尾叶桉及其杂种无性系遗传变异与选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以尾叶桉及其杂种无性系为研究对象,开展尾叶桉遗传改良及其杂种无性系多性状综合选育研究,分析尾叶桉无性系的遗传变异与选择增益,对尾叶桉全双列亲本及交配组合进行评价,估算一般配合力效应、特殊配合力效应、杂种优势和自交衰退;开展尾叶桉杂种无性系生长与材性、生长与干形的综合选育评价;分析无损检测方法在尾叶桉杂种无性系材性选育中的应用前景;分析尾叶桉杂种无性系年度相关及其变异研究,为制定杂交育种策略和桉树产业升级奠定理论基础。主要结论如下:
     (1)对21、52、71和96个月尾叶桉无性系的生长、材性、干形和树皮特性进行方差分析后表明:生长、材性和单株材重均在0.01和0.05水平达显著差异。不同指标的遗传变异差异较大,单株材重的遗传变异系数最大。生长指标的重复力为0.36到0.53,材性指标的重复力为0.35到0.51,干形指标的重复力为0.21到0.24,树皮特性的重复力为0.07,单株材重的重复力为0.31。胸径的年度间相关系数表明:21个月生时的胸径无法预测96月生胸径,而只能预测52个月和71个月的生长。71个月生时胸径的入选率在10%到30%时选择增益最高,52个月生时入选率在60%到90%时选择增益最高。遗传改良选择增益结果表明,各性状的增益值在-2.11%到8.10%之间,除分枝和树皮率外,其它指标均为正增益。
     (2)尾叶桉种内6×6全双列交配遗传分析表明:同一育种材料不同性状一般配合力和特殊配合力效应不同;具有较高生长性状一般配合力的亲本往往可以获得较高的特殊配合力,具有较高木材密度一般配合力的亲本往往可以获得较低的特殊配合力;同一亲本不同地点的衰退程度有所不同,即使是同一亲本同一地点,不同指标的自交衰退仍有所差异;不同交配组合间的杂种优势差异较大,树高和胸径在各组合间的杂种优势范围基本一致,不同杂交组合的杂种优势在不同地点间差异较大,相同亲本的正交与反交组合的杂种优势具有一致性。遗传增益分析表明:各性状的增益值在-13.19%到25.47%之间,除木材密度和树皮率外,其它指标均为正增益,生长性状的遗传增益要高于其它性状,全双列子代的总体增益要远远大于无性系的增益值。
     (3)对19个51月生尾叶桉杂种无性系的生长、材性和树皮率进行方差分析后,结果表明:除木材密度外,生长指标和材性指标在无性系、地点以及无性系与地点的互作间均存在极显著差异。生长指标的遗传变异系数为8.4%到27.9%之间,材性指标的遗传变异系数为2.7%到11.1%之间,树皮率的遗传变异系数为14.0%到23.3%之间。生长指标的重复力为0.73到0.96之间,材性指标的重复力为0.32到0.93之间,树皮率的重复力为0.77到0.88之间。同一性状不同地点间的遗传相关达极显著水平。生长性状与Pilodyn值之间呈0.28到0.65的正相关关系;生长性状与树皮率均呈现负相关关系;生长性状与木材密度的遗传相关系数在-0.67和0.43之间。不同杂种无性系的差异性表明:应加强对尾叶桉与巨桉组合的木材密度选育,加强对尾叶桉与细叶桉和赤桉的生长量选育。
     (4)通过分析建立在广西22个56月生尾叶桉杂种无性系的Pilodyn值与整株木材密度、边材密度、心材密度和弹性模量间的相互关系表明:Pilodyn值在不同处理、不同方向及不同参试无性系间均存在极显著差异。Pilodyn值与各材性指标间的相关系数在-0.433到-0.755之间,呈显著到极显著负相关,表明Pilodyn方法可以有效预测尾叶桉杂种无性系的木材密度和弹性模量。分析建立在广东的23个51月生尾叶桉杂种无性系各材性指标间的相互关系表明:Pilodyn值与木材密度间呈极显著负相关(r=-0.83);木材密度与弹性模量的相关系数为0.74;应力波速与木材密度和弹性模量的相关系数分别为0.52和0.96,表明Pilodyn和微秒计均可有效预测尾叶桉杂种无性系的木材密度和弹性模量。
     (5)对20个44月生尾叶桉杂种无性系的生长性状和形质性状进行多重比较表明:共有10个无性系的蓄积量超过总体平均值,生长最快的是No.3(DH32-28),生长最差的是No.17(U6)。树高、胸径和单株材积的重复力分别为0.86、0.80和0.80;冠幅、枝下高、干形和分枝的重复力分别为0.54、0.85、0.77和0.44。树高、胸径和单株材积的遗传变异系数分别为9.84%、9.91%和28.54%;冠幅、枝下高、干形和分枝的遗传变异系数分别为18.26%、11.73%、12.03%和17.28%。各性状相关性分析表明生长量较大的无性系往往具有较大冠幅、较好的干形和分枝。
     (6)对广东新会地区2年生到6年生尾巨桉无性系DH32-29的生长指标和材性指标进行方差分析表明:除木材密度外,不同年度间其它指标间均达到极显著差异。年度间生长指标和材性指标的生长趋势表明:无性系DH32-29的轮伐期应至少6年或更长。表型相关系数表明:同一年度不同生长指标间均达极显著相关,生长指标和木材密度间的相关系数随林龄增长而有所变化,2年生和5年生的相关系数在-0.03到-0.54间,3年生、4年生和6年生的相关系数在0.003到0.3之间。Pilodyn值与木材密度间的相关系数表明:Pilodyn可以用来分类不同基因型或不同地点的木材密度,但不能有效预测单株或单一无性系的木材密度。
In this thesis, Eucalyptus urophylla families and hybrids clones with E.urophylla S.T.Blake were researched for genetic improvement and multiple-traits selection in order toanalyze genetic gain between generations, evaluate parents and cross combinations, estimategeneral combining ability, specific combining ability, heterosis and inbreeding depression,select best clones with fast growth, high wood properties and good stem-branch traits,investigate the effectiveness of nondestructive methods to predict wood properties standingtree traits in eucalypt hybrids clones, analyze age trends and correlations of growth and woodproperties in clone of Eucalyptus urophylla×E. grandis, and make a academic base foreucalypts breeding strategy and upgrade in industries. The major conclusions were to:
     (1) Growth traits, wood properties, stem-branch characteristics and bark percentage wereassessed for E. urophylla clones measured at age21,52,71and96months. Analysis ofvariance showed that there were significant differences on growth traits, wood properties andindividual tree wood weight at0.01and0.05levels among clones. Different traits had differentcoefficients of variation, while individual tree wood weight had biggest variation value.Repeatability ranged from0.36to0.53for growth traits,0.35to0.51for wood properties,0.21to0.24for stem-branch characteristics,0.07for bark percentage and0.31for individual treewood weight. The strongly negative genotypic correlations suggesting that selection ondiameter at breast height at21months can not be effective to predict diameter at breast heightat96months whereas it could be used to predict diameter at breast height at52and71months.The selection gain on diameter at breast height over bark by different selection proportions at21,52,71and96months old expressed that selection gain at71months was some what higherthan that at other ages during10%to30%selection proportion, while selection gain at52months was some what higher than that at other ages during60%to90%selection proportion.Genetic gain ranged from-2.11%to8.10%, and this value of branch and bark percentage werenegative.
     (2) Genetic analysis of6×6full diallel mating showed that different traits showeddifferent general combining ability and specific combining ability even for same parents. Crosscombinations with high general combining ability for growth traits always had high specificcombining ability. Cross combinations with high general combining ability for wood basicdensity always showed low specific combining ability. Inbreeding depression rangeddifferently for different parents with different traits in different sites. Different crosscombinations at different sites showed different heterosis. The heterosis of tree height hadsimilar value range of diameter at breast height. Same parents always had similar original andreciprocal heterosis. Genetic gain ranged from-13.19%to25.47%and this value of studiedtraits were positive except for wood basic density and bark percentage. The genetic gains ofgrowth traits were higher than other traits. The genetic gain of full diallel families wasgenerally higher than clones.
     (3) Growth traits, wood properties and bark percentage were assessed for19hybrideucalypt clones sampled at age51months. Analysis of variance showed that there weresignificant differences in growth traits and wood properties between clones and sites, and thatthe clone×site interactions were also significant except for basic density. Coefficients ofvariation ranged from8.4%to27.9%for growth traits,2.7%to11.1%for wood properties and14.0%to23.3%for bark percentage. Repeatability ranged from0.73to0.96for growth traits,0.32to0.93for wood properties and0.77to0.88for bark percentage. Strong genotypiccorrelations between the same traits in clones at pairs of sites indicated that the traits wererather stable across sites. The correlations between growth traits and Pilodyn pin penetrationwere positive, ranging from0.28to0.65and therefore unfavorable as lower wood density willbe associated with higher values of Pilodyn pin penetration and improved growth rate. Thegenotypic correlations between growth traits and basic density ranged from-0.67to0.43, andgenerally favorable negative genotypic correlations between growth traits and bark percentagewere also found. Differences among hybrid eucalypt clones indicated that more care should betaken regarding selection for wood basic density in cross of E. urophylla×E. grandis andgrowth in crosses of E. urophylla with E. tereticornis and E. camaldulensis.
     (4) Wood basic density, outer wood density, heartwood density, modulus of elasticityand pilodyn penetration were analyzed at22eucalyptus clones in Guangxi, at which time thetrial was aged56months. The results indicated that there were significant differences (1%level)in pilodyn penetration between different treatments, different directions and among the clones.Generally strongly negative correlations were found between pilodyn penetration and woodproperties, and the coefficients ranged from-0.433to-0.755, suggesting that the use of pilodynfor assessing wood density and modulus of elasticity was confirmed as a possibility. Woodproperties and nondestructive methods were assessed for23eucalypt clones in Guangdongsampled at age51months. Correlations between three traits assessed using nondestructivemethods and basic density measured on increment cores showed that genotypic correlationbetween Pilodyn penetration and basic density was significantly and negative (r=-0.83). Thecorrelation between basic density and modulus of elasticity was significantly positive (r=0.74).Stress wave velocity was found to be relatively strongly correlated with basic density (r=0.52)and modulus of elasticity (r=0.96). Results indicated that the average basic density andmodulus of elasticity can be predicted by using Pilodyn and Fakopp microsecond timer.
     (5) Growth traits and stem-branch traits were assessed for20hybrid eucalypt clonessampled at age44months. Analysis of results showed that there were10clones with highergrowth than general mean. The growth of No.3(DH32-28) was fastest, whereas the growth ofNo.17(U6) was lowest. Repeatability of growth traits, crown range, branch height, stem andbranch were0.86,0.80,0.80,0.54,0.85,0.77and0.44respectively. Coefficients of variation ofgrowth traits, crown range, branch height, stem and branch were9.84%,9.91%,28.54%,18.26%,11.73%,12.03%and17.28%respectively. Correlations results showed that cloneswith higher growth generally had bigger crown range, better stem and smaller branch.
     (6) Growth traits and wood properties were assessed for DH32-29, a clone of E. urophylla×E. grandis, at age of two to six years in Guangdong Xinhui. Analysis of variance of studiedtraits showed that there were significant differences (1%level) on all studied traits among agesexcept for wood basic density. Analysis of age trends of growth traits and wood propertiesrevealed that rotation length of DH32-29should be more than six years or longer. Phenotypic correlations among traits at individual ages indicated that correlations among growth traitswere strongly positive. There was significant change in relationship between growth and woodbasic density with increasing age, ranging from-0.03to-0.54at2and5year and0.003to0.3at3,4and6year. Correlations between Pilodyn pin penetration and basic density measured onincrement cores showed that Pilodyn could rank or group genotypes or sites into densityclasses, but failure to predict individual tree and individual clone.
引文
[1]白嘉雨.桉树速生丰产培育技术[M].北京:中国科学技术出版社,1993:28.
    [2]查朝生,刘盛全.木材性质遗传变异规律的研究进展[J].世界林业研究.2005,18(3):49~53
    [3]陈代喜.我国林木遗传改良进展综述[J].广西林业科学.2001,增刊(30):13~18
    [4]陈炜.马尾松亲本配合力与全同胞子代遗传分析[D].硕士论文.南京:南京林业大学.2008
    [5]陈益泰,何贵平,李恭学.杉木种子发芽率和苗高生长的近交效应.林业科学研究[J].1989,2(5):420~426
    [6]成俊卿.木材学[M].北京:中国林业出版社,1985
    [7]冯源恒,李火根,王龙强等.鹅掌楸属树种繁殖性能的遗传分析[J].林业科学.47(9):43~49
    [8]甘四明,李发根,白嘉雨.分子生物学技术在桉树育林中的应用[J].广西林业科学.2006.35(4):243~249
    [9]国家林业局科学技术司和中国林业科学研究院.桉树实用技术问答[M].北京:中国林业出版社,2008,14~15
    [10]洪舟.杉木杂种优势分子机理初探[D].博士论文.南京:南京林业大学.2009
    [11]何贵平,陈益泰,张国武等.杉木主要生长、材质性状遗传分析及家系选择[J].林业科学研究.2002,15(5):559~563
    [12]胡天宇,李臣坤.巨桉种源引种选择研究[J].四川农业大学学报,1999,17(1):45~47
    [13]黄德龙,黄秀美,陈洪坤等.巨桉引种试验研究初报[J].福建林业科技,2000,27:39~41
    [14]黄华富和熊兴源.中国南方主要桉树无性系介绍[J].江西林业科技.2006.增刊.11~12
    [15]黄晖.我国营造桉树人工林的现状与发展对策[J].广西热带农业.2004(6):42~43
    [16]黄少伟,谢维辉.SAS编程与林业实验数据分析[M].广州:华南理工大学出版社,2001
    [17]季孔庶,樊民亮,徐立安.马尾松无性系种子园半同胞子代变异分析和家系选择[J].2005,41(6):52~57
    [18]姜笑梅,叶克林,吕建雄等.中国桉树和相思人工林木材性质与加工利用[J].北京:科学出版社,2007
    [19]金国庆,秦国峰,刘伟宏等.马尾松测交系杂交子代生长性状遗传分析[J].林业科学.2008,44(1):70~76
    [20]刘青华,金国庆,储德裕等.基于马尾松测交系子代的生长、干形和木材密度的配合力分析[J].南京林业大学学报(自然科学版).2011,35(2):8~14
    [21]刘永红,杨培华,樊军锋.油松优良家系多性状选择方法研究[J].西北农林科技大学学报(自然科学版).2006,34(12):115~11
    [22]李淡清,刘永平,曾德贤等.蓝桉6×6全双列交配生长性状的遗传效应分析[J].遗传学报,2002,29(9):835~840
    [23]李淡清,刘永平,郑行生等.直干桉生长性状的遗传效应分析[J].林业科学.2003,39(2):52~57
    [24]李光友,徐建民,陆钊华等.尾叶桉二代测定林家系的综合评选[J].林业科学研究,2005a,18(1):57~61
    [25]李光友,徐建民,陆钊华等.尾叶桉二代测定林家系及遗传评估[J].南京林业大学学报(自然科学版),2005b,29(6):40~44
    [26]李光友,徐建民,杜志鹄等.尾叶桉家系木材性状的变异研究[J].中南林业科技大学学报,2010,30(8):87~91
    [27]李光友,徐建民,Risto等.尾叶桉无性系多点遗传分析及优良无性系选择[J].西北林学院学报,2006.21(5):84~88
    [28]李梅,施季森,甘四明等.杉木杂交亲本分子遗传变异与子代生长相关的研究[J].林业科学研究.14(1):35~40
    [29]李力,施季森,陈孝丑等.杉木两水平双列杂交亲本配合力分析[J].南京林业大学学报.2000,24(5):9~13
    [30]李开隆,姜静,姜莹等.白桦5×5完全双列杂交种苗性状的遗传效应分析[J].北京林业大学学报.2006,28(4):82~87
    [31]李绍臣,高福玲,姜廷波等.白桦幼苗株高和地径的遗传分析[J].农业生物技术学报.2008,16(1):134~137
    [32]李周岐.鹅掌楸属种间杂种优势的研究[D].博士论文.南京:南京林业大学.2000
    [33]李周岐,王章荣.鹅掌楸属种间杂种苗期生长性状的亲本配合力分析[J].西北林学院学报,2001,16(3):7~10
    [34]联合国粮农组织.桉树栽培[M].罗马,1981
    [35]卢国桓,陆钊华,徐建民等.尾叶桉家系子代测定及育种值的估算[J].广东林业科技,2003,19(4):1~6
    [36]卢国桓,陆钊华,徐建民等.尾叶桉无性系生长比较研究[J].广东林业科学,2004,33(1):42~45
    [37]陆钊华,徐建民,李光友等.尾叶桉家系自由授粉子代性状的分析.中南林学院学报,2004,24(5):13082~13086
    [38]陆钊华,徐建民,李光友等.桉树多树种无性系综合选择[J].南京林业大学学报(自然科学版),2005,29(5):61~64
    [39]陆钊华,徐建民,陈儒香等.尾叶桉无性系苗期光合作用特性研究[J].安徽农业科学,2009,37(27):
    [40]陆钊华.尾叶桉种内种间交配遗传分析及F1选择研究[D].博士论文.北京.中国林业科学研究院.2009
    [41]马常耕.国外制浆材性状的测定技术[J].世界林业研究,998,5:38~43.
    [42]沈熙环.林木育种学[M].北京:中国林业出版社,1988,1~2
    [43]齐明,彭九生.几个常见的杉木育种方案的遗传效果分析[J].江西林业科技.2004,4:12~15
    [44]祁述雄.中国桉树[M].北京:中国林业出版社,2002,34~55
    [45]祁述雄.中国引种桉树与发展现状[J].广西林业科学.2006,35(4):250~252
    [46]番兴明,谭静,杨峻芸等.外来热带、亚热带玉米自交系与温带玉米自交系产量配合力分析及其遗传关系的研究[J].中国农业科学.2002,35(7):743~749
    [47]彭仕尧,陈少雄,陈文平.优良桉树无性系评估[J].桉树科技.2002,1:1~5
    [48]施季森,叶志宏,翁玉棒等.杉木生长与材性联合遗传改良研究[J].南京林业大学学报.1993,17(1):1~8
    [49]徐刚标.中国林木遗传改良研究现状[J].经济林研究.2003,21(4):120~122
    [50]徐建民.持续创新的桉树改良育种及高效栽培技术研究[J].:中国热带林业研究.中国林科院热带林业研究所建所40周年纪念文集[A],广东.2002,54~72
    [51]徐建民,白嘉雨,陆钊华.华南地区桉树可持续遗传改良与育种策略[J].林业科学研究.2001,14(6):587~594
    [52]徐建民,陆钊华,白嘉雨等.尾叶桉实生种子园遗传分析与育种值的估算[J].林业科学研究,2005,18(5):516~523
    [53]徐建民,李光友,陆钊华等.尾叶桉种子园群体改良自由授粉家系子代多点区域试验研究[J].林业科学研究,2003,16(3):277~283
    [54]徐建民,李光友,陆钊华等.杂种桉无性系综合帅选试验研究[J].桉树科技,2009,26(2):1~8
    [55]徐清乾,许忠坤,程政红等.杉木杂交组配与两系种子园建立技术研究[J].湖南林业科技.2004,31(6):18~20
    [56]王明庥.林木遗传育种学[M].南京:中国林业出版社,2001,1~2
    [57]王莉娟.无损检测方法评估人工林杨树木材性质的研究[D].北京,北京林业大学.2005
    [58]王琦,王豁然.巨桉子代测定林与引种改良策略的研究[J].林业科学.1996,32(6):500~508
    [59]王章荣.鹅掌楸属杂交育种回顾与展望[J].南京林业大学学报(自然科学版).2003,27(3):76~78
    [60]王章荣.鹅掌楸属杂交育种成就与育种策略[J].林业科技开发.2008,22(5):1~4
    [61]王赵民,陈益泰.杉木主要生长性状配合力分析及杂种优势的利用[J].林业科学研究.1988,1(6):614~624
    [62]吴坤明,吴菊英,甘四明.桉树杂交育种及杂种优势的利用简介[J].广东林业科技.2001,17(4):10~15
    [63]姚庆端,何水东,张金文等.闽南山地桉树纤维材优良无性系的选择研究[J].林业科技.2003,39(1):87~92
    [64]叶培忠,陈岳武,刘大林等.配合力分析在杉木数量遗传研究中的应[J].南京林产工业学院学报.1981,3:1~21
    [65]殷亚芳,姜笑梅,吕建雄,苏洪泽.2001.我国桉树人工林资源和木材利用现状[J].木材工业.15(5):3~5
    [66]殷亚方,王莉娟,姜笑梅.Pilodyn方法评估阔叶树种人工林立木的基本密度[J].北京林业大学学报.2008.30(4):7~11
    [67]袁力行,张世煌.玉米遗传多样性与杂种优势群研究[J].中国农业科学,2000,33(增刊):9~14
    [68]张方兰.海南岛桉树人工林生长与气候因子的关系[J].热带林业.2005.4:23~26
    [69]张顺恒,洪长福,李宝福,等.闽南山地桉树种/种源的选择试验研究[J].林业科学研究,2001,14(2):188~194
    [70]周志春,金国庆,秦国峰等.马尾松纸浆材重要经济性状配合力及杂种优势分析[J].2004,40(4):52~57
    [71]周全连,杨章旗,覃开展.马尾松自由授粉子代测定及优良家系选择[J].广西科学.2001,8(1):63~65
    [72]朱景乐,王军辉,张守攻等.毛白杨材性指标预测及选择[J].林业科学.2008,44(7):24~28
    [73]Aguiar A, Almeida MH, Borralho N. Genetic control of growth, wood density and stem characteristicsof pinus pinaster in Portugal. Silva Lusitana,2003.11(2):131~139
    [74]Apiolaza LA, Raymond CA, Yeo BJ. Genetic variation of physical and chemical wood properties ofEucalyptus globulus. Silvae Genetica2004.54(4-5):160~164
    [75]Aravanopoulos FA, Kim KH, Zsuffa L. Genetic diversity of superior salix clones selected for intensiveforestry plantations. Biomass&Bioenergy1999.16:249~255
    [76]Bai J, Xu J, Gan S. Genetic improvement of tropical eucalypts in China. pp.64~70in Turnbull JWEucalypts in Asia Proceedings of an international conference held in Zhanjiang, Guangdong, China,7–11April2003.
    [77]Bahman Y S, Sarafi A, Zali AA. Heterosis and inbreeding estimates in Safflower. Crop Science,1975.15(1):81~83.
    [78]Bernardo AL, Reis MGF, Reis GG, et al. Effect of spacing on growth and biomass distribution inEucalyptus camaldulensis, E. pellita and E. urophylla plantations in southeastern Brazil. Forest Ecologyand Management1998.104:1~13
    [79]Benetka V, Pospiskova M, Vratny F, et al. Inbreeding depression in the full-sib offspring of populusnigra L.2008. Silvae Genetica,57(4–5):202~210
    [80]Bison O, Ramalho MAPR., Rezende G.DSP. Combining ability of elite clones of Eucalyptus grandis andEucalyptus urophylla with Eucalyptus globulus. Genetics Molecular Biology.2007,30(2):417~422
    [81]Borralho NMG.. The challenges and lessons from breeding Eucalyptus. pp.79~89in Wei R, Xu DEucalyptus Plantation Research, Management and Development World Scientific Publishing Co. Pte.Ltd.1~6September2002Guangzhou, China
    [82]Bouvet JM, Vigneron PH, Saya A. Trends in variance and heritabilities with age for growth traits inEucalyptus spacing experiments. Silva Genetica2003.52(3-4):121~133
    [83]Butcher PA and Williams ER. Variation in outcrossing rates and growth in Eucalyptus camaldulensisfrom the Petford Region, Queensland; Evidence of outbreeding depression.2002. Silvae Genetica,51(1):6~12
    [84]Bueren MV. Eucalypt tree improvement in China. ACIAR, Impact Assessment Series Report No.30.2004
    [85]Bull GQ, Bazett M, Schwab O, et al. Industrial forest plantation subsidies: impacts and implications.Forest Policy and Economics.2006.9:13~31
    [86]Chapola GBJ. Assessment of some wood properties of eucalyptus species grown in Malawi usingPilodyn method. Discovery and Innovation1994.6(1):98~109
    [87]Chauhan SS and Walker JCF. Variation in acoustic and density with age, and their interrelationships inradiation pine. Forest Ecology and Management2006.229:388~394
    [88]Chen Y, Kang L, Dell B. Inoculation of Eucalyptus urophylla with spores of Scleroderma in a nursery insouth China: comparision of field soil and potting mix. Forest Ecology and Management,2006.222:439~449
    [89]Cown D J. Comparison of the Pilodyn and torsiometer methods for the rapid assessment of wooddensity in living trees. N ZJ For Sci,1978.384~3911
    [90]Cown DJ. Use of the Pilodyn wood tester for estimating wood density in standing trees–influence ofsite and tree age.7XVII IUFRO World Forestry Conference, Kyoto, Japan, Sept.1981
    [91]Danusevicius D and Lindgren D. Efficiency of selection based on phenotype, clone and progeny testingin long-term breeding. Silvae Genetica,2001,51(1):19~26
    [92]Danusevicius D, Lindgren D. Clonal testing may be the approach to long-term breeding of Eucalyptus.pp.192~209in Wei R, Xu D Eucalyptus Plantation Research, Management and Development WorldScientific Publishing Co. Pte. Ltd.1–6September2002Guangzhou, China
    [93]Dean C.A., and Correll R.L. Analysis of diallel matings with missing values. Silvae Genet.1988.37:187~197
    [94]Dean GH, French J, Maddern KN. Breeding eucalypts for manufacture of pulp and paper. In:Proceedings23rd Forest Products Research Conference, CSIRO Division of Forestry and ForestProducts, Clayton, Victoria. November1990. Volume11:5/2, pp15
    [95]Dean GH. Objectives for wood fibre quality and uniformity. In: Potts BM, Borralho NMG, Reid JB,Cromer RN, Tibbits WN and Raymond CA (eds) Eucalyptus plantations: improving fibre yield andquality. CRC THF-IUFRO Conf., Hobart,1995.19-24Feb. pp483
    [96]Dell D, Xu D, Rogers C and Huang L. Micronutrient disorders in eucalypt plantations:causes, symptoms,identification, impact and management. pp.241~252in Wei R, Xu D Eucalyptus Plantation Research,Management and Development World Scientific Publishing Co. Pte. Ltd.1–6September2002Guangzhou, China.
    [97]Dickson RL, Raymond CA, Joe W, et al. A. Segregation of Eucalyptus dunnii logs using acoustics.Forest Ecology and Management,2003.179,243~251.
    [98]Eldridge K, Davidson J, Harwood C, et al. Eucalypt Domestication and Breeding [M]. New York:Oxford Science Publicaitons,1993.162~180.
    [99]Fang S, Xu X, Lu S, et al. Growth dynamics and biomass production in short-rotation popar plantations:6-year results for three clones at four spacings. Biomass&Bioenergy,1999.17:415~425
    [100]Forrester DI, Bauhus J, Cowie AL, et al. Mix-species plantations of Eucalyptus with nitrogen-fixingtrees: a review. Forest Ecology and Management2006.233:211~230
    [101]Gan S, Li M, Li F, et al. Genetic analysis of growth and susceptibility to bacterial wilt (Ralstoniasolanacearum) in Eucalyptus by interspecific factorial crossing. Silva Genetica,2004.53(5-6):254~258
    [102]Gan S, Li F, Bai J. Application of protocols in molecular biology for eucalypt breeding. Guangxi ForestScience2006.35(4):243~249
    [103]Garcia JN. Gains and losses on sawn wood yield and quality through forest improvement, managementand sawing strategies. In: R.Wei and D. Xu (eds), Eucalyptus Plantation Research, Management andDevelopment. World Scientific Publishing Co. Pte. Ltd.2002. pp:392~403
    [104]Goncalves JLM, Stape JL, Laclau JP, et al. Silviculture effect on the productivity and wood quality ofeucalypt plantations. Forest Ecology and Management2004.193:45~61
    [105]Grattapaglia D, Kirst M. Eucalyptus applied genomics: from gene sequences to breeding tools. NewPhytologist2008.179:211~229
    [106]Greaves BL, Borralho NMG, Raymond CA, et al. Use of a Pilodyn for the indirect selection of basicdensity in Eucalyptus nitens. Canadian Journal of Forest Research1996.26(9):1643~1650
    [107]Greaves BL, Borralho NMG, Raymond CA. Breeding objective for plantation eucalypts grown forproduction of kraft pulp. Forest Science,1997a.43(4):465~472
    [108]Greaves BL, Borralho NMG, Raymond CA, et al. Age-age correlations in, and relationships betweenbasic density and growth in Eucalyptus nitens. Silva Genetica,1997b.46(5):264~270
    [109]Griffing, G. Concept of general and specific combining ability in relation to diallel crossing systems.Aust. J. Biol. Sci.1956,9:463~493
    [110]Halabe UB, Bidigalu GM, Gangarao HVS, et al. Nondestructive evaluation of green wood using stresswave and transverse vibration techniques. Material Evaluation,1997.55(9):1013~1018
    [111]Hallauer AR, and Miranda J.B. Quantitative genetics in maize breeding. Iowa State University Press,Ames, Iowa.1981
    [112]Hai PH, Jansson G, Harwood C, Hannrup B, et al. Genetic variation in growth, stem straightness andbranch thickness in clonal trials of Acacia auriculiformis at three contrasting sites in Vietnam. ForestEcology and Management2008a.255:156~167
    [113]Hai PH, Harwood C, Kha LD, et al. Genetic gain from breeding Acacia auriculiformis in Vietnam.Journal of Tropical Forest Science2008b.20(4):313~327
    [114]Halabe UB, Bidigalu G.M, GangaRao HVS, et al. Nondestructive evaluation of wood using stress waveand transverse vibration techniques. Material Evaluation.1997,55(9):1013~1018
    [115]Hansen JK, Roulund H. Genetic parameters for spiral grain, stem form, Pilodyn and growth in13yearold clones of Sitka Spruce (Picea sitchensis (Bong.) Carr.). Silvae Genetica1997.46(2-3):107~113
    [116]Hansen CP. Application of the Pilodyn in forest tree improvement. DFSC Series of Technical Notes.TN55. Danida Forest Seed Centre, Humlebaek, Denmark.2000
    [117]Hardner C. and Tibbits W. Inbreeding depression for growth, wood and fecundity traits in EucalyptusNitens.1998. Forest Genetics,5(1):11~20
    [118]Hardy GE, Burgess T, Dell B. Potential threats of plant pathogens to Eucalyptus plantation in China.pp.358~366in Wei R, Xu D Eucalyptus Plantation Research, Management and Development. WorldScientific Publishing Co. Pte. Ltd.1–6September2002Guangzhou, China.2002
    [119]Harwood CE, Thinh HH, Quang TH, et al. The effect of inbreeding on early growth of Acaciamangium in Vietnam.2004. Silvae Genetica,53(2):65~69
    [120]Horsley TN, Johnson SD. Is Eucalyptus cryptically self-incompatible?2007. Annals of botany,100:1373~1378
    [121]He X, Li F, Li M, et al. Quantitative genetics of cold hardiness and growth in Eucalyptus as estimatedfrom E. urophylla×E. tereticornis hybrids. New Forests2011(Accepted)
    [122]Henri DCJ. Soil-site productivity of Gmelina arborea, Eucalyptus urophylla and Eucalyptus grandisforest plantations in western Venezuela. Forest Ecology and Management,2001.144:255~264
    [123]Huang L, Dell B. Database system approach for integrated plantation nutrition management. pp.290~300in Wei R, Xu D Eucalyptus Plantation Research, Management and Development. WorldScientific Publishing Co. Pte. Ltd.1–6September2002Guangzhou, China
    [124]Huang S, Zhong W, Huang H, et al. Reseach on genetic variation and early selection of theprovenances and open-pollinated families of Eucalyptus urophylla. Forest Research,1999.12(4):1~7
    [125]Igartua DV, Monteoliva SE, Monterubbianesi1MG, et al. Basic density and fiber length at breast heightof Eucalyptus globulus ssp. globulus for parameter prediction of the whole tree. IAWA Journal.2003.24(2):73~184
    [126]Ikemori YK, Martins FCG, Zobel BJ. The impact of accelerated breeding on wood Properties. Inproceedings of the18th IUFRO World Conference Division5: Forest products. Ljubljana, Yugoslavia.1986. pp358~368
    [127]Ilic J. Variation of the dynamic elastic modulus and wave velocity in the fibre direction with otherProperties during the drying of Eucalyptus regnans F.Muell. Wood Science Technology1998.35:157~166
    [128]Ilic J. Variation of the dynamic elastic modulus and wave velocity in the fibre direction with otherProperties during the drying of Eucalyptus regnans F.Muell. Wood Science Technology2001.35:157~166
    [129]Isabel M, Almeida MH, Pereira H. Provenance and site variation of wood density in Eucalyptusglobulus Labill. at harvest age and its relation to a non-destructive early assessment. Forest Ecology andManagement,2001.144:235~240
    [130]Isik F, Li B. Rapid assessment of wood density of live trees using the Resistograph for selection in treeimprovement programs. Candida Journal of Forestry Research,33:2426~2435
    [131]Ishiguri, F, Matsui R., Lizuka K, et al.2008. Prediction of the mechanical properties of lumber bystress-wave velocity and Pilodyn penetration of36-year-old Japanese larch trees. Holz Rooh Werkst,2003.66:275~280
    [132]Ishiguri F, Matsui R, Lizuka K, et al. Prediction of the mechanical properties of lumber by stress-wavevelocity and Pilodyn penetration of36-year-old Japanese larch trees. Original Arbelten· Originals2008.66:275~280
    [133]IU FRO. The Future of Eucalyptus for Wood Products [R].IU FRO Conference P roceedings. Tasmania,2000
    [134]Jacquues D., Marchal M., Curnel Y. Relative efficiency of alternative methods to evaluate woodstiffness in the frame of hybrid larch (Larix×eurolepis Henry) clonal selection. Ann. For. Sci.2004.61:35~43
    [135]Johnson GR, and King JN. Analysis of half diallel matingdesigns. I—a practical analysis procedure forANOVA approxi-mation. Silvae Genet.1998.47:74~79
    [136]Jones TH, Steane DA, Jones RC, et al. Effects of domestication on genetic diversity in Eucalyptusglobulus. Forest Ecology and Management,2006.234:78~84
    [137]Kheradnam M, Bassire A, Niknejad M. Heterosis,inbreeding depression,and reciprocal effects foryield and some yield components in a Cowpea cross. Crop Science,1975.15(10):689~691
    [138]Kien ND, Jansson G, Harwood C, et al. Genetic variation in wood basic density and Pilodynpenetration and their relationships with growth, stem straightness and branch size for Eucalyptusurophylla S.T.Blake in Northern Vietnam. New Zealand Journal of Forestry Science,2008.38(1):160~175
    [139]Kien ND, Jansson G, Harwood C, et al. Genetic control of growth and form in Eucalyptus urophylla innorthern Vietnam. Journal of Tropical Forestry Science.2009,21(1):50~65
    [140]Kien ND, Jansson G, Harwood C, et al. Clonal variation and genotype by environment interactions ingrowth and wood density in Eucalyptus camaldulensis at three contrasting sites in Vietnam. SilvaGenetica2010.59(1):17~28
    [141]King J N, Carson MJ, Johnson G R. Analysis of disconnected diallel mating designs II: Results from athird generation progeny test of the new Zealand radiata pine improvement programme. Silv Genet.1997,47(2P3):80~87
    [142]Knowles LR, Hansen LW, Wendding A, et al. Evaluation of non-destructive methods for assessingstiffness of Douglas fir trees. New Zealand Journal of Forestry Science,2004.34(1):87~101
    [143]Kube PD, Raymond CA, Banham PW. Genetic parameters for diameter, basic density, cellulose contentand fibre properties for Eucalyptus Nitens. Forest Genetics2001.8(4):285~294
    [144]Kube P, Raymond CA. Selection strategies for genetic improvement of basic density in Eucalyptusnitens. Technical report92. Cooperative Research Centre for Sustainable Production Forestry, ForestryTasmania and CSIRO Forestry and Forest Products, Tasmania.2002
    [145]Kumar D and Singh NB. Age-age correlation for early selection of clones of Populus in India. SilvaGenetica2001.50(3–4):103~108
    [146]Kusnandar D, Galwey NW, Hertzler GL, et al. Age trends in variances and heritabilities for diameterand height in Maritime Pine (Pinus pinaster AIT.) in western Australia. Silva Genetica1998.47(2–3):136~141
    [147]Leite SMM, Bonine CA, Mori ES, et al. Genetic variation in a breeding population of Eucalyptusurophylla S.T.Blake. Silva Genetica2002.51(5–6):253~256
    [148]Lemenih M and Bekele T. Effect of age on calorific value and some mechanical properties of threeEucalyptus species grown in Ethiopia. Biomass&Bioenergy,2004.27:223~232
    [149]Li D, Liu Y, Zheng H, et al. Analysis of genetic effects on growth traits in Eucalyptus maidenii F. Muell.pp.229~238in Wei R, Xu D Eucalyptus Plantation Research, Management and Development. WorldScientific Publishing Co. Pte. Ltd.1–6September2002a Guangzhou, China
    [150]Li D, Liu Y, Zeng D, et al. Analysis of genetic effects for growth traits of Eucalyptus globules Labill. ina6×6diallel design. pp.220~228in Wei R, Xu D Eucalyptus Plantation Research, Management andDevelopment. World Scientific Publishing Co. Pte. Ltd.1–6September2002b Guangzhou, China
    [151]Li F, Gan S, Zhang Z, et al. Microsatellite-based genotyping of the commercial Eucalyptus clonescultivated in China. Silvae Genetica,2011.60(5):216~223
    [152]Li G, Xu J, Lu Z, et al. Studies on index selection of Eucalyptus urophylla families. Forest Research,2005a.18(1):57~61
    [153]Li G, Xu J, Lu Z, et al. Selection and genetic analysis of families in second generation orchard ofEucalyptus urophylla. Journal of Nanjing Forestry University (Natural Science Edition).2005b.29(6):40~44
    [154]Li GY, Xu JM, Lu ZH, et al. A study effect of density/spacing on tree growth and stand volume ofeucalyptus urophylla plantation for pulp wood. In: R.P. Wei and D.P. Xu (eds), Eucalyptus PlantationResearch, Management and Development. World Scientific Publishing Co. Pte. Ltd.2002. pp:352~356
    [155]Li X, Hu T. Genetic resources of eucalypts and their development in Sichuan. pp.123~125in TurnbullJW Eucalypts in Asia Proceedings of an international conference held in Zhanjiang, Guangdong, China,7–11April2003
    [156]Liang K, Bai J. Selection on growth and wind-resistance traits for provenances and families ofEucalyptus urophylla. Forest Research2003.16(6):700~707
    [157]Lima JT, Breese MC, Cahalan CM. Genotype-environment interaction in wood basic density ofEucalyptus clones. Wood Science and Technology,2000.34:197~206
    [158]Lin M, Arnold R, Li B, Yang M. Selection of cold-tolerant eucalypts for Hunan province. pp.107~116in Turnbull JW Eucalypts in Asia Proceedings of an international conference held in Zhanjiang,Guangdong, China,7–11April2003
    [159]Liu Q, Li Z, Chen S. A Review on Pruning in Eucalypt Plantations for Production of Clear Wood.Eucalypt Science&Technology2009.25(2):67~74
    [160]Lu G, Lu Z, Xu J, et al. Study on integrated selection and estimated the breeding value of Eucalyptusurophylla families progenies. Guangdong Forest Science and Technology,2003.19(4):1~6
    [161]Lu G, Lu Z, Xu J, et al. Study on growth variation of Eucalyptus urophylla clones. Guangxi ForestryScience,2004.33(1):42~45
    [162]Lu Z, Xu J, Bai J, et al. A study on wood property variation between Eucalyptus tereticornis andEucalyptus camalduensis. Forest Research2000.13(4):370~376
    [163]Lu Z, Xu J, Li G, et al. The character analysis of Eucalyptus urophylla families progenies by openpollination. Journal of Central South Forestry University,2004.24(5):20~23
    [164]Lu Z, Xu J, Li G, et al. Study on multi-characters genetic analysis and selection index of93Eucalyptusurophylla clones. Eucalypt Science&Technology,2010.27(1):1~8
    [165]Luo J, Zhou G, Wu B, et al. Genetic variation and age-age correlations of Eucalyptus grandis atDongmen Forest Farm in southern China. Australian Forestry,2010.73(2):69~82
    [166]MacDonald AC, Borralho NMG, Potts BM. Genetic variation for growth and wood density inEucalyptus globulus ssp. globulus in Tasmania (Australia). Silvae Genetica1997.46(4):236~241
    [167]Maldonado IB, Herrero ME, Gonzalez GI, et al. Density estimation by screw withdrawal resistance andprobing in structural sawn coniferous timber, and modulus of elasticity assessment. Informes De LaConstruccion.2007.59(506):107~116
    [168]Macdonald E and Hubert J. A review of the effects of silviculture om timber quality of Sitka spruce.Forestry,2002.75(2):107~138
    [169]Mahmood K, Marcar NEM, Naqvi MH, et al. Genetic variation in Eucalyptus camaldulensis Dehnh.For growth and stem straightness in a provenance-family trial on saltland in Pakistan. Forest Ecologyand Management.2003.176:405~416
    [170]Martin B. Eucalyptus: a strategic forest tree. pp.3~18in Wei R, Xu D Eucalyptus Plantation Research,Management and Development. World Scientific Publishing Co. Pte. Ltd.1–6September2002Guangzhou, China
    [171]Matheson AC, Gapare WJ, Ilic J, et al. Inheritance and genetic gain in wood stiffness in Radiata pineassessed acoustically in young standing trees. Silva Genetica,2008.57(2):56–64
    [172]Matheson AC, Wu HX, Spencer DJ, et al. Inbreeding in Pinus Radiata–V. The effects of inbreeding onage-age correlation and early selection efficiency.2004. Silvae Genetica,51(2-3):115~122
    [173]McKenney DW. Australian tree species selection in China. Canberra, Canadian Forest Service GreatLakes Forestry Centre, ACIAR Projescts8457and8848, Impact Assessment Series Report No.8.1998.
    [174]McKenney DW, Davis JS, Turnbull JW. The impact of Australian tree species research in China [A].ACIAR Economic Assessment Series[C]. Canberra.1991.12:6~7
    [175]McKeand SE; Li B; Grissom JE et al. Genetic parameter estimates for growth traits from diallel tests ofLoblolly Pine throughout the southeastern United States. Silvae Genetica.2008,57(3):101~105
    [176]Mead DJ. Opportunities or improving plantation productivity. How much? How quickly? How realistic?Biomass&Bioenergy,2005.28:249~266
    [177]Miranda I, Almeida MH, Pereira H. Provenance and site variation of wood density in Eucalyptusglobulus Labill. at harvest age and its relation to a non-destructive early assessment. Forest Ecology andManagement2001.149:235~240
    [178]Mo X, Peng S, Long T, et al. Important traits and combined evaluation of eucalypt clones. pp.102~108in Wei R, Xu D Eucalyptus Plantation Research, Management and Development. World ScientificPublishing Co. Pte. Ltd.1–6September2002Guangzhou, China
    [179]Moura VPG, Barnes RD, Birks JS. A comparison of three methods of assessing wood density inprovenances of Eucalyptus camaldulensis Dehnh. and other Eucalyptus species in Brazil. AustralianForest Research.1987.17(20):83~90
    [180]Muneri A, Raymond CA. Genetic parameters and genotype-by-environment interactions for basicdensity, Pilodyn and stem diameter in Eucalyptus globulus. Forest Genetics.2000.7(4):317~328
    [181]Osorio LF, White TL, Huber DA. Age trends of heritabilities and genotype-by-environment interactionsfor growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. SilvaGenetica2001.50(1):30~36
    [182]Osorio LF, White TL, Huber DA. Age-age and trait-trait correlations for Eucalyptus grandis Hill exMaiden and their implications for optimal selection age and design of clonal trials. Theor Appl Genet.2003.106:735~743
    [183]Pegg RE, Li H, Li H, et al. Study on artificial breeding of eucalypt hybrid in Guangxi. GuangxiForestry Science2006.35(4):238~242
    [184]Pelletier MC, Henson M, Boyton S, et al. Genetic variation in shrinkage properties of Eucalyptuspilularis assessed using increment cores and test blocks. New Zealand Journal of Forestry Science,2008.38(1):194~210
    [185]Pinyopusarerk K, Doran JC, Williams ER, et al. Variation in growth of Eucalyptus camaldulensisprovenances in Tailand. Forest Ecology and Management.1996.87:63~73
    [186]Pliura A, Zhang SY, Mackay J, et al. Genotypic variation in wood density and growth traits of poplarhybrids at four clonal trials. Forest Ecology and Management2007.238:92~106
    [187]Qi S. Applied Eucalypt cultivation in China. Beijing: China Forestry Publishing House.2007
    [188]Quang TH, Kien ND, Arnold SV, et al. Relationship of wood composition to growth traits of selectionopen-pollinated families of Eucalyptus urophylla from a progeny trial in Vietnam. New Forests,2009.39:301~312
    [189]Raymond CA, Kube PD, Pinkard L, et al. Evaluation of non-destructive methods of measuring growthstress in Eucalyptus globulus: relationships between strain, wood properties and stress. Forest Ecologyand Management,2004.190:187~200
    [190]Raymond CA and MacDonald AC. Where to shoot your Pilodyn: within tree variation in basic densityin plantation Eucalyptus globulus and E. nitens in Tasmania. New Forests.1998.15:205~221
    [191]Retief ECL and Stanger TK. Genetic control of wood density and bark thickness, and their correlationswith diameter, in pure and hybrid populations of Eucalyptus grandis and E. urophylla in south Africa.Southern Forests,2009.71(2):147~153
    [192]Ross RJ, Pellerin RF. Nondestructive testing for assessing wood members in structures: A review. Gen.Tech. Rep. FPL-GTR-70(Rev.). Madison, WI: U.S.Department of Agriculture, Forest Service, ForestProducts Laboratory.40p.1994
    [193]Rozenberg P, Franc A, Cahalan C. Incorporating wood density in breeding programs for soft woods inEurope: a strategy and associated methods. Silva Genetica,2000.50(1):1~7
    [194]Schimleck LR, Michell, AJ, Raymond CA, et al. Estimation of basic density of Eucalyptus globulususing near-infrared spectroscopy. Canadian Journal of Forest Research1999.29(2):194~202
    [195]Simpson JA, Pegg RE, Bai Z. An overview of the response of eucalypts to fertilizer at Dongmen,southern China. pp.253~268in Wei R, Xu D Eucalyptus Plantation Research, Management andDevelopment. World Scientific Publishing Co. Pte. Ltd.1–6September2002Guangzhou, China
    [196]Silva JC, Borralho NMG., Araujo JA, et al. Genetic parameters for growth, wood density and pulp yieldin Eucalyptus globulus. Tree Genetics.2009.5:291~305
    [197]Sluder ER. Two stage selection in slash pine produces good gains in fusiform rust resistance. SouthernJournal of Applied Forestry,1996.20(3):143~147
    [198]Stape JL, Binkley D, Ryan G, et al. The Brazil Eucalyptus potential productivity project: influence ofwater, nutrients and stand uniformity on wood production. Forest Ecology and Management2010.259:1684~1694
    [199]Stackpole DJ, Vaillancourt RE, Aguigar MD, et al. Age trends in genetic parameters for growth andwood density in Eucalyptus globulus. Tree Genetics&Genomes,2010.6:179~193
    [200]Sykes R, Li B, Hodge G, et al. Prediction of loblolly pine wood properties using transmittancenear-infrared spectroscopy. Candia Journal of Forest Research,2005.35:2423~2431
    [201]Tappi. Basic density and moisture content of pulpwood. TAPPI no. T258-98.1989
    [202]Toit BD, Smith CW, Little KM, et al. Intensive, site-specific silviculture: manipulating resourceavailability at establishment for improved stand productivity. A review of Southern African research.Forest Ecology and Management.2010.259:1836~1845
    [203]Vange V. Breeding system and inbreeding depression in the clonal plant species Knautia arvensis(Dipsacaceae): implications for survival in abandoned grassland.2002. Biological Conservation,208:59~67
    [204]Varghese M, Harwood CE, Hegde R, et al. Evaluation of provenances of Eucalyptus camaldulensis andclones of E. camaldulensis and E. tereticorni at contrasting sites in southern India. Silva Genetica,2008.57(3):136~141
    [205]Volker PW, Dean CA, Tibbits WN, et al. Genetic parameters and gains expected from selection inEucalyptus globulus in Tasmania. Silvae Genetica1990.39(1):18~21
    [206]Xiang B., Li B. A new mixed analytical method for genetic analysis of diallel data. Can. J. For. Res.2001,31:2252~2259
    [207]Xiang D, Chen J, Ye L, et al. Present situation, problems and countermeasures of eucalypt plantationsin Guangxi. Guangxi Forestry Science2006.35(4):195~201
    [208]Xu D, Dell B. Nutrient management of eucalypt plantations in south China. pp.269~288in Wei R, XuD Eucalyptus Plantation Research, Management and Development. World Scientific Publishing Co. Pte.Ltd.1–6September2002Guangzhou, China
    [209]Xu J, Lu Z, Li G, et al. Study on integrated selection of provenances-families of Eucalyptus tereticornis.Forest Research2003.16(1):1~7
    [210]Xu Q, Qin M, Ni Y, et al. Prediction of wood density and module of elasticity of balsam fir (Abiesbalsamea) and black spruce (Picea marian) from near infrared spectral analyses. Candia Journal ofForest Research,2011.41:352~358
    [211]Yang M. Present situation and prospects for eucalypt plantations in China. pp.9–15in Turnbull JWEucalypts in Asia Proceedings of an international conference held in Zhanjiang, Guangdong, China,7–11April2003
    [212]Varghese M, Harwood CE, Hegde R, et al. Evaluation of provenances of Eucalyptus camaldulensis andclones of E. camaldulensis and E. tereticorni at contrasting sites in southern India. Silva Genetica2008.57(3):136~141
    [213]Waghorn MJ, Watt MS, Mason EG. Influence of tree morphology, genetics, and initial stand density onouterwood modulus of elasticity of17-year-old Pinus radiate. Forest Ecology and Management,2007.244:86~92
    [214]Wang H, Malcolm DC, Fletcher AM. Pinus caribaea in China: introduction, genetic resources andfuture prospects. Forest Ecology and Management1999.117:1~15
    [215]Wang X, Ross RJ, McClellan M, et al. Strength and stiffness assessment of standing trees using anondestructive stress wave technique. Res. Pap. FPL-RP-585. U.S. Department of Agriculture, ForestService, Forest Products Laboratory, Madison, WI.2000. pp197~206
    [216]Warren E, Smith RGB, Apiolaza LA, et al. Effect of stocking on juvenile wood stiffness for threeEucaluptus species. New Forests37:241~250
    [217]Wei R. Merging ecological concerns into sustainable management of short-rotation forest plantations insouth china: practices by Sino-forest Corp. pp.51~63in Wei R, Xu D Eucalyptus Plantation Research,Management and Development. World Scientific Publishing Co. Pte. Ltd.1–6September2002Guangzhou, China
    [218]Wei X, Borralho NMG. A simple model to describe age trends in heritability in short rotation treespecies. Tree Improvement for Sustainable Tropical Forestry. Proc. QFRI-IUFRO Conf., Caloundra,Queensland, Australia.1996. pp:178~181[Refereed conference]
    [219]Wei X, Borralho NMG. Genetic control of basic density and bark thickness and their relationships withgrowth traits of Eucalyptus urophylla in south east China. Silvae Genetica1997.46(4):245~250
    [220]Wei X, Borralho NMG. Objectives and selection criteria for pulp production of Eucalyptus urophyllaplantations in south east China. Forest Genetics1999.6(3):181~190
    [221]WhiteT. L., Adams W. T. and Neale D. B. Forest Genetics. London. CABI Publishing,2007,1~2
    [222]Wright JA, Osorio LF. Comparison of Eucalyptus urophylla provenance performance at half-rotation inColombia and hybrid strategies with Eucalyptus grandis. Forest Ecology and Management1996,83:117~122
    [223]Wu H.X., and Matheson A.C. Analysis of half-diallel mating design with missing crosses: theory andSAS program for testing and estimating GCA and SCA fixed effects. Silvae Genet.2000,49:130~137.
    [224]Wu H.X., Owen J.V., Abarquez A., et al. Inbreeding in Pinus Radiata–V. The effects of inbreeding onfecundity.2004. Silvae Genetica,53(2):80~87
    [225]Wu S, Xu J, Li G, et al. Use of the Pilodyn for assessing wood properties in standing trees ofEucalyptus clones. Journal of Forestry Research2010a.21(1):68~72
    [226]Wu S, Xu J, Li G, et al. Genotypic variation in wood properties and growth traits of Eucalyptus hybridclones in southern China. New Forests,2011b.42:35~50
    [227]Wu S, Xu J, Li G, et al. Estimation of basic density and modulus of elasticity of eucalypts clones usingnondestructive methods in southern China. Journal of Tropical Forestry Science.2011c.23(1):5156
    [228]Wu S, Xu J, Li G. et al. Age trends and correlations of growth and wood properties in clone ofEucalyptus urophylla×E. grandis in Guangdong.2012. Journal of Forestry Research (Accepted)
    [229]Yao Q, He S, Zhang J, et al. Study on selection of Eucalyptus fine clone for fiber timber in southernhilly land of Fujian. Scientia Silvae Sinicae2003.39(1):87~92
    [230]Yin Y, Wang L, Jiang X. Use of Pilodyn tester for estimating basic density in standing trees ofhardwood plantation. Journal of Beijing Forestry University.2008.30(4):7~11
    [231]Zhu J, Wang J, Zhang S, et al. Wood property estimation and selection of populus tomentosa. ScientiaSilvae Science.2008.44(7):23~28
    [232]Zhu J, Wang J, Zhang S, et al. Using the pilodyn to assess wood traits of standing trees Laix kaempfri.Forest Research.2009.22(1):75~79
    [233]Zobel BJ and Talbert JT Applied forest tree improvement. John Wiley&Sons, New York.1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700