外源铁、硼加入复混肥后的有效性及生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复混铁肥土施矫治石灰性土壤花生缺铁黄化效果显著。为揭示复混铁肥在石灰性土壤中的转化机制及供铁机理,并为优化肥料配方、提高肥料有效性和利用率提供依据,采用生物试验方法,对几种铁肥在石灰性土壤上的形态转化、供铁机理和生物有效性做了系统的研究。此外,采用油菜盆栽试验,研究复混硼肥对油菜生长发育的影响,揭示硼磷交互的生物效应。主要研究结果如下:
     1、复混肥加工过程中无机添加剂的使用可对肥料中有效养分的含量产生影响。对于需要保持含氮量的复混肥来说,应避免用钙粉作为添加剂,使用钙粉作添加剂的复混肥含氮量减少率达0.5%。膨润土和钙粉对于复混肥中的有效磷含量没有产生较大影响。浅红色膨润土的使用对复混肥料有效钾的含量减少影响显著,减少率达0.37%。膨润土适用于需保持含氮量的复混肥,而钙粉适用于需要保持有效钾含量的复混肥。
     2、土壤中施用复混铁肥后,可明显改善花生的生长发育状况。在花生整个生育期, CIF1(1.30-0.975-0.975-0.6825)处理下花生的农艺性状均优于其他处理。铁肥CIF1和CIF2均可有效地增加花生分枝数目,且CIF1的效果优于CIF2。此外,CIF1和CIF2对减少叶片黄化率影响较大。
     3、施用复混铁肥后可明显提高花生新叶活性铁含量,促进叶绿素的合成,使新叶叶绿素含量维持在较高的水平,光合产物的合成增加,促进作物生长,进而提高作物产量。同时花生新叶叶绿素和活性铁含量之间呈正相关关系,可用方程y=ax+b(a≠0)拟合,相关系数为0.9416**。
     4、施用铁肥能够显著增加花生植株干物质的积累量。处理CIF1-H(1.30-0.975-0.975-0.6825)花生植株干物质的积累量最大。花生干物质积累率呈现先增高后降低的趋势。CIF1能较好的促进铁向植株地上部的运输,增加花生产量。植株中的全铁含量并不能完全反映作物的供铁状况。高水平处理中,处理CIF3-H、CIF2-H、CK的根部全铁含量较高,地上部全铁含量则较低。不同铁肥处理对土壤真溶液pH值的影响明显不同。土壤中施入复混铁肥CIF1和CIF2后可明显影响土壤的pH值,CIF1-H(1.30-0.975-0.975-0.6825)的影响最为明显,土壤pH值下降,土壤中有效铁含量较高。
     5、DTPA-Fe和EDDHA-Fe等外源铁的加入提高了土壤中各形态铁的含量,其供铁能力高于硫酸亚铁。土壤溶液DTPA-Fe含量与pH值达到极显著负相关。DTPA-Fe与交换态铁达到极显著相关,与碳酸盐结合态铁和氧化锰结合态铁间的相关系数虽然不大,但相关性达到显著水平。交换态铁与氧化锰结合态铁、碳酸盐结合态铁间存在显著相关性。土壤交换态铁、碳酸盐结合态铁、氧化锰结合态铁与pH值间存在显著负相关。
     6、硼肥可优化作物的生长。施复混硼肥(20-10-20-0.3)6g·盆-1水平下,油菜生长较好。叶绿素含量高,叶片数目、叶面积递增趋势最为明显,根冠比最大。施硼肥(20-10-20-0.5)6g·盆-1的油菜Vc含量最高,可达46.33 mg·kg-1,其单株重也为最高。施硼肥(20-10-20-0.1)6g·盆-1水平下的油菜糖酸比最高,品质较好。
     7、施磷促进硼的吸收。但在严重缺磷、缺硼的条件下,植株有效硼量随磷水平的增加而降低。在相同的供硼量条件下,高磷水平下的土壤有效磷含量显著高于低磷水平,土壤的有效硼含量也明显高于低磷水平。
Compound Iron Fertilizers had significant effects on rectifying peanuts chlorosis caused by iron deficiency. Pot experiments were conducted in this research to reveal the transformation and iron provision mechanisms of Compound Iron Fertilizers in calcareous soil, and thus to optimize its components and improve its availability and utilization efficiency.Systemic researches were also conducted to evaluate the iron provision mechanisms,transformation and bioavailability capacity of several iron fertilizers.In order to reveal biologic effects of interaction of boron and phosphrous, potted cole experiments were adopted to study the growth of cole under different Compound Boron Fertilizers. Main results were as followed:
     1. Inorganic additives could diminish effective nutrients of Compound Fertilizers in the course of manufacturing.For Compound Fertilizers demanding to keep the nitrogen content, calcium carbonate powders as additives should be carefully avoided. The content of nitrogen using calcium carbonate powder as its additives could be reduced by 0.5%. Bentonite and calcium carbonate powders had seldom effect on the available phosphorous in Compound Fertilizers. light red bentonite evidently reduced the content of available potassium by 0.37%. In conclusion, Bentonite was applicable to Compound Fertilizers needing to keep the nitrogen content, in contrast, calcium carbonate powder applied to those needing to keep content of available potassium.
     2. Compound Iron Fertilizers could improve the growth of peanuts significantly. Compared with other treatments, plants fertilized CIF1-H (1.30-0.975-0.975-0.6825) was better in agronomic characters. Accordingly, CIF1 and CIF2 could effectively increase number of branches, and CIF1 was much better. Moreover, CIF1 and CIF2 could reduce percent of peanut etiolated leaves.
     3. After the application of Compound Iron Fertilizer, active iron content in new leaves of peanuts could be increased significantly, thus enhancing the synthesizing of chlorophyll. The content of chlorophyll in new leaves retained at a higher level and the product of photosynthesis was increased. As a result, the plants were guaranteed a fast growth and increased yields. The correlation between chlorophyll and active iron content was positive, and it could be simulated by the formulation y=ax+b (a≠0), and the correlative coefficient was 0.9416**.
     4. Fertilizing Compound Iron Fertilizers could raise the accumulation of dry matter in peanuts significantly.The accumulation of dry matter with CIF1-H(1.30-0.975-0.975-0.6825) treatment was the largest.The accumulated velocity showed the tendency to increase at the beginning and then decrease in the following period. Therefore, CIF1 could promote iron transportation toward above-ground part and increase the yield of peanuts. The content of total iron couldn't completely reflect the provision condition of iron. In the high iron level, the total iron in root in treatments CIF3-H, CIF2-H, CK was higher, while the above-ground part was lower. In addition, pH value of soil solution was markedly different in various iron treatments. After the application of CIF1 and CIF2 to soil, pH value of soil decreased.The effects of CIF1-H(1.30-0.975-0.975-0.6825) was significant.And the available iron content in the soil was higher.
     5. The addition of iron into soils such as DTPA-Fe and EDDHA-Fe increased the iron content of different forms, and the capacity to provide iron was better than FeSO4. There was significantly negative correlation between DTPA-Fe content in soil solutions and pH. The correlation between DTPA-Fe and Exch-Fe was significantly positive. Though the coefficients of DTPA-Fe and other forms of iron such as Carb-Fe and MnOX-Fe were smaller, the correlations were high. In addition, there was positive correlation between Exch-Fe, MnOX-Fe and Carb-Fe. In contrast, the correlations between iron such as Exch-Fe, Carb-Fe and MnOX-Fe and pH value were significantly negative.
     6. Boron could optimize the growth of cole. Under the level of CBF (20-10-20-0.3)6g·pot-1, the cole grew better. Chlorophyll content was high. The number of leaves, leaf area also increased significantly. Besides, ratio of R/S was largest. Under the level of CBF (20-10-20-0.5)6g·pot-1, the content of Vc was 46.33mg·kg-1. And its weight of plant was largest.Under the level of CBF(20-10-20-0.1)6g·pot-1, ratio of Sugar /Acidity was the largest, and its quality was also better.
     7. Phosphorus promoted the absorption of boron. When there was great scarcity of phosphorus and boron, the content of available boron in plants reduced with the increment of the phosphorus. With application of the same amount of boron, the available phosphorus and the content of available boron under the high phosphorus level were higher than that of low level.
引文
1. 鲍碧娟.微量元素锌和含锌复混肥的应用[J].磷肥与复肥,1998(6):49-52.
    2. 曹享云,杨玉华.植物缺硼基因型差异研究.第六届土壤暨首届全国青年植物营养科学工作者学术讨论会论文集.1997,423-427.
    3. 常安之.抗旱肥料的诞生及其意义[J].化工地质,1995(1).
    4. 陈正钢,李春俭,张福锁,等.缺铁条件下菜豆植株茎生长素和根系Fe3+还原酶活性关系[J].中国农业大学学报,1999,4(5): 25-30.
    5. 褚天铎等.化肥科学使用指南(修订版)[M].金盾出版社,2002,190.
    6. 崔骁勇,曹一平,张福锁.氮素形态及 HCO3-对豌豆铁营养的影响[J].植物营养与肥料学报,2000,6(1):84-90.
    7. 崔晓勇,张福锁,王贺,等.两种基因型豌豆根系质外体铁的积累与消耗[J].植物营养与肥料学报,1999,5(1):67-71.
    8. 丁维新.土壤和污泥中微量元素形态分级的研究方法[J].国外农业环境保护,1989,4:22-24.
    9. 方从兵,孙俊.桃铁离子吸收动力学研究[J].中国农学通报,2001,17 (1):4-6.
    10. 韩凤祥,胡霭堂,秦环英,等.几种土壤组分对原有土壤中锌的富集能力的研究[J].土壤学报,1991,28(3): 327-333.
    11. 韩振海,王永章,孙文彬.铁高效及低效苹果基因型的铁离子吸收动力学研究[J].园艺学报,1995,22(4):313-317.
    12. 何念祖译.植物的铁营养[J].土壤学进展,1986,1:19-23.
    13. 黄宏义.果树缺铁失绿症的叶片诊断研究[J].中国果树,1986,1:5-8.
    14. 蒋廷惠,胡霭堂,秦怀英.土壤锌铜铁锰形态区分方法的选择[J].环境科学学报,1990,10(3):280-286.
    15. 蒋廷惠,胡霭堂.土壤中 Zn、Cu、Fe、Mn 的形态及有效性的关系[J].1989,20(5):228-231.
    16. 金河成.甘蓝型油菜磷、硼营养相互作用的研究.中国农业科学院研究生论文集[M].1986.
    17. 李江凌,黄怀琼.石灰性紫色土壤上铁对花生根瘤菌共生固氮的影响[J].四川农业大学学报,1997,15(3):323-328.
    18. 李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].南昌:江西科技出版社,1998.
    19. 李书鼎,邹邦基,朱玺.外源 Zn65进入土壤后的扩散存在形态[J].应用生态学报,1995, 6(4):397-400.
    20. 李文光.微肥的应用与前景[J].大氮肥,2002,25(4):230-235.
    21. 李学柱,罗泽民,何绍兰,等.石灰性紫色土改良措施对枳砧锦吸铁及生长的效果[J].中国农业科学,1990,23(4):35-42.
    22. 李亚东,吴林,张志东,等.土壤 pH 值对越桔的生理作用及其调控[J].吉林农业大学学报,1997,19(1):112-118.
    23. 李银国,伊克宁,王树良.果树缺铁黄化的研究进展[J].热带亚热带土壤科学,1997,6(2):129-133.
    24. 梁雄才,黄小练,万洪富,邓继光.当前复混肥生产发展地有关问题及对策[J].土壤与环境,2002,11(2):213-215.
    25. 林葆,李家康.80年代末中国化肥肥效的演变与平衡施肥[A].国际平衡施肥学术讨论会论文集[C].北京:农业出版社,1995:43-51.
    26. 刘鹏,杨玉爱.钼、硼对大豆叶片膜脂过氧化及体内保护系统的影响.植物学报,2000,42(5):461-466.
    27. 刘文科,杜连凤,刘东臣,石灰性土壤中铁肥的形态转化及其供铁机理研究[J].植物营养与肥料学报,2002,8(3):344-348.
    28. 刘武定,孙晶晶,皮美美.硼对棉花 32P、86Rb、14C 的吸收及其体内分布的影响[J].华中农业大学学报,1987,6(4):341-345.
    29. 刘武定.作物硼素营养与氮、磷、钾、锰的相互关系[J].华中农业大学学报,1995,21(增刊):8-12.
    30. 刘永秀,左元梅,张福锁,等.玉米—花生混作对改善花生铁营养及固氮的影响[J].土壤通报,1999,30 (2):55-56.
    31. 刘铮.中国土壤微量元素[M].南京:江苏科学技术出版社,1996,286-290.
    32. 刘铮等.我国主要土壤中微量元素的含量与分布[J].土壤学报,1978 15(2):138-150.
    33. 陆景陵.植物营养学(上册)[M].北京:北京农业大学出版社.1994,17-25.
    34. 吕世华,刘本洪,胡思农.不同耕作方式下石灰性土壤锰、铁形态的研究[J].土壤通报,1995,26(2):70-72.
    35. 马斯纳著.曹一平,陆景陵译.高等植物矿质营养[M].北京:北京农业大学出版社.1991.
    36. 孟凡华.硼对甜菜生长发育及产量的影响[J].土壤肥料,1995,(3): 47.
    37. 母树宏,白亚君.缺铁花生喷施 FCU 复合铁后叶片中活性铁与叶绿素及产量的关系.花生科技[J].1993,2:7-10.
    38. 南京农业大学主编.土壤农化分析(第二版)[M].北京:农业出版社.1988,171-172.
    39. 钱金红,谢振翅.碳酸盐对土壤锌解吸的影响的研究[Jl.土壤学报,1994,31(1):105-108.
    40. 邵建华,韩永圣,高芝祥.平衡施肥应重视中、微量元素的有效施用[J].磷肥与复肥,2004,19(3):77-78.
    41. 邵建华,韩永圣,高芝祥.中微量元素肥料的生产与应用[J].土壤肥料,2001(4):3-6.
    42. 邵煜庭,甄清香.甘肃主要农业土壤中 Cu,Zn,Mn,Fe 的形态及有效性研究[J].土壤学报,1995,32 (4) :423-429.
    43. 王敬国.植物营养的土攘化学[M].北京:北京农业大学出版社.1995.
    44. 王孝堂.土壤酸度对重金属形态分配的影响[J].土壤学报,1991,28 (1):103-107.
    45. 魏文学.缺硼条件下向日葵叶片叶绿体及线粒体解剖结构的观察[J].华中农业大学学报,1989,8 (4): 36.
    46. 魏孝荣,郝明德,苏蕾.长期施用微量元素肥料对土壤养分的影响[J].水土保持研究,2003,10(1):29-31.
    47. 吴建富,施翔,肖青亮,等.我国肥料利用现状及发展对策[J].江西农业大学学报,2003,25(5):725-727.
    48. 谢青.中国农业科学,1992,18(1):31-37.
    49. 谢世昌.世界肥料使用现状与前景[J].植物营养与肥料学报,1998,4 (4):321-330.
    50. 杨晓冬,孙素琴,李一勤.硼缺乏导致花粉管细胞壁多糖分布的改变.植物学报,1999,41(1):1169-1176.
    51. 杨玉爱,吕滨.柑桔的铁营养诊断方法探讨[J].土壤通报,1988,19 (2):72-74.
    52. 张福锁,刘书娟,毛达如,等.苹果抗缺铁基因型差异的生理生化指标研究[J].园艺学报,1995,22(1):1-6.
    53. 张福锁.植物营养生理生态学和遗传学[M].北京:中国科学技术出版社.1993:80-81.
    54. 赵竹青等.过量硼对莴苣、辣椒活性氧代谢的影响[J].华中农业大学学报.1991,10(3):263-267.
    55. 周正卿,刘藏珍.铁、锌肥对花生生长发育及产量的影响[J].中国油料.1983,(1):45-48.
    56. 周正卿.在石灰性土壤上硫酸亚铁防治苹果黄叶病的研究明[J].土壤学报,1979:127-136.
    57. 朱端卫,陈秀红,刘武定.土壤硼在油菜生长季节的动态研究[J].土壤学报,1998b,35(4):510-515.
    58. 朱端卫,皮美美,刘武定.硼在土壤中的吸附解吸及其对植物吸收硼的影响[J].土壤学报,1998a,35(1):70-74.
    59. 朱端卫等.土壤硼吸附热及温度对硼滞后解吸的影响的研究[J].土壤学报,2000,37(2):250-255.
    60. 诸葛玉平,张玉龙,张旭东,等.塑料大棚渗灌灌水下限对番茄生长和产量的影响[J].应用生态学报,2004,15(5):767-771.
    61. 朱其清.土壤中微量元素的供给及其与植物生长的关系[M].傅积平等编著.见:黄淮海平原区域治理技术体系研究.北京:科学出版社.1987.
    62. 朱燃婉,沈壬水,钱钦文.土壤中金属元素的五个组分的连续提取法[J].土壤.1989,21(3):163-166.
    63. 邹邦基,何雪晖编著.植物营养[M].北京:农业出版社.1985.
    64. 邹春琴,提高玉米和菜豆铁利用效率的途径及机理.博士学位论文,中国农业大学植物营养系,1995,32:45-48.
    65. Aitken,R.L.et al.,Aust. J. Soil Res.1988,26:605-610.
    66. Anikina A.P.Soil melioration:Boron salinization of soils[J].Sov Soil Sci.,1974,6:68-75.
    67. Arnseth R W,Tumer R S.Sequential extraction of iron manganese AI and Silicon in soil from two contrasting watersheds [J].Soil Sci.Soc. Am.,1988,52:1801-1807.
    68. Austin M E et al.Soil pH effects on yield and fruit size of two rabbit eye blueberry cultivars [J].Hort.Sci.,1992,67(6):779-785.
    69. B.Rerkasem and S.Jamjod Genotypic variation in plant response to low boron and implications for plant breeding[J].Plant and soil,1997,193: 169-180.
    70. Bagga,A.K.and Rawson,H.u.Contrasting responses of morphologically similar wheat cultivars to temperatures appropriate to warm temperate climates with hot summer a study in controlled environment[J].Australian Journal of Plant Physiology,1997,4:877- 878.
    71. Barney D.,R.H.Walser,S.D.Nelson,et al.Control of iron chlorosis in apple trees with injections of ferrous sulfate and ferric citrate and with soil-applied iron-Sol[J].Plant Nutr.,1984,7:313-317.
    72. Bartlett,R.J and C.J.Picarell. Availability of boron and phosphorousus as by limiting on acid potato soils[J].Soil sci.,1973,116:77.
    73. Berger,K.C.,and P.J.Pratt.Advances in secondary and micronutrient fertilization,In J.H.McVickar et al.Fertilizer technology and use[J]. SSSA, Madison,WI.,1963,281-340.
    74. Beusichem M.L.van Krikby E.A.,Baas R.Influence of nitrate and ammonium nutrition on the uptake,assimilation and distribution of nutrition in Ricinus communis[J].Plant Physiol,1988,86:914-921.
    75. Birnbaun E.H.et al.Plant Physiol.,1977,59:1034-1038.
    76. Blaser G.J.et al.Plant Physiol.,1989,90:280-284.
    77. Borlaug N E,Dowswell C R. Feeding a human population that increasingly crowds a fragile planet [C].Acapulco,Mexico:15th World Congress of Soil Science,1994,July10-16.
    78. Boxma R.Bicarbonate as the most important soil factor in lime-induced chlorosis in the Netherlands[J].Plant and Soil,1972,37:233-234.
    79. Brown P. H. et al. Boron mobility in plants [J].Plant and soi1,1997, 193:85-101.
    80. Brown P.H.et al.Does boron play only a structural role in the growing tissues of higher plants [J].Plant and soil,1997,196:211-215.
    81. Cakmak I,Kurz H,Marschner H.Short-term effects of bron,germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower[J].Plant Soil,1995,95:11-18.
    82. Cakmak I,Romheld V.Bron deficiency induced impairment of cellular functions in plants[J].Plant Soil,1997,193:71-83.
    83. Carski,T.h.&D.L.Sparks,Soil Sci.Soc.Am J.,1985,49:1114-1116.
    84. Chaney R L,Brown J C,Tiffin L O.Oblogatory reduction of ferric chelatesin iron uptake by soybeans[J].Plant Physio.,1972,50:208- 213.
    85. Correa,A.E.et al. Pesqui.Agrupecu.Bras.,1985,20(2):177-181.
    86. Coulombe B. A.,Chaney R.L. et al. Bicarbonate directly induce iron chlorosis in susceptible soybean cultivar [J].Soil Science Society American J.,1984,48:1297-1301.
    87. Dugger W M.Inorganic plant nutrition.Enyclopedia of Plant Physiology.Academic Press, New York.1983,15B:626-650.
    88. Fehr W.R.Current practices for correcting iron deficiency in plants with emphasis on genetics[J]. J. Plant Nutr.,1984,7:347-352.
    89. Fleming G A.Essential micronutrients.1:Boron and molybdenum. In Fleming,G.a.Applied Soil Teace Elements.1980,155-197.
    90. Gile,P.L.,J.O.Carrero.Cause of lime-induced chlorosis andavailability of iron in the soil[J].J.Agric.Res.,1920,20: 33-62.
    91. Graham R.D.Breeding for nutritional characteristics in cereals [J].Adv. Plant Nutr.,1984,1:57.
    92. Gueriot M.L.Yi.Y.Iron: nutritious,noxious and not readily available [J].Plant Physiology,1994,104(3): 815-820.
    93. Gupta U.C.et al.Boron toxicity and deficiency: A review[J].Gan J of Soil Sci.1985,65:381-409.
    94. Gupta,U.C.and J. A .Mac Leod..Influence of calcium and magnesium sources on boron uptake and yield of alfalfa and rutabagas as related to soil pH[J].Soi1 Sci.,1977,124,279.
    95. Gupta.U.C.Relationships of total and water-soluble boron and fixation of added boron to properties of podsol soils[J].Proc.S.S.S.A.,1968, 32, 45.
    96. Hanson E.J.Movement of boron out of tree fruit leaves [J].Hort Science,1991,26L:271-273.
    97. Haynes R J et al. The effect of applied iron on micronutrient availability and nutrient uptake by high bush blueberry plants grown in peat or soil [J].J.Hort.Sci.,1986,61(3):287-294.
    98. Haynes R.J.et al.Effects of liming on the extractability of Fe,Mn,Zn and Cu and the growth and micronutrients uptake of high bush blueberry plants[J].Plant and soi1,1985,84:213-223.
    99. Jeschke.Shoot-dependent regulation of sodium and potassium fluxes in roots of whole barley seedlings [J].Exp.Bot.,1982,135: 608-618.
    100.Jessen H.J.Dragoruk M.B.,Hintz RW.,et al.Alternative breeding strategies of iron efficiency in soybean[J].Plant Nutr.,1988,11:717.
    101.Jin J Y et a1.Distribution and plant ability of soil boron fractions [J].Soi1 Sci.Soc.Am.J.,1987,51:1228-1231.
    102.Krikby E.A.K.Mengel.Ionic balance in different tissues of the tomato plant in relation to nitrate,urea or ammonium nutrition[J].Plant Physiol.,1967,42:6-14.
    103.Krucger R.W.et al.Plant Physiol.,1987,83:254-258.
    104.Landsberg E.C.Shoot-root interaction in the regulation of Fe-deficiency stress induced H+ effux from sunflower roots[J].Plant nutrition colloq.A.Scaifeed.Common wealth Agricultural Bureaux, 1982:310-315.
    105.Landsberg.Transfer cell formation in root epidermis:A prerequisite for Fe-efficiency[J].Plant Nutrition,1984,5: 415-433.
    106.Lindsay W L.Schwab A P.The chemistry of iron in soils and its availability to plants[J].Plant Nutr.,1982,5 (5): 821-840.
    107.Lindsay.Iron oxide solubilization by organic matter and its effect on iron availability [J].Plant and Soil,1991,130:27-34.
    108.Liren-an &U.C.Gupa,Pedosphere.1991,1(2):137-144.
    109.Longecker N.,Welch R Accumulation of apoplastic iron in plant root [J].Plant Physiol.,1990,92:17-22.
    110.Longnecker N.Iron nutrition of plants [M].ISI Atlas of Science,Animal and Plant Sciences:1988,143-150.
    111.Lyon T.L.,H.O.Buckman,N.C.Brady.The nature and properties of soils [M].Macmillan,New York,1982.
    112.Marchner H.,Treedy M.,Roemld V.Role of root induced changes in the rhizosphere for iron acquisition in higher plants[J].Z.Flanzenmaehr Bodenkd,1989,152:197-204.
    113.Mass,Van de Wetering,P.A.M et al. Characterization of phloem iron and its possible role in the regulation of iron-efficiency reaction[J].Plant Physiology,1988,87,167-171.
    114.Mengel K,Breininger M Th,Bubl W. Bicarbonate,the most important factor inducing iron chlorosis in vine grapes on calcareous soil[J].Plant and Soil,1984,81:333-344.
    115.Mengel K.,Krikby E.A.Principles of plant nutrition.3rd Edition.1982
    116.Mengel K.S.N.Mallissiovas.Light dependent proton excretion by roots of entire vine plants (Vitis vinifera L.)Z[J].PflanzenemahrungBodenkd,1983,146:560-571.
    117.Mezuman U,Keren R,Boron adsorption by soils using a phenomenological adsorption equation[J].Soil Sci.Soc.Am.J.,1981, 45:722-726.
    118.Moragttan J T and Mascagni H J 1991 Environmental and soil factors affecting micronutrient deficiencies and toxicities.In micronutrients in Agriculture,2nded,eds.J J Mortyedt;F R Cox,L M Shuman pp.Soil Science Society America Book Series No.4,371-426.
    119.Nirupamaa Gogoi,Das M,Bora D K.Effect of organic matter on the transformation of different fractions iron in some Alfisols of Assam under submergence[J].Indian Soc.Soil Science,1999,47(1):147-153.
    120.Nishio,J.N.,J.Abadia,N.Terry.Chlorophyll-proteins and electron transport during iron nutrition-mediated chloroplast development [J]. Plant Physiol.,1985,78:296-299.
    121.O'Connor,G.A.,W.L.Lindsay,S.R.Olsen,Diffusion of iron chelates in soil[J].Soil Science Society Am.Proc.1971,35:407-410.
    122.Optimization of Plant Nutrition[C].Lisbon,September,1992.Kluwer Academic Pubs.The Netherlands.,1993:651-656.
    123.Peterson L.A.Influence of soil pH on the availability of added boron. Proc.S.S.S.A.1976,40,280.
    124.Pinyerd C.A.et al. Boron movement in a norfolk loa my sand [J].Soil Sci.,1984,137:428-433.
    125.R W Bell.Diagnosis and prediction of boron deficiency for plant production [J].Plant Soil.,1997,193:149-168.
    126.Rajkumar G R,Patil C V,Prakash S S. Distribution of forms of iron in relation to the properties of rice soils[J].Maharastra Agric.Univ., 1998,22(3): 367-370.
    127.Razeto B.Treatments for iron chlorosis in peach trees[J].Plant Nutr.,1982,5(47):917-922.
    128.Schwerhnann U. Solubility and dissolution of iron oxides [M]. In:Chen and Hadan Y.Cells. Iron Nutrition and Interactions in plants. Netherlands: Kluwer Academic Publishers. 1991.
    129.Shaviv,A.Controlled supply of fertilizers for increasing use efficiency and reducing pollution [A].In:Fragoso J P (ads).VIII International Colloquium on Shelp B.J.et al. Boron mobility in plants [J].Plant physiol,1995,94:356-361.
    130.Shelp B.J.et al. Boron nutrition and mobility and its relation to hollow stem and elemental composition of greenhouse grown cauliflower [J]. Plant Nutr,1987,10:143-162.
    131.Shorrocks,V.M.The occurrence and correction of boron deficiency [J]. Plant and Soil.1997,193:121-148.
    132.Shuman L.M.Effect of removal of organic and iron or manganese-oxides on zinc adsorption by soil[J].Soil Sci.,1988,146(4): 248-254.
    133.Shuman L.M.Extraction method for soil microelements [J].Soil Sci. 1985,140:11-l2.
    134.Sims S R and Johnson G V Micronutrient soil tests.In Micronutrients in Agriculture 2nd R M Welch. Soil science society America Book Series No.4.1991.
    135.Sing J.P.S. Karwasra. Distribution and forms of copper,iron,manganese and zinc in calcareous soils of India[J].Soil science,1988, 146(5):359-365.
    136.Spicrs J M .Influence of lime and sulfur soil additions on growth,yield and leaf nutrient content of rabbit eye blueberry[J].J.Am.Soc.Hort. Sci.,1984,109(3):559-562.
    137.Steward I,Leonard C.D.Chelates as sources of iron for plants growing in field.Science,1952,116:564-566.
    138.Stover R.C.,L.E.Sommers,D.J.Silviera.Evaluation of metals in waste water sludge[J].Water pollution control Fed,1976,48 :2165-2175.
    139.Tang C.,Robson A.D.Dilworth M.J.The role of iron in the rhizobiumlegume symbiosis [J].Plant Nutr.1992,150(10): 2235-2252.
    140.Tear ID.Boron nutrition and acid-soluble phosphorousus compounds in bean roots[J].Hortscience,1974,19:236.
    141.Terry N. Abadia J. Function of iron in chloroplast [J].Plant Nutr., 1986,9(37):609-646.
    142.Tessier A.P.G.C.Campbell,M.Bisson.Sequentialextraction procedure for the speciation of particulate trace metals[J].Anal.Chem.,1979,51:844-851.
    143.Thoulou,Herve Scntence et al.Role of apoplast acidification by the H+ pump.Effect on the sensitivity to pH and CO2 of iron reduction by roots of Brassica napes L[J]. Plants.1992,186:212-218.
    144.Tomoki Takahash,Chang Yong Park,Hideharu Nakajima et al.Ferric iron transformation in soils with rotation irrigated rice-upland crops and effect on soil tillage properties[J].Soil Science and Plant Nutrition,1999, 45(1):163-173.
    145.Wallace,A.,Lunt O.R.Iron chlorosis in horticultural plants[J].A review. J. Am.Soc.Horti.Sci.,1960,75:819-841.
    146.Yermiyahu,U.,R.Keren,and Y.Chen.Boron sorption by soil in the presence of composted organic matter[J].Soil Sci.Soc.Am.J.,1995,: 405-409.
    147.Zhang FS.et al.Role of the root apoplasm for iron acquisition by wheat plants [J].Plant Physiol.1991,97:1302-1305.
    148.Zhang M.,Alva A.K.,Li Y.C.et al.Fractionation of iron,manganese, aluminum,and phosphorousus in selected sandy soils under citrus production[J].Soil Sci.Soc.Am.J.,1997,61:794-801.
    149.Zhou ZQ.Liu CZ.Studies on the application of ferrous sulphate for controlling chlorosis of appleiree on calcareous soils [J].J. Plant Nutr., 1982,5(4-7):883-896.
    150.Zhu D,Shi L,Liu W D. Temperature Effect on Boron Adsorption Desorption Kinetics in Soils[J].Pedosphere.1999,9 (3): 243-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700