微囊藻毒素对微生物的生理生态学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝藻水华暴发和蓝藻毒素已成为世界性环境问题。蓝藻水华带来的主要危害之一是蓝藻毒素的产生。在已发现的蓝藻毒素中,微囊藻毒素分布最广泛、危害最严重。目前,关于微囊藻毒素的毒性研究大多集中在动物、植物上。微生物(细菌、放线菌、真菌)作为生态系统中的主要分解者和消费者,作为生源元素生物地球化学循环的推动者之一,在生态系统中起着重要的作用;其群落多样性的改变直接影响着水生态系统的结构和功能。本文选择革兰氏阴性和革兰氏阳性代表菌株大肠杆菌和枯草芽孢杆菌为实验材料,研究了微囊藻毒素对其生长及生理学效应。探讨了微囊藻毒素对微生物氮、磷循环中的主要功能类群反硝化细菌和有机磷细菌的生理功能的影响,以期了解微囊藻毒素对微生物在自然界物质循环中是否具有一定的生态学效应,同时也为蓝藻水华污染治理最终目的-生态系统的恢复提供一定的理论基础和依据。
     1.微囊藻毒素的制备
     以滇池微囊藻干粉为材料,采用常规的制备方法,大量制备并获得了一定纯度的粗毒素,经HPLC分析,粗毒素主要为MC-RR,纯度为23.58%。MC-RR纯品是粗毒素经制备型HPLC进一步纯化而获得。经HPLC进一步分析,纯度达95%以上,可用于常规的毒理学实验。
     2. MC-RR对大肠杆菌和枯草芽孢杆菌生长及生化特性的影响
     低浓度MC-RR处理下,大肠杆菌和枯草芽孢杆菌的生长、细胞活性和对照几乎没有差异,高浓度MC-RR能在较短时间内抑制大肠杆菌和枯草芽孢杆菌的生长和细胞活性,但这种抑制作用仅仅是一种短时效应,随着毒素暴露时间的延长,处理组和对照组的生长曲线几乎呈平行趋势,无明显差异。
     微生物细胞对毒素胁迫的响应也表现在细胞内可溶性蛋白与可溶性糖的含量改变上。实验结果表明,大肠杆菌和枯草芽孢杆菌在MC-RR处理之初,细胞内蛋白质含量和对照相比有增加的趋势,显著增加量出现的时间不同可能和细菌本身特性有关。但随着时间的延长,处理组细胞内可溶性蛋白的含量有所下降,这可能是因为微生物细胞逐渐适应了这种环境的胁迫,从而使细胞的代谢速率减慢,细胞内可溶性蛋白含量降低。由此可见细菌细胞内含物对环境毒素的胁迫具有一定的应答反应,在一定程度上说明微囊藻毒素对微生物的毒性效应。
     3. MC-RR对大肠杆菌和枯草芽孢杆菌细胞膜透性的影响
     研究表明,MC-RR能增加大肠杆菌和枯草芽孢杆菌对溶菌酶的敏感性和渗透性。MC-RR和溶菌酶的协同效应显示了MC-RR对细菌细胞膜渗透性的影响,并且结果显示,这种协同作用具有一定的剂量和时间效应。同时我们的试验还表明,MC-RR能明显促进大肠杆菌和枯草芽孢杆菌细胞内可溶性蛋白和可溶性糖含量的外渗,并且随着毒素浓度的增加,处理组可溶性蛋白和可溶性糖的外渗量和对照相比越明显。结果进一步证明了MC-RR对大肠杆菌和枯草芽孢杆菌细胞膜渗透性的影响,但是这种影响变化非常有限,在毒素处理1 h时,处理组细胞内可溶性蛋白和可溶性糖的含量几乎都达到高峰,随后的处理时间内,变化不明显。
     4. MC-RR对大肠杆菌的氧化胁迫
     低浓度MC-RR(0.1,1 mg/L)的处理组ROS含量在整个试验过程中和对照相比均无明显变化,说明不足以引起大肠杆菌细胞的氧化胁迫。而高浓度MC-RR(5,10 mg/L)处理组在1 h时,细胞内ROS含量均显著高于对照,表明细胞受到了氧化胁迫,这种氧化胁迫是由MC-RR引起的,但随着处理时间的延长,处理组ROS含量逐渐下降,恢复到和对照相似的水平,说明细菌通过自身系统的适应和调节逐渐消除了细胞内的活性氧。细胞内TBARS含量变化趋势类似于ROS,低浓度MC-RR不足以引起细胞的膜脂过氧化,整个实验过程中和对照无明显差异,但高浓度MC-RR(5,10 mg/L)处理1 h时,细胞膜脂过氧化程度显著增加,随后由于细胞自身的保护系统,TBARS含量逐渐降低恢复到对照水平。高浓度MC-RR处理下,SOD和CAT酶活性也显著升高,随后逐渐恢复到对照水平。低浓度毒素处理下和对照无明显差异。GSH含量和GR活性变化,均在低浓度MC-RR暴露1 h时低于对照,而在高浓度毒素暴露1 h时明显高于对照,随后逐渐恢复到对照水平。
     5. MC-RR对枯草芽孢杆菌的氧化胁迫
     低浓度MC-RR处理枯草芽孢杆菌1 h时细胞内SOD、CAT酶活性以及TBARS、GSH含量和对照相比无明显差异。高浓度MC-RR处理组SOD、CAT、GR酶活性以及TBARS、GSH含量均明显高于对照。10 mg/L MC-RR对枯草芽孢杆菌氧化胁迫的时间效应表明,MC-RR处理1 h时,SOD、CAT、GR酶活性以及TBARS、GSH含量均明显高于对照,但随着处理时间的延长,逐渐恢复到对照水平。
     6.反硝化细菌及有机磷细菌的分离纯化及鉴定
     从滇池水样之中分离到了两株反硝化细菌和有机磷细菌,根据形态学和16S rDNA序列分析对其进行了鉴定。结果表明,DN-3属于Bacillus gibsonii,DN-5属于Oceanobacillus iheyensis;P-1和P-2均属于Serratia marcescens.
     7. MC-RR对反硝化细菌及有机磷细菌生长及生理功能的影响
     研究结果表明,MC-RR能够抑制反硝化细菌的生长及其反硝化作用,并且随着浓度的增大,这种抑制效果越明显。但随着处理时间的延长,细菌逐渐抵抗了毒素的胁迫,恢复了生长,从而使处理组和对照组生长曲线均成上升趋于平行。MC-RR可能通过抑制反硝化细菌的生长和NR酶活性,从而抑制了培养液中硝态氮含量的减少、亚硝态氮含量的升高,说明MC-RR对反硝化细菌的功能具有一定的影响。
     高浓度MC-RR同样能够显著抑制有机磷细菌的生长,而低浓度处理组和对照无明显差异,并随时间延长逐渐恢复。MC-RR对ACP和AKP酶活性的影响类似,具有一定的剂量抑制效应。但仅在实验处理的24~48 h内处理组和对照组磷酸酶活性和0 h相比有所变化,随后的处理时间内变化均不明显。整体来看,处理组细胞内ACP和AKP酶活性均低于对照组,说明MC-RR抑制了磷酸酶的活性。高浓度MC-RR能够显著抑制磷细菌培养液中可溶性磷酸盐含量,说明抑制了有机磷细菌的解磷能力,这种解磷能力的降低可能主要归因于对细菌数量以及磷酸酶活性的抑制。
Toxic cyanobacterial blooms in fresh water bodies have been becoming a kind of ecological disaster worldwide. One of the most harmful effects of cyanobacterial blooms is typically from the toxins produced by the algae,which represent a major threat to human, livestock and wildlife health. Of all the algal toxins, microcystins are among the most abundant and diverse. Most investigations into the toxicity of the microcystins are focused on animals and higher plants. In this paper the ecophysiological effects of microcystins on bacteria and its possible mechanism were studied. The main results are as follows:
     1. Microcystins from Microcystis bloom in Lake Dianchi were extracted and purified with high performance liquid chromatography (HPLC). MC-RRwith a purity over 95% was finally obtained by preparative HPLC.
     2. The growth and biochemical response of Escherichia coli (E.coli) and Bacillus subtilis (B. subtilis) to MC-RR were studied. The results showed that the growth and cell viability of bacteria were inhibited for a short period compared with that of the control when exposed to MC-RR. But the dose of MC-RR did not have a lethal effect. E.coli and B. subtilis only showed growth inhibition at the initial growth phase when cells were treated with MC-RR. Indeed the normal rate of growth was gradually re-established and the growth curves of the toxin-treated and untreated bacteria became parallel. The cell viability of E.coli and B. subtilis were also inhibited for a short period compared with that of the control which was similar to the growth of bacteria. The contents of protein and soluble sugar in cells increased compared with that of the control at the beginning of MC-RR exposure and then gradually decreased. The results showed the stress of MC-RR on E.coli and B. subtlis. The change of protein and soluble sugar make cells suit for the stress of MC-RR gradually.
     3. The permeabilising ability of MC-RR under different concentrations to the cell outer membrane of E. coli and B. subtilis was demonstrated by a rapid and sustained reduction in the OD675 values of lysozyme-treated cells. And the decrease of the absorbance values significantly showed a time- and dose-effect. The extravasations of protein and soluble sugar increased with the increment of the treated-concentration of MC-RR and the prolonged of the treated-time. The results showed that MC-RR could increase the permeability of cell outer membrane of E.coli and B.subtilis. Though the permeability effect of microcystins on cell outer membranes is still controversial and inconclusive our results once again showed that MC-RR could increase the permeability of cell outer membrane of E.coli and B.subtilis. And the synergistic effects of MC-RR and lysozyme on bacteria might indicate that MC-RR might play the ecological role on bacteria by combining with other substance in some aquatic environments.
     4. In the present paper, E.coli was undertaken to determine the effect of microcystin-RR on microbes. For this purpose, six biochemical parameters including reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione (GSH) were investigated in E.coli when exposed to 0.1, 1, 5, 10 mg/L MC-RR. With high concentrations MC-RR exposure, the results showed that the ROS level and TBARS contents of E.coli were obviously increased after 1 h exposure to MC-RR. At the same time, the activities of antioxidant enzymes including SOD and CAT as well as GR activity and GSH contents in bacterial cells were also increased when exposed to MC-RR for 1 h, subsequently decreased. These results suggested that MC-RR could cause the accumulation of ROS in E.coli and induce the oxidant stress for a short period. The antioxidant system protects E.coli from oxidative damage.
     5. B. subtilis was undertaken to determine the dose- and time- effect of MC-RR, and the results showed that the activity of antioxidant enzymes including SOD and CAT was significantly increased than that of the control when exposed to 5 or 10 mg/L MC-RR for 1 h. The contents of TBARS and GSH as well as GR activity were obviously increased only when exposed to 10 mg/L MC-RR. For the time-effect of MC-RR on B. subtilis, the activities of antioxidant enzymes including SOD and CAT as well as GR activity and TBARS, GSH content in B. subtilis were first significantly increased and than subsequently decreased. These results suggested that MC-RR could induce the oxidative stress of B. subtilis for a short period. The antioxidant system protects B. subtilis from oxidative damage.
     6. Two strains denitrifying bacteria and Organic phosphorus bacteria were isolated to further study the effect of MC-RR on the population of functional bacteria. From the morphological characteristics and results of 16S rDNA sequence analysis, the denitrifying bacteria were identified as Bacillus gibsonii and Oceanobacillus iheyensis, the organic phosphorus bacteria were identified as Serratia marcescens.
     7. The growth and denitrification function of denitrifying bacteria were prolonged by MC-RR. It showed a time- and dose-effect. The decrease of Nitrate and the increase of nitrite were both inhibited as a result of the growth and NR activity inhibition. Indeed with the toxin-treated time increased, the normal rate of growth was gradually re-established and the growth curves of the toxin-treated and untreated bacteria became parallel. The effect of MC-RR on organic phosphorus bacteria was similar to that on denitrifying bacteria. During all the experiment the enzyme activity of ACP and ALP were lower than that of the control and finally the content of phosphate in liquid medium decreased with the exposure of MC-RR.
引文
陈德辉。种间竞争及蓝藻水华形成的生物学过程。中国科学院水生生物研究所博士论文,1999
    陈少莲,刘肖芳,胡传林等。 论鲢、鳙对微囊藻的消化利用。水生生物学报, 1990,14(1): 49-58
    丁文兴,沈汉明,朱惠刚等。铜绿微囊藻毒素的肝细胞毒性及活性氧生成作用。中国预防医学杂志,1998,32(5):278-280
    段学军,闵航。镉对稻田土壤典型微生物种的胁迫生理毒性。生态环境,2005,14(6):865-869
    高爱环,李红樱,郭海福。水体富营养化的成因、危害及防治措施。肇庆学院学报,2005,26:41-44
    何振荣,俞家禄,何家菀等。东湖蓝藻水华毒性的研究-Ⅱ季节变化及微囊藻的毒性。水生生物学报, 1989, 13(3):201-209
    和丽萍。利用化学杀藻剂控制滇池蓝藻水华研究。云南环境科学,2001,20:43-44
    胡智泉,刘永定。微囊藻毒素对细长聚球藻生长及生理生化特性的影响。水生生物学报, 2004,2:155-158
    黄祥飞,陈伟民,蔡启铭。湖泊生态调查观测与分析。北京:中国标准出版社,2000
    金丽娜,张维昊,郑利等。 滇池水环境中微囊藻毒素的生物降解。中国环境科学, 2002, 22 (2): 189-192
    雷腊梅,宋立荣。 微囊藻及其毒素的分子生物学研究进展。自然科学进展, 2002 , 12(4):350-355
    李阜棣,胡正嘉。微生物学。北京:中国科学出版社,2000
    李欣,李红玉。病源中的活性氧释放研究进展。生态学报,2006,26(7):2382-2386
    连民,刘颖,俞顺章等。 饮用水中微囊藻毒素对人群健康影响的横断面研究. 中华流行病学杂志, 2000, 21(6): 437-440
    刘健康。高级水生生物学。科学出版社,1999
    刘玲莉,顾宇飞,罗屿等。一株自太湖微囊藻上分离到的细菌的生长及磷代谢。湖泊科学,2000,12(4):373-378
    刘新尧,石苗,廖永红,邹莉,安成才。食藻原生动物及其在治理蓝藻水华中的应用前景。水生生物学报,2005,29:456-461
    刘永定。蓝藻水华暴发的主要生物学机制。第十二届中国藻类学研讨会论文摘要集,2003,141
    刘永定等。“滇池蓝藻水华污染控制技术研究”报告,2004
    卢兆曾,李纪忠。水源富营养化问题及危害。山东水利,2005,3:16
    吕锡武, 稻森悠平,丁国际。 有毒蓝藻及藻毒素生物降解的初步研究。 中国环境科学, 1999, 19 (2): 138-140
    马瑞霞,冯怡,李萱。化感物质对枯草芽孢杆菌在厌氧条件下的生长及反硝化作用的影响。生态学报,2000,20(3):452-457
    钱芸,戴树桂,刘广良。富营养化淡水水体微囊藻毒素的研究进展。环境污染技术与设备, 2002, 8(3):13-17
    乔明彦, 何振荣, 沈智等。 达赉湖鱼腥藻水华对羊的毒害作用及毒素分离。 内蒙古环境保护, 1996, 8(1): 19-20
    沈银武,刘永定,吴国樵,敖鸿毅,丘昌强。富营养化湖泊滇池水华蓝藻的机械清除。水生生物学报,2004,28:131-136
    施玮, 朱惠刚, 晏晓蓉等。 微囊藻提取物对大鼠原代培养的肝细胞酶学和形态学影响研究。环境与健康杂志, 2001, 18(5):259-261
    史家樑,徐亚同,张圣章?肪澄⑸镅АI虾#夯Ψ洞笱С霭嫔纾?993
    宋春雷,曹秀云,李建秋等。湖泊磷酸酶与微生物活性对内源磷负荷的贡献及其与富营养化的关系。中国科学,2005,35:90-100
    宋立荣, 雷腊梅, 何振荣。 滇池水华蓝藻铜绿微囊藻和绿色微囊藻的生长生理特性及毒素分析。水生生物学报,1999,23(5):402-408
    苏红. 水体富营养化。联合国环境规划署报告,1993。
    孙露, 沈萍萍, 周莹等。 太湖水华微囊藻毒素对小鼠免疫功能的影响。 中国药理学与毒理学杂志, 2002, 16(3): 226-230
    王国惠。细菌生理群的研究及其生态学意义。生态学报,1999,19(1):128-133
    王俊,张义兵。化学污染物与生态效应。北京:中国环境科学出版社出版,1993
    卫国荣, 张占英, 连民等。 微囊藻毒素LR 对SD孕鼠胎盘的损伤作用。 中国公共卫生, 2002, 18(8): 921-922
    吴生才,陈伟民。 水体富营养化的渐进性和灾难性。灾害学,2004, 19:13-17
    吴振斌, 陈辉蓉。人工湿地系统去除藻毒素研究。长江流域资源与环境, 2000, 9 (2): 242-246
    谢雄飞,肖锦。水体富营养化问题评述。四川环境,2000,19(2):22-25
    徐海滨,严卫星。 淡水湖泊微囊藻毒素的污染和毒理学研究。卫生研究, 2002,31(6):477-480
    许光辉,郑洪元等编。土壤微生物分析方法手册。农业出版社,1986:278-279
    阎海,潘纲,张明明。 微囊藻毒素研究进展。 生态学报,2002,22 (11): 1968-1975
    尹黎燕,黄家权,沈强,李敦海,刘永定。微囊藻毒素对沉水植物苦草生长发育的影响,水生生物学报,2004,28(2):147~150
    余国忠, 王占生。 饮用水处理中藻毒素污染及其工艺控制特性研究。给水排水, 2002,(3): 26-29
    苑宝玲, 曲久辉, 王敏。 高铁酸盐对藻类肝毒素的降解。 环境科学, 2002,23 (2): 96-99
    张杭君,张建英,焦荔,陈英旭。微囊藻毒素的快速提取方法研究。浙江大学学报,2005,31(6):736-740
    张维昊, 方涛, 徐小清。 滇池水华蓝藻中藻毒素光降解的研究。中国环境科学, 2001, 21 (1): 1-3
    张甬元,徐立红,周炳升等。鱼体中谷胱甘肽对微囊藻毒素解毒作用的初步研究。 水生生物学报,1996,20(3):284-286
    张占英, 连民, 刘颖等。 微囊藻毒素LR 对胎鼠的致畸和损伤作用. 中华医学杂志, 2002, 82(5): 345-347
    张占英,俞顺章,陈传炜。 微囊藻毒素LR 对DNA 和自然杀伤细胞的损伤效应研究。 中华预防医学杂志, 2001, 35(2): 75-78
    赵金明,朱惠刚。 微囊藻毒素对fos、jun 基因表达及细胞周期的影响。中华预防医学杂志, 2003,37(1):23-25
    郑天凌,王斐,徐美珠等。台湾海峡海域细菌产量、生物量及其在微食物环中的作用。海洋与湖沼,2002,33(4):415-423
    郑天凌。微藻在海洋环境中自净的作用。环境科学学报,1990,10(2):95-100
    钟萍,林志芬,刘正文,孔令仁。水环境中活性氧的来源、种类及测定方法。生态科学,2005,24(4):364-367
    朱光灿, 吕锡武。藻毒素在传统净水工艺中的去除特性。环境化学, 2002, 21 (6): 585-588
    Alam M., Shimizu Y., Ikawa M., Sasner J.J. Reinvestigation of the toxins from the bluegreen algae Aphanizomenon flos-aquae by a high performance chromatographic method. J. Environ. Sci. Health A, 1978, 13:493-499
    Ana I.P., Jos A., Pichardo S., Moreno I., Camean A.M. Differential oxidative stress responses to microcystins LR and RR in intraperitoneally exposed tilapia fish (Oreochromis sp.) Aquatic Toxicology, 2006, 77: 314-321
    Andersen R.J., Luu H.A., Chen D.Z.X., et al. Chemical and biological evidence links microcystins to salmon“netpen liver disease”. Toxicon, 1993, 31(10):1315 -1323
    Auderson D. M. Turning back the harmful red tide. Nature, 1997, 388: 513-514
    Babinchak J.A., Mcgovern E.R., Doucette G.J. Isolation and characterization of the bacterial flora associated with PSP-related dinoflagellate species. Harmful Algae, Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO 1998, 410-413
    Baganz M., Staaks G., Steinberg C. Impact of the cyanobacteria toxin, microcystin-LR on behaviour of zebrafish, Danio rerio. Water Research, 1998, 32 (3): 948 -952
    Banerjee B.D., Seth V., Bahattacharya A. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicology letters, 1999, 107(2): 33-47
    Beers R.F., Aizer I.W. A spectrophotometric method for measuring breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 1952, 195: 133-140
    Bell S.G., Codd G.A. Cyanobacterial toxins and human health, 1994, 5: 256-264
    Best J.H., Pflugmacher S., Wiegand C., Eddy F.B., Metcalf J.S., Codd G.A. Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transterase activities in zebra fish (Danio rerio). Aquatic Toxicology, 2002, 60: 223-231
    Beyer W.F., Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 1987, 161: 559-566
    Blaha L., Kopp R., Simková K., Mares J. Oxidative stress biomarkers are modulated in silver carp (Hypophthalmichthys molitrix Val.) exposed to microcystin-producing cyanobacterial water bloom. Acta Veterinaria Brno, 2004, 73: 477-482
    Bojan S., Tina E. Microcystins induce morphological and phyxiological changes in selected representative phytoplanktons. Microbial Ecology, 2005: 1-8
    Botes D.P., Kruger H., Viljoen C.C. Isolaton and characterization of four toxins from the blue-green alga, mircrocystis aeruginosa. Toxicon, l982, 20 (6): 945-954
    Botha N., Michelle M., Tim G., et al. The role of microsystin-LR in induced of apoptosis and oxidative stress in CaCo2 cells. Toxicon , 2004,43: 85-92
    Bouaicha N., Rivasseau C., Hennion M.C., et al. Detection of cyanobacterial toxins (microcystins) incell extracts by micellar electro kinetic chromatography. Journalof Chromatography B: Biomedical Sciences and Applications, 1996, 685 (1): 53-57
    Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254
    Buffle J., Vitre D.R.R. Chemical and biological regulation of aquatic systems. London: Lewis publisher, 1984
    Cakmak I., Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascrobate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1992, 98:1222–1227.
    Carbis C.R., Rawlin G.T., Mitchell G.F., et al. The histopathology of carp, Cyprinus carpioL., exposed to microcystins by gavage ,immersion and intraperitoneal adminidtration. Journal of Fish Diseases, 1996, 19:199-207
    Carltle P.R. Further studies to investigate microcystin-LR and anatoxin-A removal from water. Foundation for Water Research, 1994, 5 (2): 158-166
    Carmichael W.W. The toxin of cyanobacteria. Sci. Am. 1994, 270: 64-72
    Carmichael W.W. The toxins of cyanobacteria. Scientific American, 1994, 270(1): 78-86
    Carmichael W.W., Briggs D.E., Gorham P.R. Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science, 1975,187: 542-544
    Carmichael W.W., Falconer I.R. Algal toxins in Seafood and Drinking Water. London: Academic Press. 1993, 187-209
    Carmichael W.W., Mahood N.A., Hyde E.G. Natural toxins from cyanobacteria. In: Hall S., Strichartz G. (Eds) Marinetoxins, Origin, Structure and Molecular Pharmacology, ASC Symposium Series 418. Washington DC: American Chemical Society, 1990, 87-106
    Chapman D.J., Harrison P.J. Nitrogen metabolism and measurement of nitrate reductase activity. In: Lobban C.S., Chapman D.J., Kremer B.P.(Eds) Experiment phycology: a laboratory manual. London: Cambridge University Press,1988: 196-200
    Chen J.Z., Song L.R., Dai J., Gan N.Q., Liu Z.L. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon, 2004, 43: 393-400
    Chesney J.A., Eaton J.W., Mahoney J.R. Bacterial glutathione: a sacrificial defense against chlorine compounds. Journal of Bacteriology, 1996, 178: 2131-2135
    Chorus I., Bartram J. (Eds) Toxic cyanobacteria in water. London: St Edmundsbury press, 1999, 42.
    Chu F.S., Huang X., Wei R.D., et al. Production and characterization of antibodies against microcystins. Applied and Environmental Microbiology, 1989, 55: 1928-1933
    Codd G.A. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecological Engineering, 2000, 16: 51-60
    Codd G.A. Cyanobacterial toxins: Occurrence, properties and biological significance. Wat sci Technol., 1995, 32:149-156
    Codd G.A., Bell S.G., Kaya K., Ward C.J., Beattie K.A., Metcalf J.S. Cyanobacterial toxins, exposure routes and human health. Eur. J. Phycol., 1999, 34:405-415
    Dawson R.M. The toxicology of microcystins. Toxicon, 1998, 36,953-962
    Ding W.X., Shen H., Ong C. Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes. Environmental Research, 1998, 78: 12-18
    Ding W.X., Shen H.M., Zhu H.G., et al. Genotoxicity of microcystic cyanobacteria extract of a water source in China. Mutation Research, 1999, 442: 69-77
    Dixon R.A., Al-Nazawi M., Alderson G. Permeabilising effects of sub-inhibitory concentrations of microcystin on the growth of Escherichia coli. FEMS Microbiology Letters, 2004, 230: 167-170
    Duytn, Lampks, Shaw G.R. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algae) toxins in water. Rev. Environ. Contam. Toxicol., 2000,163:113-186
    Edmondson W.T. Encyclopedia of Environmental Biology. NewYork: Academic Press, 1995, 1697-1703
    Elke R., Gabriele S., Sandra O., et al. The influence of oxidative stress on catalase and MnSOD gene transcription in astrocytes. Brain Research, 2001, 900(1): 128-136
    Elliott J.M., Mathre D.E., Sands D.C. Identification and characterization of rhizosphere-competent bacteria of wheat. Applied and Environmental Microbiology, 1987, 53: 2793-2799
    Falconer I.R. Toxic cyanobacterial bloom problem in Australia waters: risks and impacts on human health. Phycologia, 2001, 40 (3): 228-233
    Fastner J., Flieger I., Neumann U. Optimised extraction of microcystins from field samples 2A comparison of different solvent s and procedures. Water Research, 1998, 32 (10): 3177-3181
    Fawell J.K., Hart H.A., Parr W. Blue-green algae and their toxins analysis, toxicity, treatment and environmental control. Water Supply, 1993, 11: 109-121
    Ferrat L., Pergent-Martini C., Roméo M. Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: applications to seagrasses. Aquatic Toxicology, 2003, 65; 187-204
    Foxall T.L., Sasner J.J. Effects of a hepatic toxin from the cyanophyte Microcystis aeruginosa. In: Carmichael W W (Eds.) The water environment. Algal toxins and Health. Plenum Press, New York, 1998
    Francesca G.T., Daniel R.D., Christian S. Toxicity of Microcystis aeruginosa peptide toxin to yealing rainbow trout ( Oncorhynchus mykiss ). Aquatic Toxicology, 1994, 30: 215-224
    Freitas J.R., Banerjee M.R., Germida J.J., et al. Phosphate-solubillizing rhizobacteria enchance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils, 1997, 24: 358-364
    Frettel et al., Gejlsbjer G.B., Westermann P. Aerobic denitrifiers isolated from an alternating activated sluge system. FEMS Microbiology Ecology, 1997, 24: 363-370
    Furusawa Gou, Takeshi Y., Alihiro Y., Taizo S. Algicidal activity and gliding motility of Saprospira sp. SS98-5. Canadian Journal of Microbiology, 2003, 49:92-100
    Garcia B.O. Toxicity of the cyanobacterium, Microcystis aeruginosa strain 7820 to trout and tilapia: a clinical and histopathological study. M. Sc. Thesis, University of Stirling, Stirling, 1989
    Gehringer M.M., Kewada V., Coates N., Downing T.G. The use of Lepidium sativum in a plant bioassay system for the detection of microcystin-LR. Toxicon, 2003b:1-6
    Gehringer M.M., Kewada V., Coates N., et al.The use of Lepidium sativum in a plant bioassay system for the detection of microcystin-LR. Toxicon, 2003a, 41 (7): 871-876
    Giannopotitis C. N., Ries S. K. Superoxide dismutase in higher plants. Plant Physiology, 1977, 59: 309–314
    Greenberg J.T., Demple B. Glutathione in Escherichia coli is dispensable for resistance to H2O2 and gamma radiation. Journal of Bacteriology 1986, 168: 1026-1029
    Griffith O.W. Determination of glutathione and glutathione desulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 1980, 106: 207-212
    Hallegreff G.M. A review of harmful algal bloom and their apparent global increase. Phycologia, 1993, 32 (2): 79-84
    Harada K.I., Matsuura K., Mureta H., Suzuki M., et al. Isolation and structueres of the minor components associated with microcystins LR and RR in the cyanobacteria, Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 1989, 31: 648-655
    Harada K.I., Suzuki M., Dahlem A.M., Beasley V.R., Carmichael W.W., Rinehart K.L. Improved method for purification of toxic peptides produced by cyanobacteria. Toxicon, 1988, 26: 433-439
    Hart J.,Fawell J.K., Croll B. The fate of both intra-and extra-cellular toxins during drink water treatment. Water Supply, 1998, 16 (5): 611-616.
    Heinzkor N., Walter G.Z. Expression of denitrification enzymes in response to the dissolved oxygen substrate in continuous culture of Pseudomonas stutzeri Applied and Environmental Microbiology, 1989,55(5):1670-1676
    Heyser J.W. Growth, water content and sulute accumulation of two tobacco cell lines cultured on sodium chloride, dextran and polyethylene glycol. Plant physiology, 1981, 68: 1454-1460
    Himberg K., Kerjola A.M., Pyysalo H., et al. The effect of water treatment processes on the removal of heatotoxins from microcystis and oscillatoria cyanobacteria: A laboratory study. Water Research, 1989, 23 (8): 979-984
    Hoerter, J.D., Arnold A., Kuczynska D.A., et al. Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. Journal of Photochemistry and Photobiology B: Biology, 2005, 81: 171-180
    Hu Z.Q., Liu Y.D., Li D.H., Dauta, A. Growth and antioxidant system of the cyanobacterium synechococcus elongates in response to microcystin-RR. Hydrobiologia, 2005, 534: 23-29
    Imai I., Ishida Y., Ksakaguchi et al. Algicidal marine bacteria isolated from northern Hiroshima bya. Fish Science, 1995, 61 (1): 628-636
    Ito E., Taka F., Masui H., et al. Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon, 2002, 40(7): 1017-1025
    Jaap V.R., Yossi T., Yoram B. Influence of volatile fatty acids on nitrite accumulation by a pseudomonas stutzeiri. Applied and Environmental Microbiology, 1996, 62 (9):2615-2620
    Janssosn M. Phosphatases in lake water: Characterization of enzymes from phytoplankton and zooplankton by gel filtration. Science, 1976, 194:320-321
    Jens K.T., Torlen G., Raymond P.C. Mass spectrometric studies of the egzect of pH on the accumulation of intermediates in denitrification by Paracoccus denitrificans. Applied and Environmental Microbiology, 1994, 60 (2):536-541
    Jimena C., Maria A.B., Silvia F.P., Daniel A.W. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquatic Toxicology, 2006, 76: 1-12
    Jochimsen E.M., Carmichael W.W., An J.S. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med., 1998, 3:873-878
    Jones G.J., Bourne D.G., Blakeley R.L., et al. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Natural Toxins, 1994, 2(4): 228-235
    Jones G.J., Orr P.T. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Research, 1994, 28: 871-876
    Jos A., Pichardo S., Prieto A., Repetto G., Vázquez C.M., Moreno I., Cameán A.M. Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditons. Aquatic Toxicology, 2005, 72: 261-271
    Juker T.H., Cantor C.R. Evolution of protein molecules. In: Munro H.N., et al. (Eds), Mammalian protein evolution. New York: Academic Press, 1969: 21-132
    Kaebernick M., Neilan B.A., Borner T. Dittmann E. Light and the transcriptional response of the microcystin biosynthetic gene cluster. Appl Environ Microbiol,2000, 66:3387-3392
    Kaya K., Sano T. Total Microcystin Determination Using Erythro-2- methyl-3 -(methoxy-d3) -4-phenybutyric Acid (MM PB-d3) as the Internal Standard. Analytica Chimica Acta, 1999, 386: 107-112
    Kenefick S.L., Hrudey S.E., Peterson H.G., et al. Toxin release from Microcystis aeruginosa after chemical treatment. Water Science and Technology, 1993, 27: 433-440.
    Kirchner M., Sahling G., Uhling G., et al. Does the red-tide forming dinoflagellate Noctiluca scintillans feed on bacteria? Sarsia, 1996, 81: 45-46
    Klinge M., Grimm M.P., Hospe S.H.R. Eutrophication and ecological rehabilitation of Dutch lakes: Presentation of a new conceptual framework. Water Science and Technology, 1995, 31:207-218
    Kondo F., Matsumoto H., Yamada S., Ishikawa N., Ito E., Nagata S., Ueno Y., Suzuki M., Harada K. Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chemical Research in Toxicology, 1996, 9: 1355-1359
    Kos P., Gorzo G., Suranyl G., Borbely G. Simple and efficient method for isolation and measurement of cyanobacterial hepa-toxins by plant tests (Sinapis alba L). Analytical Biochemistry, 1995, 225: 49-53
    Kpomblekou A., Tabatabai M.A. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science, 1994, 158:442-453
    Lahti K., Rapala J. , Holmes C. , et al. Persistence of cyanobacterial hepatotoxin microcystin-LR in particulate material and dissolved in lake water. Water Research, 1997, 31 (8):1005-1012.
    Lambert T.W., Holmes C.F.B., Hrudey S.E. Adsorption of microcystin-LR by active carbon in full scale water treatment. Water Research, 1995, 29 (8): 1845-1854
    Lambert T.W., Holmes C.F.B., Hrudey S.E. Microcystin class of toxins; health effects and safety of drinking water supplies. Environmental Research, 1994, 2: 167-186
    Lankoff A., Carmichael W.W., Grasman K.A., Yuan M. The uptake kinetics and immunotoxic effects of microcystin-LR in human and chicken peripheral blood lymphocytes in vitro. Toxicology, 2004, 204: 23-40
    Lankoff A., Krzowski L., Glab J., et al. DNA damage and repair in human peripheral blood lymphocytes following treatment with microcystin-LR. Mutation Research, 2004, 559: 131-142
    Lawton L.A., Edwards C., Codd G.A. Extraction and high performance liquid chromatographic method for the determ ination of microcystins in raw and treated waters. Analyst, 1994, 119: 1525-1530
    Lawton L.A., Maagd G., Hendriks J., et al. Removal of cyanobacterial toxins (microcystins) and cyanobacterial cells from drinking water using domestic water filters. Water Research, 1998, 32 ( 4): 633-638.
    Lee H.S., Jeong C.K., Lee H.M., et al. Online trace enrichment for the simultaneous determination of microcystins in aqueous samples using high performance liquid chromatography with diodearray detection. Journal of Chrom atography A, 1999, 848: 179-184
    Lenartova V., Holovska K., Javorsky P. The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium. FEMS Microbiology Ecology, 1998, 27: 319-325
    Li X.Y., Liu Y.D., Song L.R., et al. Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon, 2003, 42: 85-89
    Li X.Y., Song L.R., Liu Y.D. The production, detection and toxicology of microcystins. Acta Hydrobiologia Sinica (in Chinese), 1999, 23 (5): 517-523
    Li Y.J., Li J.Y., Li Z.S. Changes of RNase and acid phosphatase in common wheat under phosphorus deficiency stress. Acta Bot Boreal-Occident. Sin, 1977, 17: 417-425
    Liu Y.D., Song L.R., Li X.Y., Liu T.M. The toxic effects of microcystin-LR on embryo-larval and juvenile development of loach, Misguruns mizolepis Gunthe. Toxicon, 2002, 40: 395-399.
    Lock R.A.C., Balm P.H.M., Wendelaar B.S.E. Adaptation of fresh water fish to toxicants : stress mechanisms indused by branchial malfunction. Sublethal and chronic effects of pollutants on freshwater fish, edited by Muller R & Lloyd R. Fishing. Oxford: News Books, 1994, 124-134
    Lushchak V., Semchyshyn H., Lushchak O., Mandryk S. Diethyldithiocarba-mate inhibits in vivo Cu,Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells. Biochemical and Biophysical Research Communications, 2005, 338: 1739-1744
    Maagd G.,.Hendriks J., Sijm D., et al. pH-dependent hydrophobicity of the cyanobacteria toxin microcystin LR. Water Research, 1999, 33(5): 677-680.
    Mackintosh C.,Beattie K.A.,Klunpp S.,et al. Cyanobacterial microcystin LR is a potent and specific inhibitor of protein phosphate 1 and 2A from both mammals and higher plants. FEBS letters,1990,264:187-192
    Mahmood N.A., Carmichael W.W. Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae NH-5. Toxicon, 1986, 24:175-186
    Mayra A., William R., Nadathur S.G. et al. Cultural and nonculturable bacterial symbionts in the toxic benthic dinoflagellate Ostreopsis lenticularis. Toxicon, 2003, 42 : 419-424
    Meriluoto J., Braskén A.S., Eriksson J., et al. Choosing analytical strategy for microcystins. Phycologia, 1996, 35 (Suppl. 6): 125-132
    Michael R.B., James M. Tiedje Kinetic explanation for accumulation of nitritc oxide and nitrous oxide during bacterial denitrification. Applied and Environmental Microbiology, 1981, 41(7):1047-1084
    Michelle M. Microcystin-LR and okadaic acid-induced celluar effect: a dualistic. FEBS Letters, 2004, 557: 1-8
    Milutinovic A., Zivin M., Zorc2Pleskovic R., et al. Nephro toxic effect of chronic administration of microcystins-LR and YR. Toxicon, 2003, 42:281-288
    Mitchell A., Baldwin D.S. Effects of desiccation/oxidation on the potential for bacterially mediated P release from sediments. Limnology & Oceanography, 1998, 43(3):481-487
    Molla M.A.Z, Chowdhury A.A. Microbial mineralization of organic phosphate in soil. Plant and Soil, 1984, 78: 393-399
    Moollan R.W., Rae B., Verbeek A. Some comments on the determination of microcystin toxins in waters by high performance liquid chromatography. Analyst, 1996, 121: 233-238
    Neumann U., Weckesser J. Elimination of microcystin peptide toxins from water by reverse osmosis. Environmental Toxicology &Water Quality, 1998, 13 (2): 367-369 Nicholson B.C., Rositano J., Burch M.D. Peptide hepato-toxins by chlorine and chloramine. Water Research, 1994, 28 (6): 1297-1303
    Nobre A.C., Coelho G.R., Coutinho M.C., et al. The role of phospholipase A and cyclooxygenase in renal toxicity induced by microcystin-LR. Toxicon, 2001, 39: 721-724
    Oberemm A., Fastner J., Steinberg C.E.W. Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish (Danio Rerio). Water Research, 1997, 31 (11): 2918 -2921
    Ohkubo N., Yagi O., Okada M. Effect of humic and fulvic acids on the growth of Microcystis aeruginosa . Environmental Technology ,1998, 19 (6): 611-617.
    Palikova M., Kovaru F., Navratil S., et al. The effect of pure mycrocystin LR and biomass of blue-green algae on selected immunological indices of carp (Cyprinus carpio L.) and silver carp (Hypophthalmichthys molitrix,Val .). Acta Veterinaria Brno, 1998, 67 (4): 265-272
    Palmer L.M. Molecular genetic and phenotypic alteration of Escherichia coli in natural water. FEMS Microbiology Letters 1984, 21:169-173
    Park H.D., Sasaki Y., Maruyama T., et al. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ. Toxicology, 2001, 16(4): 337-343
    Paulina S., Bo?ena B., Jaromir M., Wirgiliusz D. Damage of cell membrane and antioxidative system in human erythrocytes incubated with microcystin-LR in vitro. Toxicon, 2006, 47: 387-397
    Penaloza R. Toxicity of a soluble peptide from Microcystin sp. to zooplankton and fish. Freshwater Biology, 1990, 24: 233-240
    Pereira P., Onodera H., Andrinolo D., Franca S., Araujo F., Lagos N., Oshima Y. Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon, 2000, 38:1689-1702
    Pflugmacher S. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology, 2004, 70: 169-178
    Phillips M.J., Roberts R.J., Stewart J.A. The toxicity of the cyanobacterium Microcystis aeruginosa to rainbow trout, Salmo gairdneri. Journal of Fish Diseases, 1985, 8: 339-344
    Pietsch C., Wiegand C., Ame M.V., Nichlisch A., Wunderlin D., Pflugmacher S. The effects of cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environmental Toxicology, 2001, 16: 535-542
    Pinho G.L., Morua da Rosa C., Yunes J.S., Luquet C.M., Bianchini A., Monserrat J.M. Toxic effects of microcystin-LRs in the hepatopancreas of the estuarine crab Chasmagnathus granulatus (Decapoda, Grapsidae). Comparative Biochemistry Physiology C, 2003, 135, 459-468
    Pitois S., J ackson M.H., Wood B.J.B. Sources of the eutrophication problems associated wit h toxic algae: An overview. Journal of Environmental Health, 2001, 64 (5): 25-32
    Plugmacher S., Wiegand C., Oberemm A., Beattie K.A., Krause E., Codd G.A., Steinberg C.E.W. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatoxin microcystin-LR: the first step of detoxication. Biochemica et Biophysica Acta, 1998, 1425: 527-533
    Prokopkin I.G., Gubanov V.G., Gladyshev M.I. Modelling the effect of planktivorous fish removal in a reservoir on the biomass of cyanobacteria. Ecol Model., 2006, 190:419-431
    Robert J.S., Takashi M., Onuki M. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews, 2003, 27: 99-127
    Robertson L.A., Vannel E.W.J., Torremansr A.M., et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotroph. Environmental Microbiology, 1988, 54 (11):2812-2818
    Rocio A.R., Cariton K., Frank M.B. Extraction of microcystins and nodularin using immunoaffinity columns. Toxicon, 2003, 42: 587-599
    Runnegar M., et al. Protein phosphatase inhibition and in vivo heaptotoxicity of microcystins. American Journal of Physiology, 1993, 265 (2): 224-230
    R?bergh C.M.I., Bylund G., Ericksson J.E. Histopathological effects of microcystin-LR, a cyclic peptide toxin from the cyanobacterium (blue-green) Microcystis aeruginosa, on common carp (Cyprinus carpio L.). Aquatic Toxicology, 1991, 20: 131-146
    Sedmark B., Kosi G. The role of microcystins in heavy cyanobacterial bloom formation. J. Plankton. Res., 1998, 20:691-708
    Semchyshyn H., Bagnyukova T., Storey K., Lushchak V. Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Esherichia coli. Cell Biology International, 2005, 29: 898-902
    Shalata A., Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 1998, 104: 167-174
    Shen D., Zhang X., Liu Y., et al. Analysis of immunomodulating nitric oxide, iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR. Toxicology, 2004, 197: 67-77
    Shen P.P., Shi Q., Hua Z.C., et al. Analysis of microcystins in cyanobacteria blooms and surface water samples f rom Meiliang Bay, Taihu Lake, China. Environment International, 2003, 29: 641-647
    Shen Q., Hu J., Li D.-H., Wang G.-H., Liu Y.-D. Investigation on intake, accumulation and toxicity of microcystins to silver carp. Fresenius Environmental Bulletin, 2005, 14 (12a), 1124-1128.
    Shephard G.S., Stockenstrom L., De Villiers D., et al. Photocatalytic degradation of cyanobacterial microcystin toxins in water. Toxicon, 1998, 36 (12): 1895-1901
    Shi S.Y., Liu Y.D., Shen Y.W., Li G.B. The algae-lytic ablity of bacterium DC10 and the influence of environmental factors on the ability. Science in China Ser.C, 2005, 48 (3): 250-25
    Shigeyuki T., Mariyo F.W. Microcystin-LR degradation by Pseudomonas aeruginosa alkaline protease. Chemosphere, 1997, 34(4): 749-757
    Shilo M. Lysis of blue-gree algae by Myxobacter. J Bacterial, 1970,104 (1) : 453-461
    Shwu L.P., Chong N.K., Chen C.H. Potential applications of aerobic denitrifying bacteria as bioagents in waste water treatment. Bioresource Technology, 1999, 68:179-185
    Singh D.P., Tyagi M.B., Kumar A., Thakur J.K., Kumar A. Antialgal activity of a hepatoxin-producing cyanobacterium, Microcystis aeruginosa. World Journal of Microbiology & Biotechnology, 2001, 17: 15-22
    Sivonen K. Cyanobacterial toxins and toxin production. Phycologia, 1996,35: 12-24
    Sivonen K. Effects of light, temperature, nitrate, or the phosphate and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and Environmental Microbiology, 1990, 56: 2658-2666
    Smolders G.J.F., van der Meij J., van Loosdrecht M.C.M., et al. Model of the anaerobic metabolism of the biological phosphorus removal process-stoichiometry and pH influence. Biotechnology Bioengineer, 1994, 43: 461-470
    Song L., Sano T. Microcystin prodiction of microcystis viridis (cyanobacteria) under different culture conditions. Phycological Research,1998 ,46 (1) :19-23.
    Steels E.L., Learmonth R.P., Watson K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology, 1994, 140: 569-576
    Sturgeon S., Towner R., Palander A. In vivo assessment of microcystin-LR induced hepatotoxicity in the rat using proton nuclear magnetic resonance (HNMR) imaging. Viochimica & biophysica Acta, 1999, 144 (2): 227-232
    Sun H.G., Zhang F.S. Effects of phophorus deficiency on activity of acid phosphatase exuded by wheat roots. Chinese Journal of Applied Ecology, 2002, 3: 379-381
    Svrcek C., Smith D.W. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. Journal of Environmental Engineering and Scicence, 2004, 3: 155-185
    Tage D., Friedhlm B. Nitrate Reduction in a sulfate-reducing bacterium, desulfovibrio desulfuricans isolated from rice paddy soil ; sulfide inhibition, kinetics and regulation. Applied and Environmental Microbiology, 1994, 60 (1):291-297
    Tisdale E. Epidemic of intestinal disorders in Charleston, W. Va., occurring simultaneously with unprecented water supply conditions. Am.J. Public Health, 1931, 21:198-200
    Toxicology and Environmental Health, 2001, 64: 507-519
    Tsuji K., Masui H., Uemura H., et al. Analysis of Microcystins in Sediments using MM PB Method. Tox icon, 2001, 39 (5): 687-692
    Tsuji K., Watanuki T., Kondo F., et al. Stability of microcystins from cyanobacteria-Ⅱ: Effect of freshwater cyanobacterial (blue-green algae ) toxins in water.Rev. Bulletin of Environmental Contamination and Toxicology, 2000, 163: 113-186
    Tucker C.S., Lloyd S.W. Evaluation of potassium ricinoleate as a selective bluegreen algicide in channel catfish ponds. Aquaculture, 1987, 65:141-148
    Ueno Y., Nagata S., Tsutsumi T., Hasegawa A., Watanabe M., Park H.D., Chen G.C., Chen G., Yu S.Z. Detection of microcystins, a blue green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic area of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis. 1996, 17: 1317-1321
    Valdor R., Aboal M. Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon, 2007,49: 769-779
    Vajcova V., Navratil S., Palikova M., et al. The effect of intraperitoneally applied pure mycrocystin LR on haematological and morphological indices of silver carp (Hypophthalmichthys molitrix Val.). Acta Veterinaria (Brno), 1998, 67(4): 281-287
    Vasconcelos V.M., Carmichael W.W., Croll B., et al. Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese Freshwaters. Water Research, 1996, 30 (10): 2377-2384.
    Welker M., Steinberg C. Indirect photohysis of cyanotoxins: One possible mechanism for their low persistence. Water Research, 1999, 33: 1159-1164
    Wiegand C., Pflugmacher S., Oberemm A., et al. Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environmental Toxicology, 1999, 14 (1): 89 -95
    Xu B., Ji W.S., Xu H.S. A new bacteril survival state-Viable but non-culturable state. Chinese Journal of Ecology, 1990, 2(3):144 -149
    Xu H.S., Roberts N., Singleton F., et al. Survival and viability of non-culturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology, 1982, 8: 313-323
    Yasuno M., Sugaya Y., Okada M., et al. Variations in the toxicity of Microcystis species to Motna macrocopa. Phycological Research,1998 ,46 (1) :31-36.
    Yin L.Y., Huang J.Q., Huang W.M., et al. Responses of antioxidant system in Arabidopsis thaliana suspension cells to the toxicity of microcystin-RR. Toxicon, 2005a, 46: 859-864
    Yin L.Y., Huang J.Q., Huang W.M., Li D.H., Wang G.H., Liu Y.D. Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Toxicon, 2005b, 46: 507-512
    Yu S.Z. Drinking water and primary liver cancer. In: Tang Z.Y., Wu M.C., Xia S.S.(Eds) Primary liver cancer. Beijing: China Academic Publishers, 1989, 30-37
    Yu S.Z. Primary prevention of the hepatocellar carcinoma. J. Gastroenterol. Hepatol., 1995,10: 674-682
    Zhan L., Sakamoto H., Sakuraba M., et al. Genotoxicity of microcystin-LR in human lymphoblastoid TK6 cells. Mutation Research, 2004, 557: 1-6
    Zhang J.Y., Zhang H.J., Chen Y.X. Sensitive apoptosis induced by microcystins in the crucian carp (Carassius auratus) lymphocytes in vitro. Toxicology in Vitro, 2006, 20: 560-566
    Zhou B.S., Xu L.H., Zhang Y.Y., et al. The effect of microcystin-LR on the liver ultrastructure of grass trap, ctenopharyngodon idellus. Acta Hydrobiologica Sinica, 1998, 22(1): 90-92
    Zhu W.J., Hong Y.P., Huang N., et al. Effects of bacterial superoxide dismutase on restoration of microorganisms irradiated with ultraviolet. Chinese Journal of Applied and Environmental Biology, 1996, 2(1): 79-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700