福建省主要蔬菜对土壤铜富集规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在调查了福建省8个县、区的20多个蔬菜品种和相应表层土壤的含铜状况的基础上,研究了土壤铜的有效度及其影响因素和铜在土壤-蔬菜体系中的转移规律。主要结果如下:
     1、采样区表层土壤全铜含量变化在1.68~184.13mg.kg~(-1)之间,平均值为53.28mg.kg~(-1)。52.1%的供试土壤样品的全铜量低于国家土壤环境质量标准二级标准中铜的限量(pH<6.5,农田<50mg.kg~(-1))。
     2、对DTPA、EDTA和HCl三种浸提剂的提取效果进行比较的结果表明,(pH7.3)DTPA-CaCl_2-TEA是酸性土壤有效铜的最合适的浸提剂。本研究建立的DTPA提取有效铜的条件是:液土比10:1,振荡速度210转/分,振荡时间120分钟。以该法测定的供试土壤样品有效铜的含量变化在0.50mg.kg~(-1)~33.36mg.kg~(-1)之间,平均为6.39mg.kg~(-1),有效度(有效铜含量/全铜含量)在1.5%~68.9%之间,平均为1209%,85.6%的样品含铜量>2mg.kg~(-1),说明供试土壤铜供应能力很强。
     3、蔬菜可食用部分铜含量(鲜基)在0.09-3.31mg.kg~(-1)之间,均低于国家食品卫生标准,表明供试蔬菜并未遭受明显铜污染。
     4、大部分供试蔬菜品种可食用部分铜含量与土壤全铜含量未表现显著正相关,只有茭白含铜量与土壤全铜呈显著正相关。蔬菜品种可食用部分铜含量与土壤有效铜含量相关关系也不显著,这可能是土壤有效铜以外的因素(如:生长状况、施肥管理水平、气候条件、土壤性质等)对蔬菜吸收铜的影响超过了土壤有效铜的影响。土壤-蔬菜铜转移系数随着土壤全铜含量、土壤有效铜含量的升高而降低,转移系数与土壤全铜或有效铜之间的关系大部分可以用幂方程(y=ax~b)进行描述。
     5、根据供试土壤的全铜与有效铜含量范围,我们在全铜=50mg.kg~(-1)、有效铜=5mg.kg~(-1)这两个浓度点上分别估算了土壤-蔬菜铜的代表性转移系数(全量基和有效量基),并以有效量基转移系数(TF_(DTP5))为依据,将供试蔬菜对土壤铜的富集能力分为如下三类:
     低富集蔬菜:转移系数<0.1,包括萝卜、包菜、小白菜、黄瓜、大蒜、大白菜、芥蓝菜、花菜。
     中富集蔬菜:转移系数0.1-0.2,包括西红柿、葫瓜、芹菜、茄子、四季豆、丝瓜、莲藕、春菜、芥菜、茭白、豇豆、苦瓜。
     高富集蔬菜:转移系数>0.2,包括空心菜、芋、韭菜。
The availability of soil copper, the factors influencing the Cu availability, and the transfer characteristics of Cu from soil to the edible parts of various vegetables were studied based on an investigation carried out over 8 counties in Fujian province. The main results were as follows:
    1. The total Cu contents of the surface soils (≤15cm) ranged between 1.68 and 184.13mg.kg~(-1) with an average of 53.28mg.kg~(-1). The total Cu concentrations of 52.1% of the soils studied were lower than the Cu limits for agricultural land in the China soil environmental quality standard (pH<6.5, farmland<50mg.kg~(-1)), implying that the soils in these regions have more or less been polluted by copper.
    2. DTPA-CaCl_2-TEA (pH7.3) was chosen for extracting the available Cu of the soils because it was found to be the best for available Cu extraction for acid soils than the others, HC1 and EDTA. However, the extraction conditions were modified according to our preliminary study as follows liquid:soil= 10:1, shaking time=120 minutes, shaking velocity=210rpm. The available Cu of the soils varied from 0.50 to 33.36 mg.kg~(-1) with a mean of 6.39mg.kg~(-1). The available degree of the soil Cu (the ratio of the available Cu concentration to the total Cu concentration) varied from 1.5% to 68.9% with a mean of 12.9%.
    3. The Cu contents (fresh weight basis) of various kinds of vegetables ranged between 0.09 and 3.31 mg.kg~(-1). The Cu concentrations of all the vegetables were lower than the limit of the China food hygiene standard, indicating that the vegetables produced in these regions were quite safe for cosumption.
    4. The Cu concentrations in the edible parts of most of the vegetables species did not significantly correlated with both the soil total and available Cu, which may be attributed to the effects of the factors other than the soil Cu status, such as gowth characteristics, fertilization, agricultural managements and climate. Soil-to-plant transfer factors of Cu (total Cu based or available Cu based) decreased with the increase of soil total Cu and available Cu, most of which can be best described by exponential equation (y=ax~b) .
    5. According to the ranges of the total and available Cu of the soils used in this study, the representative Cu accumulation index of each vegetable were estimated based on the regression equations between the transfer factors and the soil total Cu or available Cu at the concentrations of 20mg.kg~(-1)(total Cu) and 5mg.kg~(-1)(available Cu), respectively. All the vegetable species studied were grouped into three categaries
引文
[1] 徐俊祥,董文瑞.永久性及长期渍水的水稻土中铜的供给情况和施铜效果的关系.土壤学报.1989,26(2):149-158.
    [2] 王云,魏复盛,等.土壤环境元素化学.中国环境科学出版社.1995,101-128.
    [3] 祝沛平.铜在植物生长发育中的作用.生物学通报.2000,35(10):7.
    [4] 周启星,宋玉芳,等.污染土壤修复原理与方法.科学出版社.2004,181-230.
    [5] 吴龙华.铜污染土壤的植物修复及其有机调控研究.中国科学院南京土壤研究所.博士论文.2002.
    [6] Josanidia S. L.. Copper balances in cocoa agrarian ecosystem: effects of differential use of cupric fungicides. Agriculture Ecosystems and Environment. 1994, 48: 19-25.
    [7] 单正军,朱忠林,等.铜制剂农药对生态环境影响研究.农药学学报.2001,3(1):61-68.
    [8] Lidia. Giuffer De Lqpez Came. eavy metals input with phosphate fertilizers used in Argentina. Sci. Total Environ. 1997, 204 (3): 245-250.
    [9] 马耀华,刘树应.环境土壤学.陕西科学技术出版社.1998,198-201.
    [10] 林匡飞,徐小清,等.湖北江汉平原农田生态系统铜的循环与平衡.应用生态学报.2003,14(1):71-74.
    [11] Luo Y. M., Wu L. H., et.. Chemical fractions and availability of Cu in a Cu-polluted paddy soil. Paper for International Conference of Environmental Geochemitry. Eco-toxicology and Health. 1999, 31-45.
    [12] 沈善敏主编,中国土壤肥力.中国农业出版社.2000,398-399.
    [13] 殷宪强,张增强,等.施用污泥堆肥对土壤中CuZn形态分布的影响研究.农业环境科学学报.2004,23(3):448-451.
    [14] Luo Y. M. and Christie P.. Choice of extraction technique for soil reducible trace metals determines the subsequent oxidisable metal fraction in sequential extraction schemes. International Journal of Environmental Analytical Chemistry. 1998, 72 (1): 59-75.
    [15] 马辉,马东升.城市生活垃圾乡土壤释放重金属研究.环境化学.2001,20(1):43-47.
    [16] Martin A C.. Contamination by heavy metals in soils in the neighbourhood ofa scrapyard of discarded vehie. Sci. Total Environ. 1998, 212 (2/3): 145-152.
    [17] 戴军,刘腾辉.广州菜地生态环境的污染特征.土壤通报.1995,26(3):102-104.
    [18] 涂从,郑春荣,等.铜尾矿矿库土壤—植物体系的现状研究.土壤学报.2000,37(2):30-32.
    [19] 耿雪侠,谢建春,等.铜尾矿对小麦生长发育和农艺性状的影响.淮北煤师院学报.2003,24(3):14-18.
    [20] 姜理英,杨肖娥,等.炼铜厂对周边土壤和作物体内重金属含量及其空间分布的影响. 浙江大学学报.2002,28(6):689-693.
    [21] 孙华,张桃林,等.江西省贵溪市污灌水田重金属污染状况评价研究.农业环境保护.2001,20(6):405-407.
    [22] Srivastava P C., Gupta U C.. Trace Elements in Crop Production. Lebanon: Science Publishers Inc.. 1996, 155-180.
    [23] 马郭瑞,石伟勇主编.农作物营养失调症原色图谱.中国农业出版社.2002,30-65.
    [24] 刘文彰,孙典兰.铜对黄瓜幼苗生长及过氧化氢酶和吲哚乙酸氧化酶活性的影响.植物生理学通报.1985,3:22-24.
    [25] Ouzounidou G.. responses ofmaize(Zea mays L.) plants to copper stress-Ⅰ. growth, mineral content and ultra. structure of roots. Environ. Exprei. Bot.. 1995, 35 (2): 167-476.
    [26] 姚益云,赵振纪,等.铜对紫云英根细胞毒害的研究.山西农业大学学报.1997a,19(2):76-79.
    [27] 廖自基.微量元素的环境化学及生物效应.中国环境科学出版社.1992,56-79.
    [28] Ouzounidou G.. Copper-induced changes on growth. methal content and photosynthetic function of Alyssum montanum Plants. Environ Experi Botan. 1994, 34 (2): 165-172.
    [29] 黄玉山,邱国华.紫茅抗铜和敏感品种在发育早期对铜离子反应的生理差异.应用与环境生物学报.1998,4(2):126-131.
    [30] Chatterjee J., Chatterjee C.. Phytotoxicity of cobalt, chromiumand copper in cauliflower. Environmental Pollution. 2000, 109: 69-74.
    [31] Penelope A., Helen C. and Kenneth L.. Physiological responses of cabbage to incipient copper toxicity. Amer. Soc. Hor. Sci.. 1989, 114 (1): 149-152.
    [32] 王松华,杨志敏,等.植物铜素毒害及其抗性机制研究进展.生态环境.2003,12(3):336-341.
    [33] 王秀丽,徐建民,等.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报.2003,23(1):22-27.
    [34] 龙健,黄昌勇,等.我国南方红壤矿山复垦土壤的微生物特征研究.水土保持学报.2002,16:126-129.
    [35] 杨元根,Paterson E,等.重金属Cu的土壤微生物毒性研究.土壤通报.2002,33(2):137-141.
    [36] 王秀丽,徐建民,等.重金属铜和锌污染对土壤环境质量生物学指标的影响.浙江大学学报(农业与生命科学版).2002,28(2):190-194.
    [37] Hem ida S K., Omar S A., 等. Microbial ppulations and enzyme aetivityin soil treated with heavy metals. Water, Air and Soil Pollution. 1997, 95: 13-22.
    [38] Carbonell G, Pablos M V, 等. Rapid and cost-effective multiparameter toxicity tests for soil microorganism. The Science of the Total Environment. 2000, 247: 143-150.
    [39] Chen Shijian, HuSitang. Soil copper species and organic substances. Resource and Environment of Yangtze River. 1995, 4: 367-371.
    [40] 林君锋,高树芳,等.蔬菜对土壤镉铜锌富集能力的研究.土壤与环境.2002,11(3):248-251.
    [41] Tesser A., Campbell P. G. C., 等. Sequential extraction procedure for the speciation of particle trace metals. Analytical Chemistry. 1979, 51(7): 844-851.
    [42] 蒋廷惠,胡霭堂,等.土壤中锌、铜、铁、锰的形态与有效性的关系.土壤通报.1989,20(5):228-231.
    [43] 邵煌庭,甄清香,等.甘肃主要农业土壤中Cu、Zn、Mn、Fe的形态及有效性研究.土壤学报.1995,32(4):423-478.
    [44] 张维碟,林琦,等.不同Cu形态在土壤-植物系统中的可利用及其活性诱导.环境科学学报.2003,23(3):376-381.
    [45] 谢正苗.土壤中铜的化学平衡.环境科学进展.1996,4(2):1-23.
    [46] Sun Weiling, Zhao Rong, et al.. Effect of pHon Copper Sorption by the Loess and Its Species. Environmental Science. 2001, 22 (3): 78-83.
    [47] 俞慎.红壤铜污染的物理化学行为和生物学表征.浙江大学.博士论文.2002.
    [48] Temminghoff E J M. Environ, Sci. Technol.. 1997, 31 (4): 1109-1111.
    [49] Martinez C E, Motto H L.. Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution. 2000, 107: 153-158.
    [50] Nriagu J O.. Copper in the Environment: 2 Ecological Cycling (J. O. Nriagu, ed. ) P L John Wiley and sons. Inc.. 1979, 21-28.
    [51] 刘铮.微量元素的农业化学.农业出版社.1991,250-252.
    [52] 王敬国.植物营养的土壤化学.北京农业大学出版社.1995,155-159.
    [53] 何振立主编.污染及有益元素的土壤化学平衡.中国环境科学出版社.1998,362-390.
    [54] Wang Guo, Chen Jian-bing, et al.. Influence of application of rice straw and Chinese in lie vetch on the species and ecological effect of added copper in two soils. Acta ecological sincia. 1999, 19(4): 551-556.
    [55] Li Z, Shuman L M. Environmental pollution. 1997, 95 (2): 227-234.
    [56] Varadachar C. Soil Sci.. 1997, 162 (1): 28-34.
    [57] 韩凤祥,胡霭堂,等.土壤痕迹元素形态分级提取方法研究.农业环境保护.1989,8(5):26-29.
    [58] 倪才英,刘永厚,等.不同质地土壤对铜的吸附性能试验.江西农业大学学报.1996,18 (4):426-430.
    [59] Huang Yi, Chen You-jian, et al.. Effect of rhizospheric environment of VAmycorrhizal plants on forms Cu、Zn、Pb and Cd in polluted soil. Chinese Journal of Applied Ecology, Tao Shu. 2000, 6(3): 431-434.
    [60] 罗洪亮,周剑,等.有机酸对几种土壤吸附铜的影响.中国岩溶.2002,21(3):160-164.
    [61] Jiang Y, Zhang Y. G, et al.. Status of fertilizer input and its influence on the qualities of farm produce and environment in Shenyang. In: Fertilizer, Food Security and Environmental Protection-Fertilizer in the Third Millennium. Liaoning Science and Technology Publishing House. 2002, 515-523.
    [62] 夏家淇.土壤环境质量标准详解.国家环境保护局南京环境科学研究所.1996,35-39.
    [63] 刘庆,李文庆,等.菠菜和油菜对铜的吸收及化学结合形态研究.江西农业大学学报.2005,27(1):150-153.
    [64] 宋玉芳,许华夏,等.土壤重金属污染对蔬菜生长的抑制作用及其生态毒性.农业环境科学学报.2003,22(1):13-15.
    [65] 王丽凤,百俊贵.沈阳市蔬菜污染调查及防治途径研究.农业环境保护.1994,13(2):84-88.
    [66] Zurera Cosano G, Moreno-Rojas R, et al.. Heavy mrtal uptake from greenhouse border soils for edible vegetables. J Sci Food Agile. 1989, 49: 307-314.
    [67] 祖艳群,李元,等.蔬菜中铅镉铜锌含量的影响因素研究.农业环境科学学报.2003,22(3):289-292.
    [68] Jinadasa K B P N, Milham P J, et al.. Heavy metals in the ecvironment-survey of cadmium levels in vegetables and soils ofGreaters Sydney, Australia. J Environ Qual. 1997, 26: 924-933.
    [69] 周根娣,汪雅谷,等.上海市农畜产品有害物质残留调查.上海农业学报.1994,10(2):45-48.
    [70] 杨桂芬,李德波.我国南方某些铜矿附近水稻土铜污染的调查研究.农村生态环境.1990,(4):55-59.
    [71] 张朝海,王果,等.水稻对污染土壤中镉、铅、铜、锌的富集规律的探讨.福建农业学报.2003,18(3):147-150.
    [72] 黄细花,赵振纪,等.铜对紫云英生长发育影响的研究.农业环境保护.1993,12(1):1-6.
    [73] Zheljazkov V D, Nielsen N E. Effect of heavy metals on peppermint and commint. Plant and Soil. 1996, 178: 59-66.
    [74] Penelope A Rousos, Helen C. Harrison. Identification of differential responses of cabbage cultivars to copper toxicity in solution culture. Amer. Soc. Hort.. 1987, 12 (6): 928-931.
    [75] 于海彬,蔡葆,等.甜菜对铜和锰营养的吸收及积累动态的初步分析.中国甜菜.1995, (2):30-34.
    [76] 祖艳群,Marianne Guhur,等.云南昆明市蔬菜及其土壤中铅、镉、铜和锌含量水平及污染评价.云南环境科学.2003,22:55-57.
    [77] 杨景辉.土壤污染与防治.科学出版社.1995,69-80.
    [78] Lepp, N. N.. Effect of heavy metal pollution on plants, pplied Sci. Pub.. 1981, 1: 111-143.
    [79] 杨居荣,查燕,等.污染作物籽实中Cu的分布、结合形态及其毒性.农业环境保护.2001,20(4):199-201.
    [80] Nishizono H.. The role of the root cell wall in the heavy metal tolerance of Athyium yokoscense. Plant and Soil. 1987, 101: 15-20.
    [81] 邱孝煊,黄东风,等.福州蔬菜污染及污染源调查和治理研究.福建农业学报.2000,15(1):16-21.
    [82] Fernando C., Fernando S.. Copper toxicity in rice: Diagnositic criteria and effect on issue Mn and Fe. Soil Sci.. 1992, 2: 130-135.
    [83] Moussa B I M, Dahdoh M S A, et al.. Interaction effect of some microelements on yield, elemental composition and oil content of peanut. Commun, Soil Sci., Plant Anal. 1996, 27 (5-8): 1995-2004.
    [84] 廖金凤.广东省南海市农业土壤中铜锌镍的环境容量土壤与环境.1998,8(1):15-18.
    [85] 张民,龚子同.我国菜园土壤中某些重金属元素的含量与分布.土壤学报.1996,33(1):85-93.
    [86] 李光德,朱鲁生,等.泰安市蔬菜中重金属污染调查研究.山东农业大学学报.1998,29(3):330-334.
    [87] 苏年华,张金彪,等.福建省土壤重金属污染及其评价.福建农业大学学报.1994,23(4):434-439.
    [88] 夏增禄.中国主要类型土壤若干重金属临界含量和环境容量区域分异的影响.土壤学报.1994,31(2):161-168.
    [89] 王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究.农业环境保护.1998,17(5):193-196.
    [90] 涂从,青长乐.紫色土中铜对莴苣生长的影响及其临界值指标的研究.农业环境保护.1990,9(4):13-17.
    [91] 王新,吴燕玉,等.各种改性剂对重金属迁移、积累影响的研究.应用生态学报.1994,5(1):89-94.
    [92] Grazebisz W, Kocialkowski WZ, et al.. Copper geochemistry and availability incultivated soils contaminated by a copper smelter. J. Geochem. Explor. 1997, 58: 301-307.
    [93] L. A. Brun, J. Maillet, et al.. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environmental Pollution. 1998, 102: 151-161.
    [94] M. Pueyo, J. F. Lopez-Sanchez, et al.. Assessment of CaCl_2, NaNO_3 and NH_4NO_3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta. 2004, 504: 217-226.
    [95] Jing Song, Yong Ming Luo, et al.. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution. 2004, 128: 307-315.
    [96] Schramel O, Michalke B, et al.. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. The Science of the Total Environment. 2000, 263: 11-22.
    [97] 莫润苍,邹邦基.土壤锌铁铜锰形态分布及其有效性.热带亚热带土壤科学.1997,6(3):171-175.
    [98] 贺建群,嘉 琳,等.土壤中有效态Cd、Cu、Zn、Pb提取剂的选择.农业环境保护.1994,13(6):246.
    [99] 崔林,孙振,等.马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定.植物病理学报.2003,33(4):353-358.
    [100] 陈世俭.有机物质添加量对污染土壤铜形态及活性的影响.土壤与环境.1999,8(1):22-25.
    [101] 沈汉.京郊菜园土壤元素积累与转化特征.土壤学报.1990,27(1):104-112.
    [102] 倪吾钟,孙琴,等.菜园土壤中的铜及其与土壤有机碳的关系.广东微量元素科学.2000,7(3):53-57.
    [103] 丁峰,苏建平,等.江苏省如皋市土壤微量元素含量动态变化分析及有效性评价.上海农业学报.2005,21(3):88-93.
    [104] Marosits E, Polyak K, et al.. Investigation on the chemical bonding of copper ions on different soil samples. Mierochemieal J.. 2000, 67: 219-226.
    [105] Lehmann R, Harter R. Assessment of copper-soil bond strength by desorption kinetics. Soil Sci. Soc. Am. J.. 1984, 48: 866-870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700