龙葵和小飞蓬耐锰性及富集作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以两种具有相对较强耐锰性及富集作用的植物品种龙葵和小飞蓬为材料,分别采用水培和土培法培养植物,探究锰胁迫下这两种植物的生长特性及锰在植物体内的运输赋存形态,探讨了锰胁迫下龙葵、小飞蓬根系分泌物对土壤根际微生态的影响,包括土壤微生物数量、土壤酶活性及土壤锰形态的影响。本研究结果总结如下:
     1.Mn胁迫下,随着Mn浓度的升高,龙葵和小飞蓬的叶面积、根长、存活率都有不同程度的下降,株高先略高于对照,而后逐渐下降。龙葵、小飞蓬叶中还原性抗坏血酸(ASA)含量随着锰浓度的升高显著增加,之后随着锰浓度的继续增加,ASA含量下降,但总体上还是大于对照。两者的脱氢抗坏血酸(DHA)含量随着锰浓度的增加显著增加,都在锰浓度为16 mmol/L时达到最大值。在各相应锰浓度下龙葵的ASA含量大于小飞蓬,且DHA含量增加幅度比小飞蓬小。两种植物总抗坏血酸含量呈上升趋势,还原型抗坏血酸含量在总抗坏血酸含量中的比例逐渐降低。
     2.叶绿素含量均随着培养液中Mn含量的增加显著降低。两种植物的最大光化学量子产量(Fv/Fm)、最大荧光(Fm)、同期光合量子产量(Yield)和表观光合电子传递速率(ETR)均随着Mn离子浓度的增加明显降低;两种植物的初始荧光(Fo)均呈下降上升趋势,而非光化学荧光淬灭系数(NPQ)有上升趋势,但处理之间NPQ变化差异不明显。试验表明在锰胁迫下两种植物的光合作用电子传递过程和电子传递速率被抑制。
     3.随着锰浓度的增加,龙葵和小飞蓬各组织内锰含量不断增加,达极显著水平。分别在8 mmol/L时达到最大值,其中组织吸收量大小顺序是:叶>茎>根。在各相对应的锰浓度下,龙葵各组织中单位锰含量大于小飞蓬。两种植物对锰的吸收能力虽没有达到超富集植物的要求,但均表现出较强的富集锰元素和耐锰的能力。
     4.锰胁迫下,诱导产生植物络合素(PCs)有上升后下降的趋势,但含量较少且与对照相比无明显变化,可能和诱导时间有关或者表明锰胁迫下植物组织并不能有效地产生PCs以螯合锰而缓解其毒害;而PCs产生的前体物质谷胱甘肽(GSH),及类金属硫蛋白(MTL)的诱导量和锰浓度之间存在一定相关性,两个品种的GSH、MTL含量随锰浓度变化分别呈现先下降后上升和先上升后下降的规律。实验表明GSH和MTL对不同锰处理浓度的响应都很敏感。所以二者的诱导量变化可作为植物耐锰胁迫的参考指标。随Mn处理浓度增大,龙葵受Mn胁迫的影响比小飞蓬小。
     5.随锰浓度的升高,龙葵和小飞蓬的植物多酚含量有上升趋势,但没有显著的剂量效应,之后呈下降趋势。两种植物中的单宁含量变化较大,叶片可溶缩合单宁(ECT)、叶片蛋白质缩合单宁(PCT)、纤维素缩合单宁(FCT)的含量均随着锰处理浓度的增大而增加。随着锰处理浓度的增高,ECT的浓度呈现下降的趋势。锰胁迫对ECT、PCT和FCT各组分在TCT中的比例分布没有显著影响。
     6.随锰浓度的增加,两种植物真菌数量逐渐减少,细菌、放线菌数量也均呈波动性变化。低浓度锰可刺激脲酶、磷酸酶的活性;高浓度锰不同程度地抑制脲酶、蛋白酶、转化酶、过氧化氢酶、磷酸酶活性;多酚氧化酶活性在高浓度下反而有增加。小飞蓬根际土壤中脲酶、多酚氧化酶、蛋白酶、磷酸酶、转化酶之间存在显著或极显著的正相关性,六种土壤酶的相关程度为转化酶>蛋白酶>多酚氧化酶>脲酶>磷酸酶>过氧化氢酶。龙葵根际六种土壤酶的相关程度为脲酶>转化酶>磷酸酶>蛋白酶>过氧化氢酶>多酚氧化酶,表明转化酶对锰污染最为敏感。
     7.随着锰处理浓度的增加,根际土壤各形态锰含量都有所增加。植物根际锰形态分布特征与6种土壤酶活性之间的线性回归相关性分析表明,两种植物中6种土壤酶均与某一种形态的锰或几种形态的锰的含量呈显著直线相关。两种植物各形态锰含量与土壤酶活性的相关关系优于总量锰,因此可将锰各形态含量关系作为评价红壤锰污染程度的主要生物学指标。
Manganese (Mn) is a necessary element for plant growth, but excess Mn cause serious chlorosis and inhibite the plants growth, and dramatically increase accumulation of Mn in both shoots and roots, furthermore, inhibite the absorption of Ca, Mg and Zn. Mn toxicity is a serious agricultural problem in acid-soil area. In addition to aluminum (Al), manganese toxicity in acid soil become one of the most important factors which can limit plant growth. We used two kinds of relatively strong accumulation of manganese and manganese-resistant varieties of plants--Conyza canadensis and Solanum nigrum as materials in this test. The pot and hydroponic culture experiment was conducted under different Mn stress to explore plant growth characteristics and transport of manganese, to study the effects of root exudates on soil and rhizosphere micro effects, including soil microorganisms, soil enzyme activity and morphology of soil manganese, to reveal the resistance to manganese toxicity and manganese enrichment process of reconciliation of the two enrichment plants. Further more, it could provide a theoretical basis for the applications of manganese and promote further research of phytoremediation of contaminated soil.
     The results were summarized as follows:
     1. Leaf area, root length and survival rate of the two plants significantly decreased in various degree with the increase of Mn concentration, and plant height first increased compared with control(0.005 mmol/L) and then decreased gradually. Ascorbic Acid(ASA) concentrations in leaves of Solanum nigrum and Conyza canadensis significantly increased in low manganese concentration, then ASA contents had a reduced trend with the increasing manganese concentration, but were still greater than control. Dehydro ascorbate(DHA) content significant increased in manganese concentration of 16mmol/L The ASA content of Solanum nigrum was more than that of Conyza canadensis in various corresponding concentration of manganese, and the rate of increase levels of DHA was smaller than Conyza canadensis. Total ascorbic acid content of two plants was rising, the proportion of reduced ascorbic acid content of the total content ascorbic acid was decreased with the increasing manganese concentration.
     2. The Chlorophyll contents remarkably decreased with increasing Mn content. The responses of chlorophyll fluorescence parameters in leaves of these two species indicated that maximum quantum yield(Fv/Fm), maximum fluorescence(Fm), effective quantum yield of photosystem II(Yield), electron transfer rate(ETR) also obviously decreased with an increase of Mn. On one hand, their minmal fluorescence(Fo) first decreased and then increased with the increment of Mn concentration at the medium level, and on the other hand, there was an upward trend in non-photochemical quenching(NPQ)of these two species,but it did not show significant difference among various Mn concentrations. The results above indicated that electronic transmition process was inhibited and electronic transmition rate was decreased in Photosynthesis of these two species. Growth and development of Solanum nigrum and Conyza canadensis were influenced to different degrees by Mn toxicity, and Solanum nigrum showed stronger tolerance to Mn toxicity than Conyza canadensis, so it was more suitable for phytoremediation of Mn polluted areas.
     3. Mn concentration in the leaves stems roots of Conyza canadensis and Solanum nigrum significantly increased with increased Mn concentration (P<0.01) and Mn was preferentially accumulated in the leaf. With the increase of the concentration of manganese, Mn content in the organization of Solanum nigrum and Conyza canadensis significantly increased and reached the maximum at 8 mmol/L. The order of Mn absorption in tissue was:leaves>stems>roots. Mn contents in the organizations of Solanum nigrum was more than those of Conyza canadensis in various corresponds Mn concentrations. The absorption capacity of Mn of these two plants did not meet the requirements of being hyperaccumulator, but they showed good metal-enrichment of Mn and have good tolerant ability of Mn.
     4. Little Phytochelatins(PCs) could be detected in roots and leaves of these two plants under Mn stress, which could be caused by shorter inducing time or PCs were not responsive to Mn stress. The content of Glutathione(GSH) and Metallothionein-like(MTL) were more sensitive to Mn stress, and they presented in similar change patterns. MTL and GSH increased rapidly first and then dropped rapidly with the increase in the concentration of manganese and it indicated that there were some correlation between the physiochemical values and Mn concentrations in plants's tissues due to increasing the supply of Mn2+. The contents of Totle Non-protein SH(TNP-SH) and GSH were significantly (P<0.05)promoted in 8mmol/L Mn2+ when compared to the control respectively. The content of MTL in Solanum nigrum significantly increased under 8 mmol/LMn2+, while this of Conyza canadensis was promoted significantly under 2 mmol/L Mn2+ and 4 mmol/L Mn2+. The MTL and MTL were maintained at a higher level in Solanum nigrum in comparison with Conyza canadensis under the corresponding concentration. GSH and MTL could be effective response index to Mn stress. Solanum nigrum showed stronger tolerance to Mn toxicity than Conyza canadensis,so it was more suitable for phytoremediation of Mn polluted areas.
     5. Plant polyphenol content in leaves of these two plants increased under low manganese concentration, but it didn't have significant dose effect, and then the polyphenol content gradually decreased with increasing manganese concentration. There was a little change of tannin contentin in leaves of these two plants. Extractable Condensed Tannin(ECT), Protein bound Condensed tannin(PCT) and Fibre bound Condensed tannin(FCT) content in leaves increased with increasing concentration of manganese. With the increase of Mn concentration, ECT concentration showed a downward trend. The the proportion of ECT, PCT and FCT in the TCT were not significantly affected under Mn stress.
     6. The fungi quantity decreased gradually and a fluctuation in the population of bacteria and actinomyces was noticed with increasing Mn conten. Lower Mn concentration could stimulate the activities of urease and phosphatase, the higher Mn concentration could inhibit the activities of urease, protease, invertase, catalase and phosphatase to varying degrees and raise polyphenol oxidase activity. The correlation analysis of Conyza canadensis showed that there was a very significant negative correlation between different Mn stress and the activities of soil enzyme and the correlation degree was invertase> protease>polyphenol oxidase>urease>phosphatase>catalase.There was a significant positive correlation (P<0.05)in the activities of urease, polyphenol oxidase, protease, phosphatase, invertase, so these enzymes were of the similar adaptability to Mn stress. On the other hand, the activities of soil enzyme and the correlation degree of Solanum nigrum was urease> invertase> phosphatase> protein> catalase> polyphenol oxidase. There was a significant or very significant positive correlation among urease, protease, phosphatase, invertase of Solanum nigrum, while there was a significant correlation between catalase and urease, invertase, phosphatase. Activities of urease and invertase was mostly sensitive to Mn stress among these six soil enzymes, indicating that the invertase can be used as a biological index of manganese pollution.
     7. With the increase of Mn concentration, various forms of Mn content significantly increased.There was a significant or very significant negative correlation between different Mn chemical forms and 6 kinds of soil enzyme activity.There was not a significant negative correlation between total Mn content and soil enzyme activity, but there was little negative correlation between urease activity and total Mn content. Over all, there was a significant negative or positive correlation between urease, acid phosphatase, catalase activity and weakly adsorbed Mn, specific adsorption Mn. Because the correlation between the contents of different Mn forms and soil enzyme activities was higher than the correlation between total Mn content and soil enzyme activities, the relationship between the contents of different Mn forms can be used as the main biological index for evaluating Mn pollution degree of red roam.
引文
[1]胡必彬.我国十大流域片水污染现状及主要特征[J].重庆环境科学,2003,25(6):15-17.
    [2]周泽义.中国蔬菜市金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [3]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1197-1203.
    [4]孙波.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(2):248-251.
    [5]高凡,贾建业,梅雪清,等.土壤中微量元素锰及其化合物的环境意义[J].广东微量元素科学,2004,(4):10-13.
    [6]Lu C M, Chau C W, Zhang J H. Acute toxicity of excess mercury on the photosynthetic per-formance of cyanobacterium S. platensis-assessment by chlorophyll fluorescence analysis[J]. Chemosphere,2000,41(1-2):191-196.
    [7]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-325.
    [8]陆晓怡,何池全.蓖麻对重金属Cd的耐性与吸收积累研[J].农业环境科学学报,2005,24(4):674-677.
    [9]刘登义,谢延春,杨世勇,等.铜尾矿对小麦生长发育和生理功能的影响[J].应用生态学报,2001,12(5):126-128.
    [10]王友保,刘登义.Cu、As及其复合污染对小麦生理生态指标的影响[J].应用生态学报,2001,12(5):773-776.
    [11]Vinit-Dunand F, Epron D, Alaoui-Sosse B, et al.. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants[J]. Plant Science, 2002,163:53-58.
    [12]臧小平.土壤锰毒与植物锰的毒害[J].土壤通报,1999,30(3):139-141.
    [13]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [14]刘武定.微量元素营养与微肥施用[M].北京:中国农业出版社,1995,65-78.
    [15]刘铮.土壤与植物中锰的研究进展[J].土壤学进展,1991,19(6):1-6.
    [16]廖金凤.珠江三角洲蔬菜中的锰[J].广东微量元素科学,2000,7(5):56-58.
    [17]Oloma M O. Effect of flooding on Eh, pH and concentration of ion and manganese in several Manitoba soils[J]. Soil Science Society of America Proceedings,1973,37: 220-224.
    [18]Aso K. On the physiological influence of manganese compounds on plants[J]. Bull Coll Agric Tokyo,1902,18:1917-1929.
    [19]El-Jaoual T, Cox D A. Manganese toxicity in plants[J]. Journal of Plant Nutrition, 1998,21(2):353-386.
    [20]Horst W J, Maier P, Fecht M, et al.. The physiology of manganese toxicity and tolerance in Vigna unguiculata[J]. Journal of Plant Nutrition and Soil Science,1999, 162(3):263-274.
    [21]黎晓峰,顾明华,白厚义,等.水稻锰毒与铁素营养关系的研究[J].广西农业大学学报,1996,15(3):190-194.
    [22]袁玉信.微量元素在植物生活中的作用[J].生物学通报,1996,31(4):4-8.
    [23]曹恭,梁鸣早.锰-平衡栽培体系中植物必需的微量元素[J].土壤肥料,2004,1:2-3.
    [24]Kitao M, Lei T T, Nakamura T, et al.. Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica)[J]. Environmental Pollution,2001,111:89-94.
    [25]曾琦,耿明建,张志江,等.锰毒害对油菜苗期Mn、Ca、Fe含量及POD、CAT活性的影响[J].华中农业大学学报,2004,23(3):300-303.
    [26]朱端卫,成瑞喜,刘景福,等.土壤酸化与油菜锰毒关系研究[J].热带亚热带土壤科学,1998,7(4):280-283.
    [27]Gerber G B, Leonard A, Hantson P. Carcinogenicity, mutagenicity and teratogenicity of manganese compounds[J]. Critical Reviews in Oncology/Hematology,2002,42: 25-34.
    [28]Erisk K M, Aschner M. Manganese neurotoxicity and glutamate-GABA interaction[J]. Neurochemistry International,2003,43:475-480.
    [29]Ponnapakkam T P, Bailey K S, Graves K A, et al. Assessment of male reproductive system in the CD-1 mice following oral manganese exposure[J]. Reproductive Toxicity,2003,17(5):547-551.
    [30]Zhang F J, Hamon R E, Lombi E, et al. Characteristics of cadium uptake in two constrasting ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. Journal of Experimental Botany,2002,53:535-543.
    [31]Vartanian J P, Sala M, Henry M, et al.. Manganese cations increase the mutation rate of human immune definiciency virus type lexvivo[J]. Journal of General Virology, 1999,80:1983-1986.
    [32]Gareth F, Gillian M. Greenway recent developments in manganese speciation[J]. Trends in Analytical Chemistry,2005,24(9):803-809.
    [33]Gerber G B, Leonard A, Hantson P. Carcinogenicity, mutagenicity and teratogenicity of manganese compounds[J]. Critical Reviews in Oncology/Hematology,2002,42: 25-34.
    [34]Saltd E, Smith R D, Raskin I. Phytoremediation[J]. Annual Review of Plant Physiology,1998,49:64-68.
    [35]丁佳红,刘登义,储玲,等.重金属污土壤植物修复的研究进展和应用前景[J].生物学杂志,2004,21(4):6-9.
    [36]沈振国,刘友良.重金属超量积累植物研究进展[J].植物生理学通讯, 1998,34(2):133-139.
    [37]Chaney R L. Plant uptake of inorganic waste constituentes.In:Parr J F.eds Land Treatment of Hazardous Wastes. Noyes Data Corporation, Park Ridge,New Jersey, USA.1983.50-76.
    [38]沈振国,陈怀满.植物修复和重金属超量积累植物[M].见:冯锋,张福锁,杨新泉编著.植物营养研究进展与展望.北京:中国农业大学出版社,2000,216-229.
    [39]Banuelos G S, Ajwa H A, Mackeyl L, et al.. Evaluation of differentplant species used forphytoremediation of high soil selenium [J]. Journal of Environmental Quality, 1997,26:639-646.
    [40]Vangronsveld J, Colpaert J V, Van Tichelen K K. Reclamation of a bare industrial area contaminated by nonferrousmetals:Physicochemical and biological evaluation of the durability of soil treatmentand revegetation[J]. Environmenal Pollution,1996, 94:131-140.
    [41]Sekhar C K, Kamala C T, Charyn S, et al.. Removal of heavy metals using a plant biomass with reference to environmental control[J]. International Journal of Mineral Processing,2003,68:37-45.
    [42]Brooks R R, Chambersm F, Nicksl J, et al.. Phytomining[J]. Trends in Plant Sciences, 1998,3(9):359-362.
    [43]Reeves R D, Adiguzel N. Rare plants and nickel accumulators from Turkish serpentine soils, with special reference to Centaurea species[J]. Turkish Journal of Botany,2004,28:147-153.
    [44]McGrath S P. The possibility of in situ heavy metal decontamination of polluted soil using crops of metal-accumulating plants[J]. Resourse Conservation and Recycling, 1994,11:41-49.
    [45]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002,367-510.
    [46]Bidwell S D, Woodrow I E, Batianoff G N, et al.. Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae)from Queensland, Australia[J]. Functional Plant Biology,2002,29(7):899-905.
    [47]Reeves R D, Bake A J M. Metal-accumulating plants. In:Raskin I, Ensley B D (eds).Phytremediation of toxic metal:using plants to clean up the envionment, New York:John Wiley & Sons,2000:193-229.
    [48]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物--商陆[J].生态学报,2003,23(5):935-937.
    [49]王华,唐树梅,廖香俊,等.锰超积累植物--水蓼[J].生态环境,2007,16(3)830-834.
    [50]任立民,刘鹏,蔡妙珍,等.水蓼、小飞蓬、杠板归和美洲商陆对锰毒的生理响应[J].水土保持学报,2007b,21(3):82-85.
    [51]范稚莲,莫良玉,陈同斌,等.广西典型矿区中植物对Cu、Mn和Zn的富集特征与潜在的Mn超富集植物[J].地理研究,2007,26(1):125-130.
    [52]杨胜香,李明顺,李艺,等.广西平乐锰矿区土壤植物重金属污染状况与生态恢复研究[J].矿业安全与环保,2006,33(1):21-23.
    [53]Memon A R, Chino M, Takeoka Y, et al.. Distribution of manganese in leaf tissues of the manganese accumulator:Acanthopanax sciadophylloides as revealed by electronprobe X-ray microanalysis[J]. Journal of Plant Nutrition,1980,2:457-476.
    [54]铁柏清,袁敏,唐美珍.美洲商陆(Phytolacca americana L.)--一种新的Mn积累植物[J].农业环境科学学报,2005,24(2):340-343.
    [55]任立民,刘鹏,郑启恩,等.广西大新县锰矿区植物重金属污染的调查研究[J].亚热带植物科学,2006,35(3):5-8.
    [56]张慧智,刘云国,黄宝荣,等.锰矿尾渣污染土壤上植物受金属污染状况调查[J].生态学杂志,2004,23(1):111-113.
    [57]郭水良,黄朝表,边媛,等.金华市郊杂草对土壤重金属元素的吸收与富集作用(Ⅰ)-6种重金属元素在杂草和土壤中的含量分析[J].上海交通大学学报(农业科学版),2002,20(1):1-8.
    [58]唐秀梅.杠板归根系分泌物对锰毒的响应研究[D].广西大学硕士学位论文. 2009.
    [59]胡蕾,施益华,刘鹏,等.锰对大豆膜脂过氧化及POD和CAT活性的影响研究[J].金华职业技术学院学报,2003,(1):29-32.
    [60]Santandrea G, Tani C, Bennici A. Cytological and ultrastructural response of Nicotiana tabacum L. roots to manganese stress[J].Plant Biosystems.1998,132:197-206.
    [61]Doncheva S, Georgieva K, Vassileva V, et al.. Ignatov G.Effects of Succinate on Manganese Toxicity in Pea Plants[J]. Journal of Plant Nutrition,2005,28(1):47-62.
    [62]Hauck M, Paul A, Gross S, et al.. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus[J]. Environmental and Experimental Botany,2003,49:181-191.
    [63]Macfie S M, Taylor G J. The effects of excess manganese on photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture[J]. Physiologia Plantarum,1992,85(3):467-475.
    [64]Santandrea G, Schiff S, Bennici A. Effects of manganese on Nicotiana species cultivated in vitro and characterization of regenerated Mn-tolerant tobacco plants[J]. Plant Science 1998,132:71-82.
    [65]肖凤娟,张欣杰.铝镁锌锰等金属离子与钙调素相互作用研究进展[J].河北省科学院学报,2003,20(3):163-167.
    [66]Baker A J M. Metal Tolerance[J].The New Phytologist,1987,106:93-111.
    [67]任立民,刘鹏,蔡妙珍,等.锰毒及植物耐性机理研究进展[J].生态学报,2007a,27(1):357-367.
    [68]Bidwell S D, Woodrow I E, Batianoff G N, et al.. Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae)from Queensland, Australia. Functional Plant Biology,2002,29(7):899-905.
    [69]薛生国.超积累植物商陆的锰富集机理及其对污染水体的修复潜力[D].浙江大学博士学位论文.2005.
    [70]Fecht-Christoffers M M, Horst W J. Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris[J].Plant Nutrition Soil Science,2005,168:590-599.
    [71]Sharma S S, Dietz K J. The relationship between metal toxicity and cellular redox imbalance[J].Trends in Plant Science,2008,11(14):43-50.
    [72]MacFarlane G R,Burchett M D.Cellular distribution of Copper, Lead and Zinc in the grey mangrove, Avicennia marina (Forsk) Vierh [J]. Aquatic Botany,2000,68: 45-59.
    [73]孙琴,王超.土壤Cd,Zn复合污染对小麦根系植物络合素和谷胱甘肽合成的影响[J].农业环境科学学报,2008,27(5):1913-1918.
    [74]Maserti B E, Ferrillo V, Avdis O, et al.. Relationship of non-protein thiol pools and accumulated Cd or Hg in the marine macrophyte Posidonia oceanica (L.) Delile [J]. Aquatic Toxicology,2005,75:288-292.
    [75]Effosse A, Potier P, et al.. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azosprillum lipoferum[J]. Soil Biology and Biochemistry,2000,32(7):919-927.
    [76]Chen T B, Huang Z C, Huang Y Y, et al.. Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation[J]. Chinese Science Bulletin,2003,48(15):1586-1591.
    [77]徐向华.超积累植物商陆吸收累积锰机理研究[D].浙江大学博士学位论文.2006.
    [78]Kraus T E C, Dahlgren R A, Zasoski R J. Tannins in nutrient dynamics of forest ecosystems-a review [J]. Plant and Soil,2003,256:41-66.
    [79]Karolewski P, Giertych M J. Influence of aluminum, cadmium, manganese and lead ions on the level of phenols in needles and roots and on root respiration of Scots pine (Pinus sylvestris L.) seedlings grown in laboratory conditions [J]. Acta Societatis Botanicorum Poloniae,1994,63:29-35.
    [80]Nogueira M A, Magalhaes G C, Cardoso E J B N. Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants[J]. Journal of Plant Nutrition.2004,27(1): 141-156.
    [81]Lovley D R. Microbial reduction of ion, manganese and other metals[J]. Advances in Agronomy,1995,54:175-231.
    [82]Tomsett A B, Thurman D A. Molecular biology of metal tolerances of plants. Plant Cell Environment,1998,11:383-394.
    [83]Bueno P, Piqueras A. Effect of transition metals on stress, lipid peroxidation and antioxidant enzyme activities in tobacco cell cultures[J]. Plant Growth Regulation, 2002.36:161-167.
    [84]Salt D E, Smith R D, Raskin l. Phytoremediation. Annual Review of Plant Physiol and Plant Molecular Biology,1998,49:643-668.
    [85]Santandrea G, Pandolfini T, Bennici A. A. physiological characterization of Mn-tolerant tobacco plants selected by in vitro culture[J]. Plant Science,2000 (150): 163-170.
    [86]Panl A, Hauck M, Fritz E. Effects of manganese on element distribution and structure in thalli of the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides[J]. Environmental and Experimental Botany,2003,50:113-124.
    [87]Lytle C M, Lytle F W, Smith B N. Use of XAS to determine the chemical speciation of bioaccumulated manganese in Potamogeton pectinatus[J]. Environmental quality 1996,25(2):311-316.
    [88]David E S, Roger C P, lngrid J P. Mechanisms of cadmium mobility and accumulation in indian mustard[J]. Plant Physiology.1995,109:1427-1433.
    [89]张华云,王善广.套袋对莱阳仕梨果皮结构PPO、POD活性的影响[J].园艺学报,1996,23(1):23-26.
    [90]王狄,李锋民,熊治廷,等.铜的植物毒性与植物蓄积的关系[J].土壤与环境,2000,9(2):146-148.
    [91]Meharg A A, Macnair M R. Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L[J]. Journal of Experimental Botany,1992,43:529-524.
    [92]涂书新,孙锦荷,郭智芬,等.植物根系分泌物与根际营养关系评述[J].土壤与环境,2000,9(1):64-67.
    [93]Zheng S J, Ma J F, Matsumoto H. Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress[J]. Physiologia Plantarum,2002,2(103):209-214.
    [94]Ma J F, Taketa S, Yang Z M. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale[J]. Plant Physiology, 2000,122:687-694.
    [95]Zhang W H, Ryan P R, Tyerman S D. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots[J]. Plant Physiology,2001,125:1459-1472.
    [96]强维亚,陈拓,汤红官,等.Cd胁迫和增强UV-B辐射对大豆根系分泌物的影响[J].植物生态学报,2003,27(3):293-289.
    [97]林琦,陈英旭,陈怀满,等.根系分泌物与重金属的化学行为研究[J].植物营养与肥料学报,2003,9(4):425-431.
    [98]Liu K, Luan S. Internal aluminum block of plant inward K+ channels[J]. Plant Cell, 2001,13:1453-1465.
    [99]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,6(3):366-370.
    [100]Miyasaka S C, Buta J G, Howell R K. Mecbanism of aluminum tolerance in snap beans:root exuclation of citric acid [J]. Plant Physiology,1991,96:737-743.
    [101]Marshner H, Romheld V, Cakmak I. Mineral nutrition of higher plants [M]. London: Academic Press,1995.
    [102]张淑香,王小彬,金柯,等.干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效性的影响[J].植物营养与肥料学报,2001,7(4):391-396.
    [103]Sarkar D, Pandey S K, Sud K C, el al.. In vitro characterization of manganese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum L.)[J]. Plant Science,2004,167:977-986.
    [104]曾祥忠,吕世华,刘文菊,等.根表铁、锰氧化物胶膜对水稻铁、锰和磷、锌营养的影响[J].西南农业学报,2001,14(4):34-38.
    [105]朱端卫,万小琼,耿明建,等.酸化及施碳酸钙对土壤各形态锰的影响[J].植物营养与肥料学报,2001,7(3):325-330.
    [106]邹邦基,何雪晖.植物的营养[M].北京:农业出版社,1985,219-228.
    [107]施益华,刘鹏.锰在植物体内生理功能研究进展[J].江西林业科技,2003,2:26-29.
    [108]潘瑞炽.植物生理学[M].北京:高等教育出版社,1995,34.
    [109]Dusan L. Chlorophylla fluorescence induction[J]. Biochim Biophysiol Acta,1999, 14(12):1-28.
    [110]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18.
    [111]许耀照,曾秀存,郁继华,等,水杨酸对高温胁迫下黄瓜幼苗叶绿素荧光参数的影响[J].西北植物学报,2007,27(2):267-271.
    [112]Massaccia,Lannellima.The effect of growth at low temperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves[J]. Journal of Experimental Botany,1995,46:119-127.
    [113]韩张雄,李利,徐新文,等NaCl胁迫对3种荒漠植物幼苗叶绿素荧光参数的影响[J].西北植物学报,2008,28(9):1843-1849.
    [114]丁佳红,刘登义,李征,等.土壤不同浓度铜对小飞蓬毒害及耐受性研究[J].应 用生态学报,2005,16(4):668-672.
    [115]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征[J].环境科学,2005,26(3):167-171.
    [116]秦天才,黄巧云.镉铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志,1997,16(3):31-34.
    [117]孙琴,王晓蓉,袁信芳,等.有机酸存在下小麦体内Cd的生物毒性和植物络合素(PCs)合成的关系[J].生态学报,2004,24(12):2804-2809.
    [118]朱光廉,钟海文,张爱勤.植物生理实验[M].北京:北京大学出版社,1990:51-54.
    [119]姚广,高辉远,王未未,等.铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响[J].生态学报,2009,29(3):1162-1169.
    [120]李忠光,杜朝昆,龚明.在单一提取系统中同时测定植物ASA/DHA和GSH/ GSSG[J].云南师范大学学报.2003,23(3):67-70.
    [121]Demmig B, Winter K, Kruger A, et al.. Photo inhibition information in intact leaves[J]. Plant physical.1997,84(2):218-224.
    [122]任立民.超积累植物-美洲商陆对锰毒的响应机理研究[D].广西大学硕士学位论文.2007.
    [123]徐向华,施积炎,陈新才,等.锰在商陆叶片的细胞分布及化学形态分析[J].农业环境科学学报,2008,27(2):515-520.
    [124]Bidwell S D, Woodrow I E, Batianoff G N, et al.. Hyperaccumulaton of manganese in the rainforest tree Austromyrtus Bidwillii(Myrtaceae) from Queensland, Australia[J]. BiolFunctional Plant Biology,2002,29:899-905.
    [125]Lidon F C,Teixeira M G.Oxyradicals production and control in the chloroplast of Mn-treated rice[J]. Plant Science,2000,152:7-15.
    [126]Ferroni L, Baldisserotto C, Fasulo M P. Adaptive modifications of the photosynthetic apparatus in euglena gracilis klebs exposed to excess manganese[J]. Protoplasma 2004,224:167-177.
    [127]Schnettger B, Critchley C, Santore UJ, et al.. Relationship between Photo inhibition of photo-synthesis, D1 protein turnover and Chloroplast structure:Effects of protein synthesis[J]. Plant Cell Environment,1994,17:55-64.
    [128]宋维民,周海燕,贾荣亮,等.土壤逐渐干旱对4种荒漠植物光合作用和海藻糖含量的影响[J].中国沙漠,2008,28(31):449-454.
    [129]吕芳德,徐德聪,侯红波,等.5种红山茶叶绿素荧光特性的比较研究[J].经济林 研究,2003,21(4):4-7.
    [130]徐红霞,翁晓燕,毛伟华.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响[J].中国水稻科学,2005,19(4):338-342.
    [131]刘正鲁,朱月林,魏国平,等.NaCl胁迫对茄子嫁接幼苗叶片抗坏血酸西北植物学报[J].2007,27(9):1795-1800.
    [132]陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能[J].西北植物学报,2004,24(2):329-336.
    [133]张佩,周琴,孙小芳,等.抗坏血酸对镉胁迫下油菜幼苗生长的影响[J].农业环境科学学报.2008,27(6):2362-2366
    [134]Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and itswild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system[J]. Plant Physiology,2001,112(4):487-494.
    [135]Sugiyama M.Role of cellular antioxidants in metal-induced damage[J].Cell Biology and Toxicology,1994,10:1-22.
    [136]Goldsbrough P B. Metal tolerance in plants:The role of phytochelatins and metallothioneins. Phytoremediation of contaminated soil and water,edited by Norman Terry and Gary Banuelos,2000.
    [137]娄来清,沈振国.金属硫蛋白和植物螯合肽在植物重金属耐性中的作用[J].生物学杂志.2001,18(3):1-4.
    [138]Grill E, W innacker E L, Zenk M H. Phytochelatins, aclass ofheavy-metal-binding peptides from plants, arefunctionally analogous to metallothioneins[J].Proceedings of the National Academy of Sciences,1987,84:439-443.
    [139]Lee S, Moon J S, Ko T S, et al.. Over expression of arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress [J]. Plant Physiol, 2003,131:656-663.
    [140]张晓钰,茹炳根.植物类MT与植物络合肽[J].生命科学,2000,12(4):170-172.
    [141]Margoshes M, Vallee B L. A cadmium protein from equine kidney cortex[J].Journal of the American Chemical Society,1957,79:4813-4814.
    [142]全先庆,张洪涛,单雷,等.植物金属硫蛋白及其重金属解毒机制研究进展[J].遗传,2006,28(3):375-382.
    [143]谢彬林,金婷婷,刘鹏,等.铝胁迫下大豆根和叶中植物螯合肽和类金属硫蛋白的变化[J].中国油料作物学报.2008,30(2):191-197.
    [144]KneerR, Zenk M H. Phytocchelatins Protect Plant enzymes from heavy meta poisoning [J]. Phytochemistry,1992,31:2663-2667.
    [145]Howden R, Goldsbrough P B, Andersen C R, et al.. Cadmium-sensitive, cadl mutants of Arabidopsis thaliana are Phytochelatin deficient[J].Plant Physiology,1995, 107:1059-1066.
    [146]Zenk M H.Heavy metal detoxification in higher Plant:a review[J]. Gene.1996,179: 21-30.
    [147]Parida A K, Das A B, Sanada, et al.. Effects of salinity on biochemical components of the mangrove, Aegiceras comiculatum [J]. Aquatic Botany,2004,80:77-87.
    [148]Rhodes M J C. Physical role for secondary metabolites in plants:some progress, many outstanding problems [J]. Plant Molecular Biology,1994,24:1-20.
    [149]Grassmann J, Hippeli S, Elstner E F. Plant's defence and its benefits for animals and medicine:role of phenolics and terpenoids in avoiding oxygen stress[J]. Plant Physiology and Biochemistry,2002,40:471-478.
    [150]Karolewski P, Giertych M J. Influence of aluminum, cadmium, manganese and lead ions on the level of phenols in needles and roots and on root respiration of Scots pine(Pinus sylvestris L.) seedlings grown in laboratory conditions [J]. Acta Societatis Botanicorum Poloniae,1994,63:29-35.
    [151]Roitto M, Raution Julkunen-Tiitto R, et al.. Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper [J]. Environmental Pollution,2005,137:603-609.
    [152]Palma q Freer J, Baeza J. Removal of metal ions by modified Pinus radiafa bark and tannins from water solutions [J]. Water Research,2003,37:4974-4980.
    [153]Shi Qing-hua, Zhu Zhu-jun. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber[J]. Environmental and Experimental Botany,2008,63:317-326.
    [154]张保林,盛湘蓉,刘兴军,等.金属硫蛋白测定方法-银饱和分析法[J].药物生物技术,1996,3(1):31-33.
    [155]吴彪.福建九龙江口几种红树植物繁殖体胎生发育的单宁动态及其抗盐适应[D].厦门大学.硕士学位论文.2006.
    [156]Mueller-Harvey. Analysis of hydrolysable tannins[J].Animal Feed science and Technology,2001,91:3-20.
    [157]Makkar H P S, Singh B. Determination of condensed tannins in complexes with fibre and proteins[J]. Journal of the Science of Food and Agrieulture,1995,69:129-132.
    [158]Sneller F E C, Noordover E C M, Ten Bookum W M, et al.. Quantitative relationship between phytochelatin accumulation and growth inhibition during prolonged exposure to cadmium in Silene vulgaris[J]. Ecotoxicology,1999,8 (3):167-175.
    [159]孙琴,袁信芳,王晓蓉.环境因子对小麦体内镉的生物毒性和植物络合素合成的影响[J].应用生态学报,2005,16(17):1360-1365.
    [160]Kelrtjens W G, Beusichem M L. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat(Triticum aestivum L.):combined effects of copper and cadmium [J]. Plant Soil,1998,203:119-126.
    [161]Pawlik Skowronska B, Pirszel J, Brown M T. Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat [J]. Aquatic Toxicology,2007,83 (3):190-199.
    [162]Pawlik Skowronska B. Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in m ining water; effect of some environmental factors [J]. Aquatic Toxicology,2001,52:241-249.
    [163]Alscher R G. Biosynthesis and antioxidant function of glutathione in plants[J]. Physiol Plant,1989, (77):457-464.
    [164]Gupta M, Tripathi R D, Rai U N, et al.. Role of glutathione and phytochelatin in Hydrilla Verticillat a(l.f.) Royle and Vallisneria Spiralisi under mercury stress[J]. Chemosphere,1998,37(4):785-800.
    [165]孙琴,王超.土壤Cd, Zn复合污染对小麦根系植物络合素和谷胱甘肽合成的影响[J].农业环境科学学报,2008,27(5):1913-1918.
    [166]刘强,郑绍建,林咸永.植物适应锰毒胁迫的生理及分子生物学机理[J].应用生态学报,2004,15(9):1641-1649.
    [167]唐秀梅,龚春风,刘鹏,等.铁锰营养失衡对商陆根系分泌物的影响[J].水土保持学报,2008,22(6):78-80.
    [168]Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeo stasis[J]. Annual Review of Plant Biology,2002,53: 159-182
    [169]Himelblau E, Amasino R M. Delivering copper within plant cells[J]. Current Opinion in Plant Biology,2000,3:205-210.
    [170]Usha B, Venkataraman G. Parida A. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro[J]. Mol Genet Genomics,2009,281(1):99-108.
    [171]Pennycooke J C, Cox S, Stushnoff C. Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia(Petunia X hybrida)[J]. Environmental and Experimental Botany,2005,53:225-232.
    [172]Jackson F S, Barry T N. The extractable and bound condensed tannin content of leaves from tropical tree,shrub and forage legumes[J]. Journal of the Science of Food and Agriculture,1996,71(1):103-110
    [173]Rivero R M, Ruiz J M, Garcia P C, et al.. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and Watermelon plants[J]. Plant Seienee,2001,160:315-321.
    [174]Sakihama Y, Cohen M F, Graee S C, et al.. Plant phenolic antioxidant and prooxidant activities:Phenolics-induced oxidative damage mediated by metals in plants[J]. Toxieology,2002,177:67-80.
    [175]Hu M, Skibsted L H. Antioxidative capacity of rhizomeextract and rhizome knot extract of edible iotus(Nelumbo nuficera)[J]. Food Chemistry,2002,76:327-333.
    [176]Murch S J, Haq K, Rupasinghe H P V, et al.. Nickel contamination affects growth and secondary metabolite composition of St.John's wort(Hypericum Perforatum L.)[J]. Environment and Experimental Botany,2003,49:251-257.
    [177]Loponen J, Lempa K, Ossipov V, et al.. Patterns in content of phenolic compounds in leaves of mountain birches along a strong pollution gradient[J]. Chemosphere, 2001,45:291-301.
    [178]Elzaawely A A, Xuan T D, Tawata S. Changes in essential oil, kava pyrones and total phenolics of Alpinia zerumbet (pers.) B.l. Burtt.& R.M. Sm. leaves exposed to copper sulphate[J]. Environmental and Experimental Botany,2006,59(3):347-353.
    [179]张锡洲,李廷轩,王永东.植物生长环境与根系分泌物的关系[J].土壤通报,2007,38(4):785-789.
    [180]Frostegard A, Tunlid A, Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J]. Applied and Environmental Microbiology,1993,9:3605-3617.
    [181]Bentez E, Melgar R, Melgar H, et al.. Enzymeactivities in the rhizosphere of pepper(Capsicum annuum L.)grown with olive cakemulches[J]. Soil Biology and Biochemistry,2000,32:1829-1835.
    [182]Carcia G J, Plaza C C, Soler Rovira P, et al.. Long term effects of municipal solid waste compost application on soil enzyme acaivilies and microbial biomass[J]. Soil Biology and Biochemistry,2000,32:1907-1913.
    [183]Diamantidis G, Effosse A, Potier P, et al.. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum[J]. Soil Biology and Biochemistry,2000,32:919-927.
    [184]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,,2001,21(1):60-63.
    [185]Kozdroj jvan Elsas JD. Response of the bacterial community to root cxudates in soil polluted win heavy metals assessed by molecular and cultural approaches[J]. Soil Biology and Biochemistry,2000,32(10):1405-1417.
    [186]和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139-142.
    [187]Vazquez S, Agha R, Granado A, et al.. Use of white lupin plant for phytostabilization of Cd and As pollutedacid soil[J]. Water,Air,and Soil Pollution,2006,177(1-4):349-365.
    [188]石汝杰,陆引罡.酸性黄壤铅污染下植物根际微生物和酶活性研究[J].水土保持学报,2008,22(1):114-117.
    [189]向言词,冯涛,刘炳荣,等.植物修复对锰尾渣污染土壤特性的影响[J].水土保持报,2007,21(6):79-82.
    [190]孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究[J].植物生态学报.2005,29(3):497-504
    [191]王友保,刘登义,张莉.铜官山铜尾矿库植被及土壤酶活性研究[J].应用生态学报,2003,14(5):757-760.
    [192]Vazquez S, Agha R, Granado A, et al.. Use of white lupin plant for phytostabilization of Cd and As pollutedacid soil[J]. Water, Air, and Soil Pollution,2006,177(1-4): 349-365.
    [193]刘登义,沈章军,严密.铜陵铜矿区凤丹根际和非根际土壤酶活性[J].应用生态学报,2006,17(7):1315-1320.
    [194]赵小亮,刘新虎,贺江舟,等.棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响[J].西北植物学报,2009,29(7):1426-1431.
    [195]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986:274-340.
    [196]司友斌,王慎强.马友华,等.土壤中植物有效锰的形态分级[J].土壤与环境,2000,9(4):294-297.
    [197]杨景辉.土壤污染与防治[M].北京:科学出版社,1995.
    [198]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001:298-308.
    [199]王焕校.污染生态学[M].北京:高等教育出版社.2000:192-194.
    [200]Shuhe Wei, Qixing Zhou, Uttam K S. et al. Hyperaccumulative characteristics of Weed species to heavy metals[J]. Water Air Soil Pollution,2008,192:173-181.
    [201]史刚荣.植物根系分泌物的生态效应[J].生态学杂志,2004,23(1):97-101.
    [202]Frankenberger W T J, Johanson J B. Effect of pH on enzyme stability in soils [J]. Soil Biology Biochemistry,1982,14:433-437.
    [203]Tabatabai M A. Effect of trace elements on urease activity in soils[J]. Soil Biology Biochemistry,1977,9:9-13.
    [204]Todorov T S, Dimkov R, Koteva Z H, et al.. Effect of lead contamination on the biological properties of alluvial meadow soil [J]. Pochovoznanie, Agrokhimiya,1987, 22(5):33-40.
    [205]Chander K, Brookes P C. Is the dehydrogenase assay invalid as a method to estimate microbial activity in copper contaminated soil [J] Soil Biol Biochem,1991,23(10): 909-915.
    [206]杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响[J].土壤与环境,2000,9(1):15-18.
    [207]吴家燕,夏增禄,巴音,等.土壤重金属污染的酶学诊断--紫色土中的镉、铜、铅、砷对水稻根系过氧化物酶的影响[J].环境科学学报,1990,10(1):73-76.
    [208]吴家燕,夏增禄,巴音,等.紫色土壤中镉铜铅砷污染对作物根系酶活性的影响[J].农业环境保护,1991,10(6):244-247.
    [209]孔繁翔,桑伟莲,蒋新,等.铝对植物毒害及植物抗铝作用机理[J].生态学报,2000.20:855-862.
    [210]Shuman L M, Wang J. Effect of rice variety on zinc, cadmium, iron, and manganese content in rhizosphere and non-rhizosphere soil fractions[J]. Communications in Soil Science and Plant Analysis,1997,28:23-36.
    [211]Zhang C-Y(张春容),Xia L-J(夏立江),Du X-G(杜相革),et al.. Effect of cadmium germination Of Medicago sativa seeds[J]. Chinese Agricultural Science Bulletin(中国农学通报),2004,20(5):253-255.
    [212]Vazquez S, Agha R, Granado A, et al. Use of white lupin plant for phytostabilization of Cd and As pollutedacid soil[J]. Water, Air, and Soil Pollution,2006,177(1-4): 349-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700