B, A. K. Alva, Distribution of trace metal in some sandy soils under citrus production [J], Soil Science, 1993, 57:350-355
    58. H. Marschner, 李春俭等,高等植物的矿质营养[M],北京:中国农业大学出版社,2001,232-241
    59. 蔡道基,单正军,朱忠林等,铜制剂农药对生态环境影响研究[J],农药学学报,2001,3:61-68
    60. 常红岩,土壤铜过量对苹果树生长、代谢及营养元素吸收的影响研究[D],山东:山东农业大学硕士研究生论文,2000
    61. 陈怀满等,土壤-植物系统中的重金属污染[M],北京:科学出版社,1996,189-192
    62. 陈会明,马耀华,和文祥等,外源铜作用下土壤脲酶活性与缓冲性及时间关系的模型研究[J],西北农业科学,2000,9(3):59-62
    63. 陈世俭,铜污染土壤添加有机物质的生物效应(Ⅰ)对黑麦草生物量的影响[J],土壤与环境,2000,9(3):183-185
    64. 成杰民,潘根兴,郑金伟等,模拟酸雨对太湖地区水稻土铜吸附-解吸的影响[J], 土壤学报,2001,38(3):333-340
    65. 韩晓日,邹德乙,郭鹏程,长期施肥对土壤中铜的形态转化及其有效性影响[J], 沈阳农业大学学报,1992,23(专辑):62-67
    胡克林,李保国,林启美等,农田土壤养分的空间变异性特征[J],农业工程学
    
    66. 报,1999,15(3):33-38
    67. 华珞,广义土壤缓冲性研究[J],农业工程学报,1992,8(增刊):4-13
    68. 华珞,韦东普,白玲玉等,土壤对砷的缓冲性及平衡时间与污染次数的关系[J], 土壤,1996,2:69-71
    69. 华珞,张国祥,杨居荣等,土壤对无极外源砷的缓冲动力学研究[J],土壤学报,1996,33(4):337-343
    70. 黄绍文,金继运,土壤特性空间变异研究进展[J],土壤肥料,2002,1:6-14
    71. 黄细花,赵振纪,刘永厚等,铜对紫云英生长发育影响的研究[J],农业环境保护,1993,12(1):1-6
    72. 蒋廷惠等,土壤中锌,铜,铁,锰的形态与有效性的关系[J],土壤通报,1989,20(5):228-231
    73. 劳家柽,土壤农化分析手册[M],北京:农业出版社,1988.12,706-709
    74. 雷志栋,杨诗秀,谢森传,土壤水动力学[M],北京:清华大学出版社,1988.10
    75. 黎耿碧,陈二钦,A.K.Alva,外界铜离子浓度对柑桔小苗常量元素吸收特性的影响[J],广西农业生物科学,1996,3:195-201
    76. 李惠英,陈素英等,铜锌对土壤-植物系统的生态效应及临界含量[J],农村生态环境(学报),1994,10(2):22-24
    77. 李天杰,宫世国等,土壤环境化学[M],北京:高等教育出版社,1995,131-133
    78. 李毅,门旗,罗英,土壤水分空间变异性对灌溉决策的影响研究[J],干旱地区农业研究,2000,18(2):80-90
    79. 廖金凤,广东省南海市农业土壤中铜镍的环境容量[J],土壤与环境,1999,8(1):15-18
    80. 龙新宪,倪吾钟,杨肖娥,菜园土壤铜吸附-解吸特性的研究[J],农村生活环境,2000,16(3):39-41
    81. 卢胜进,波尔多液配置改进技术研究[J],中国南方果树,2002,31(2):22-23
    82. 鲁如坤,土壤农业化学分析方法[M],北京:中国农业科技出版社,2001,212-213
    莫润苍,邹邦基,土壤锌铁铜锰形态分布及其有效性[J],热带亚热带土壤科学,
    
    83. 1997,3:171-175
    84. 聂俊华,李成元,王一川等,近代黄河三角洲土壤物理特性的空间变异性[J],山东农业大学学报,1993,24(1):68-72
    85. 潘伟彬,李延,庄卫民等,施肥对红壤性水稻土锌、铜形态及有效性的影响[J], 福建农业学报,2000,15(2):45-49
    86. 阮喜云,钟士江,刘庆勇等,铜过量的表现[J],国外医学、医学地理分册,1999,4:157-159,169
    87. 邵煜庭,甄清香,刘世铎,甘肃主要农业土壤中Cu、Zn、Mn、Fe的形态及有效性研究[J],土壤学报,1995,32(4):423-478
    88. 孙百晔,铜对苹果幼树和砧木实生苗的毒害机理及化学修复效应研究[D],山东:山东农业大学硕士研究生论文,2002
    89. 田均良,刘普灵等,黄土高原土壤剖面元素相对迁移强度除探[J],水土保持研究,1995,24:51-55
    90. 涂从,青长乐,四川紫色土中铜的毒性临界值研究[J],土壤通报,1989,6:286-288
    91. 涂从,青长乐,紫色土中铜对莴苣生长的影响及其临界值指标的研究[J],农业环境保护,1990,9(4):13-17
    92. 王果,谷勋刚,高树芳等,三种有机肥水溶性分解产物对铜、镉吸附的影响[J],土壤学报,1999,36(2):180-187
    93. 王建红,吴玉卫,傅庆林,海涂土壤电导率的空间变异性研究[J],浙江农业大学学报,1999,25(2):139-142
    94. 王伟,韩博等,微量元素铜代谢研究进展[J],黑龙江畜牧兽医,1998,9:33-36
    95. 王裕顺,李彤,吴燕玉等,土壤铜锌锰钴活性的研究[J],农业环境保护,1992,11(3):118-122,128
    96. 吴龙华,骆永明,黄焕忠,铜污染土壤修复的有机调控研究(Ⅰ)可溶性有机物和EDTA对污染红壤铜的释放作用[J],土壤,2000,2:62-66
    97. 吴龙华,骆永明,卢蓉辉等,铜污染土壤修复的有机调控研究(Ⅱ)根际土壤铜的有机活化效应[J],土壤,2000,2:67-70
    武玫玲,土壤对铜离子的专性吸附及其特征的研究[J],土壤学报,1989,26(1):
    
    98. 31-39
    99. 夏立江,华珞,李向东,重金属污染生物修复机制及研究进展[J],核农学报,1998,12(1):59-64
    100. 夏增禄,中国主要类型土壤若干重金属临界含量和环境容量区域分异的影响[J], 土壤学报,1994,31(2):161-169
    101. 谢正苗,土壤中铜的化学平衡[J],环境科学进展,1996,4(2):1-23
    102. 杨桂芬,李德波,我国南方某些铜矿附近水稻土铜污染的调查研究[J],农村生态环境,1990,4:55-58
    103. 杨剑虹,魏朝富,谢德林,耕作制对紫色水稻土铁锰铜锌形态的影响研究[J],西南农业大学学报,1992,14(6):471-476
    104. 杨亚提,张一平,张卫华,铜在土壤-溶液界面吸附-解吸特性的研究[J],西北农业学报,1998,7(4):82-85
    105. 杨玉玲,文启凯,田长彦等,土壤空间变异研究现状及展望[J],干旱区研究,2001,18(2):50-55
    106. 张杨珠,刘学军,袁正平等,不同稻作制对红壤性水稻土铜的化学行为的影响[J],农业现代化研究,1999,20(2):120-124
    107. 赵玉霞,杨居荣,王红瑞等,土壤对砷的缓冲动力作用的统计分析[J],土壤,1996,2:72-75
    108. 周国法,徐汝梅,生物地理统计学—生物种群时空分析的方法及其应用[M],北京:科学出版社,1998.6
    109. 朱首军,丁艳芳,薛泰谦,农林复合生态系统土壤水分空间变异性和时间稳定性研究[J],水土保持研究,2000,7(1):46-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700