储能用电极材料的制备及其电化学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题是推动经济发展的源动力也是制约经济发展的瓶颈,以国内主流储能装置如锂电池和电容器来说,关键性电极材料的制造成本价格高昂。实现储能材料加工利用的技术突破、降低储能用电极材料的成本,是储能实现产业化的关键。本文以磷酸铁锂和超级电容器用电极材料的制备作为研究目标,系统地对其合成工艺、材料改性、结构表征、电化学性能以及电极动力学性能等方面进行了研究。利用TG、XRD、SEM、Raman、CV、EIS以及充放电测试等方法研究了电极材料的合成工艺及其电化学性能。通过对产物的生长机理确定了合成过程中所用原料、反应时间、反应溶剂等工艺参数进行了优化,确定了合成电极材料的最佳的工艺条件。
     (1)首次采用Fe203为铁源,抗坏血酸作碳源,通过在200℃下水热反应并经煅烧后制备出LiFePO4/C纳米复合材料。抗坏血酸在水热反应体系中不但作为最终反应产物的炭源,而且还起到了限制LiFePO4颗粒生长的作用。抗坏血酸的用量对产物的形貌、结构、碳含量有重要影响,进而影响产物的电化学性能。该方法兼顾固相合成方法中的原料成本低,以及合成过程中的原料分布均匀,可以在较短时间内得到均匀稳定的LiFePO4的产物。当抗坏血酸质量为1g时,制得的LiFePO4/C纳米复合材料的粒径在220-280nm。该材料用作锂离子电池的正极材料时,在0.1C的电流密度下循环500次后其放电容量仍保持159mAh/g,并且具有较好的倍率性能。
     (2)采用无模板法在以Fe2(SO4)3为铁源,LiOH为锂源,P2O5为磷源,乙二醇和水作为共溶剂,通过在200℃下水热反应并经煅烧后制备出空心LiFePO4/C纳米复合材料。乙二醇在水热反应体系中不但作为还原剂的作用,而且还起到了作为最终反应产物炭前驱体作用。通过控制不同的反应条件,研究了其反应机理。其中抗坏血酸的用量对产物的形貌、结构、碳含量有重要影响,进而影响产物的电化学性能。
     (3)通过采用乙二醇和水作为双溶剂,以Fe(NO3)3为铁源,制备了堆积密度相对较高的笼状LiFePO4/C微球,乙二醇在反应体系中不仅作为还原剂,而且还可以作为一种碳化剂包覆在LiFePO4的表面。通过控制反应时间、反应温度、反应溶剂和反应物,研究了笼状LiFeP04/C的生长机理。在0.1C下,第一次充放电后,材料的放电容量为161mAh/g,300次循环后材料仍然能够保持157mAh/g笼状LiFeP04/C复合材料在0.5、1、5和10C下的可逆容量分别为150、140、130和120mAh/g,相对O.1C下的放电容量,其在各倍率下的放电容量保持率为93、87、80和75%。当充放电电流密度再恢复至0.1C,材料的放电容量可以恢复到160mAh/g。而商品材料随着充放电电流密度从5C提高到10C,商品化材料的放电容量只能保持72%和62%。
     (4)通过溶剂热法在较短的反应时间内得到了纯的LiFePO4相,经过600℃和7h的热处理可以得到鸟巢状的具有纳米片层结构的LiFePO4/C复合物。由于溶剂热反应后的产物为纯相,因此后续的热处理时间可以在一定的程度上缩短。反应时间虽然不能改变得到产物的相组成,但改变了产物中的残存的乙二醇的量。在热处理过程中,残留在颗粒表面的乙二醇在氮气的保护下在高温下发生了一个炭化分解作用,乙二醇在本实验过程中既作为一种还原剂,又作为一种碳化剂。与商品化LiFePO4相比,本实验制得的材料的电化学性能更佳。
     (5)先合成具有立方结构的金属有机框架,然后采用两种不同的加炭的方法再加以高温热处理方法去除金属有机框架,制备两种不同的多孔碳材料。研究了其制备过程中的各种合成条件对材料的形貌及结构的影响。根据两种材料的结构研究它们在不同的电解液中的电化学性能,发现针对不同的孔结构,片状多孔炭材料更适合在无机电解液中进行充放电,而3D蜂窝状多孔炭材料由于其发达的中孔的结构更适合在有机电解液中发挥其电容性能。
Along with the rapid development of the economy, there are more and more renewable energy deveice are used, such as the lithium ion battery and supercapacitor. However, the high manufacture cost of their electode materials become a big issue in the corresponding industry. Therefore, the development of low cost electrode mateials becomes the foucs of our research. We used TG, XRD, SEM, Raman, CV, EIS, as well as electrochemical testing method to study the optimized synthesis process of the electrode mateials and the detailed information are listed as following:
     (1) LiFePO4nanoparticles coated with a carbon layer have been synthesized by a hydrothermal reaction-calcination process, using Fe2O3as an iron source and ascorbic acid as carbon source. The amount of ascorbic acid can have an effect on the structure, phase and carbon amount of the final product. With1g ascorbic acid used in the reaction, the particle sizes of synthesized LiFePO4/C nanocomposites are in a range of220-280nm. When used as cathode materials for the lithium-ion batteries, the as-prepared material shows high capacity and good cycle stability (159mAh/g at0.1C over500cycles), as well as good rate capability.
     (2) FeSO4was used as the iron source, LiOH as lithium source, P2O5as the phosphorus source, ethylene glycol and water were used as co-solvent for the preparation of the LiFePO4. After hydrothermal reaction at200℃and calcined at700℃, hollow LiFePO4/C nano-composites were obtained. After investigating the reaction conditions on the final product, the reaction mechanism of the LiFePO4/C compostite was illustrated. Electrochemcial perfoamce demonstreated the material can be a good candidate for the lithium ion battery.
     (3) A simple and convenient Ostwald ripening route to the morphology and phase controlled preparation of cage-like LiFePO4/C microspheres is developed. By selecting appropriate experiment conditions for ripening, the phase of the microspheres can be controlled. The possible formation mechanism for the LiFePO4hierarchical microstructures have been presented in detail. As the cathode material for lithium batteries, the as-prepared LiFePO4/C composite exhibits excellent cycle stability (163mAh/g at0.1C up to100cycles) and good rate capacity (119mAh/g,10C).
     (4) Self-assembled hierarchical nest-like LiFePO4microstructures from nanoplates have been synthesized by an ethylene glycol-mediated solvothermal route using Li2SO4,Fe(NO3)3·9H2O and P2O5as raw materials. It was found that EG not only played multifold roles in the formation process of such unique LiFePO4hierarchical microstructures, but also acted as carbon source during the heat treatment and forms conductive carbon coating on the surface of the LiFePO4nanoplates. In addition, employing P2O5instead of other phosphorus sources was necessary for the formation of such unique microstructures. The possible formation mechanism for the LiFePO4hierarchical microstructures have been presented in detail. As the cathode material for lithium batteries, the as-prepared LiFePO4architectures exhibit excellent cycle stability (158mAh/g at0.1C up to100cycles) and good rate capacity (120mAh/g,10C). The desirable electrochemical performance can be attributed to such unique microstructure, which could remain structural stability for long-term cycling. Furthermore, the nanoplates as the building blocks can improve the electrochemical reaction kinetics and finally promote the rate performance.
     (5) A green and efficient method is present to synthesize porous carbon with different morphologies from metal organic framework (MOF) using glucose, resorcinol and formaldehyde as carbon precursors, respecively. Two methods were adopted to introduce the carbon to the MOF. All the carbon precusros were demonstrarted to penetrate into the external surface and/or voids of cubic-shape MOF, then polymerized and carbonized. Meantime, MOF was decomposed into ZnO, which was further reduced by carbon (or CO) into Zn. And Zn would evaporate during the carbonization process, forming a continuous carbon texture. When the synthesized porous carbons were applied as electrode materials for electric double layer capacitor, we found the materiasls can be performance better in a suitable electrolyte.
引文
[1]M. Lazzari, B. Scrosati. A cyclable lithium organic electrolyte cell based on two intercalation electrodes [J]. Journal of the Electrochemical Society,1980,127(3): 773-774.
    [2]郭丙煜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002:12-13.
    [3]T. Nagaura, K. Tozawa. Lithium ion rechargeable battery [J]. Progress in batteries and solar cells,1990,9:209-214.
    [4]D.Aurbach. The correlation between the surface chemistry and the performace of Li/carbon intercalation anodes for rechargeable "Rocking-Chair" type batteries [J]. Journal of the Electrochemical Society,1994,141(3):603-611.
    [5]K. Xu. Nonaqueous liquid electrolytes for lithium-based rechargeable batterie [J]. Chemical Reviews,2004,104(10):4303-4417.
    [6]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,411:359-367.
    [7]J. R. Ying, C. Y. Jiang, C. R. Wan. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries [J]. Journal of Power Sources, 2004,129(2):264-269.
    [8]A. Lundblad, B. Bergman. Synthesis of LiCoO2 starting from carbonate precursors:Ⅱ Influence of calcinations conditions and leaching [J]. Solid State Ionics,1997,96(3-4): 183-193.
    [9]夏熙,努燕娜,郭再萍.低热固相反应法制备LiCo02的研究[J].高等学校化学学报,1999,20(12):1847-1849.
    [10]H. Tukaoto, A. R. West. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping [J]. Journal of the Electrochemical Society,2002,144(9):3164-3168.
    [11]C. H. Han, Y. S. Hong, C. M. Park, K. Kim. Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten salt synthesis using the eutectic mixture of LiCl-LiCO3 [J]. Journal of Power Sources,2001,92(1-2):95-101.
    [12]S. G. Kang, K. Y. S. Ryu. Electrochemical and structural properties of HT LiCoO2 and HT LiCoO2 prepared by citrate sol-gel method [J]. Solid State Ionics,1999,120(1-4): 155-161.
    [13]应皆荣,万春荣,姜长印.高密度球形LiCoO2的制备及性能研究[J].电源技术,2004,28(9):525-527.
    [14]胡国荣,桂阳海,彭忠东.锂离子蓄电池正极材料LiCoO2研究进展[J].电源技术, 2003,27(2):125-128.
    [15]T. Ohzuku, A.Ueda, M. Nagayama, Y. Iwakoshi, H. Komori. Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells [J]. Electrochimical Acta,1993,38(9):1159-1167.
    [16]J. R. Dahn, E. W. Fuller, M. Obrovac, U. V. Sacken. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells [J]. Solid State Ionics,1994,69(3-4):265-270.
    [17]M. M. Thackeray, H. Y Shao, A. J. Kahaian, K. D. Kepler. Structural fatigue in spinel electrodes in high voltage (4v) Li/LixMn204 cells [J]. Electrochemical and Solid-State Letters,1998,1(1):7-9.
    [18]H. Kawai, M. Nagata, H. Kageyama, H. Tukamoto, A. R. West.5v lithium cathodes based on spinel solid solutions Li2Co1+xMn3-xO8:-1=X=1 [J]. Electrochimical Acta,1999, 45(1-2):315-327.
    [19]Wu X. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel [J]. Journal of Power Sources,2002,109(1):53-57.
    [20]B. J. Huang, R. Santhanam, D. G. Liu, Y. W. Tsai. Effect of Al-subsitution on the stability of LiMn2O4 spinel, synthesized by citric acid sol-gel method [J]. Journal of Power Sources,2001,102(1-2):326-331.
    [21]彭忠东,胡国荣.稀土掺杂对LiMn2O4电化学性能的影响[J].电池,2002,32(4):191-193.
    [22]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as positive electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [23]A. S. Andersson, J. O. Thomas. The source of first-cycle capacity loss in LiFePO4 [J]. Journal of Power Sources,2001,97-98:498-502.
    [24]L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman, C. Masquelier, J. M. Tarascon. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy [J]. Chemistry of Materials,2006,18(23):5520-5529.
    [25]M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries [J]. Solid State Ionics,2002,148(3-4): 283-289.
    [26]P. P. Prosini, M. Lisi, D. Zane, M. Pasquali. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics,2002,148(1-2):45-51.
    [27]D. Morgan, A. Ven, G. Ceder. Li conductivity in LixMPO4 (M= Mn, Fe, Co, Ni) olivine materials [J]. Electrochemical and Solid-State Letters,2004,7(2):30-32.
    [28]M. S. Islam, D. J. Driscoll, C. A. J. Fisher. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material [J]. Chemistry of Materials,2005,17(20):5085-5092.
    [29]S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada. Experimental visualization of lithium diffusion in LixFePO4 [J]. Nature Materials,2008,7: 707-711.
    [30]P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon, C. Masquelier. Room-temperature single phase Li insertion/extraction in nanoscale LixFePO4 [J]. Nature Materials,2008,7:741-747.
    [31]B. Ellis, P. S. Herle, Y. H. Rho, L. F. Nazar, R. Dunlap, L. K. Perry, D. H. Ryan.. Nanostructured materials for lithium-ion batteries:surface conductivity vs. bulk ion/electron transport [J]. Faraday Discussions,2007,134:119-141.
    [32]A. Yamada, S. C. Chung, K. Hinokuma. Optimized LiFePO4 for lithium battery cathodes [J]. Journal of the Electrochemical Society,2001,148(3):224-229.
    [33]M. Takahashi, S. Tobishima, K. Takei, Y. Skurai. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries [J]. Journal of Power Sources,2001, 97-98:508-511.
    [34]S. S. Zhang, J. L. Allen, K. Xu, T. R. Jow. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes [J]. Journal of Power Sources, 2005,147(1-2):234-240.
    [35]J. Barker, M. Y. Saidi, J. Swoyer. Method of making lithium-containing materials, US patent, US6528033,2003-03-04.
    [36]J. Barker, M. Y. Saidi, J. Swoyer. Preparation of making lithium-containing materials, US patent, US6702961,2004-03-09.
    [37]J. Barker, M. Y. Saidi, J. Swoyer. Lithium-containing materials, US patent, US6716372, 2004-06-06.
    [38]J. Barker, M. Y. Saidi, J. Swoyer. Lithium-based active materials and preparation thereof, US patent, US6884544,2005-04-26.
    [39]J. Barker, M. Y. Saidi, J. Swoyer. Method of making lithium metal cathode active materials, US patent, US6960331,2005-10-01.
    [40]C. H. Mi, X. B. Zhao, G. S. Cao, J. P. Tu. In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes [J]. Journal of the Electrochemical Society,2005,152(3):483-487.
    [41]王冠,江志裕.以三价铁制备LiFePO4/C复合材料及其电化学性能[J].电池,2007,37(3):195-198.
    [42]M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara. Synthesis of LiFePO4 cathode material by microwave processing [J]. Journal of Power Sources,2003,119-121: 258-261.
    [43]K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, H. G. Kim. Synthesis of LiFePO4by co-precipation and microwave heating [J]. Electrochemical. Communications, 2003,5(10):839-842.
    [44]王小建,任俊霞,李宇展,魏进平,高学平,阎杰.微波法制备掺碳LiFePO4正极材料[J].无机化学学报,2005,21(2):249-252.
    [45]苏元智,徐徽,陈白珍,蔡勇.微波法合成LiFePO4研究[J].电池,2006,36(1):43-44.
    [46]W. Li, J. R. Ying, C. R. Wan, C. Y. Jiang, J. Gao, C. P. Tang. Preparation and characterization of LiFePO4 from NH4FePO4·H2O under different miacrowave heating conditions [J]. Journal of Solid State Electrochemistry,2007,11(6):799-803.
    [47]M. S. Song, Y. M. Kang, J. H. Kim, H. S. Kim, D. Y. Kim, H. S. Kwon, J. Y. Lee. Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating [J]. Journal of Power Sources,2007,166(1): 260-265.
    [48]A. V. Murugan, T. Muraliganth, A. Manthiram. Rapid microwave-solvothermal synthesis of phosphor-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries [J]. Electrochemical Communications,2008,10(6):903-906.
    [49]S. Beninati, L. Damen, M. Mastragostino. MW-assisted synthesis of LiFePO4 for high power applications [J]. Journal of Power Sources,2008,180(2):875-879.
    [50]S. Yang, P. Y. Zavalij, M. S. Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes [J]. Electrochemical Communications,2001,3(9):505-508.
    [51]H. Nakano, K. Dokko, S. Koizumi, H. Tannai, K. Kanamura. Hydrothermal synthesis of carbon-coated LiFePO4 and its application to lithium polymer battery [J]. Journal of the Electrochemical Society,2008,155(12):909-914.
    [52]E. M. Jin, B. Jin, D. K. Jun, K. H. Park, H. B. Gu, K. W. Kim. A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method [J]. Journal of Power Sources,2008,178(2):801-806.
    [53]J. J. Chen, S. J. Wang, M. S. Whittingham. Hydrothermal synthesis of cathode materials [J]. Journal of Power Sources,2007,174(2):442-448.
    [54]C. H. Zhang, X. Huang, Y. S. Yin, J. H. Dai, Z. B. Zhu. Hydrothermal synthesis of monodispersed LiFePO4 cathode materials in alcohol-water mixed solutions [J].Ceramics International,2009,35(7):2979-2982.
    [55]F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J]. Electrochemical and Solid-State Letters,2002,5(3):47-50.
    [56]R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik, J. Jamnik. Porous olivine composites synthesized by sol-gel technique [J]. Journal of Power Sources,2006,153(2):274-280.
    [57]D. Choi, P. N. Kumta. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J]. Journal of Power Sources,2007,163(2):1064-1069.
    [58]惠乐,唐子龙,罗绍华,张中太.溶胶凝胶法制备LiFePO4正极材料[J].化学进展,2007,19(10):1460-1466.
    [59]Y. Sundarayya, K. C. Kumara Swamy, C. S. Sunandana. Oxalate based non-aqueous sol-gel synthesis of phase pure sub-micron LiFePO4 [J]. Materials Research Bulletin, 2007,42(11):1942-1948.
    [60]G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, M. Wohlfahrt-Mehrens. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. Journal of Power Sources,2003,119-121:247-251.
    [61]M. R. Yang, W. H. Ke, S. H. Wu. Preparation of LiFePO4 powders by co-precipation [J]. Journal of Power Sources,2005,146(1-2):539-543.
    [62]K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, K. T. Kang, H. G. Kim. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J]. Solid State Communications,2004,129(5):311-314.
    [63]钟参云,田彦文,曲涛.共沉淀法制备锂离子电池正极材料LiFePO4[J].材料与冶金学报,2005,4(4):272-275.
    [64]S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou, H. K. Liu. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J]. Materials Letters,2004,58(11):1788-1791.
    [65]C. M. Doherty, R. A. Caruso, B. M. Smarsly, C. J. Drummond. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries [J]. Chemistry of Materials,2009,21(13):2895-2903.
    [66]S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, N. Kumagai. Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material [J]. Electrochimical Acta,2004,49(24):4213-4222.
    [67]P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, M. pasquali. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance [J]. Journal of the Electrochemical Society,2002,149(7):886-890.
    [68]Y. Iriyama, M. Yokoyama, C. Yada, S. K. Jeong, I. Yamada, T. Abe, M. Inaba, Z. Ogumi. Preparation of LiFePO4 thin films by pulsed laser deposition and their electrochemical properties [J]. Electrochemical and Solid-State Letters,2004,7(10):340-342.
    [69]Y. G. Xia, M. Yoshio, H. Noguchi. Improved electrochemical performance of LiFePO4 by increasing its specific surface area [J]. Electrochimica Acta,2006,52(1):240-245.
    [70]K. Kim, J. H. Jeong, I. J. Kim, H. S. Kim. Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4 [J]. Journal of Power Sources,2007,167(2):524-528.
    [71]B. Q. Zhu, X. H. Li, Z. X. Wang, H. J. Guo. Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction [J]. Materials Chemistry and Physics,2006, 98(2-3):373-376.
    [72]Y. Wang, Y. R. Wang, E. Hosono, K. Wang, H. S. Zhou. The design of a LiFePO4/Carbon nanocomposite with a core-shell structure and its synthesis by all in situ polymerization restriction method [J]. Angewandte Chemie International Edition,2008, 47(39):7461-7465.
    [73]A. Yamada, M. Hosoya, S. C. Chung, Y. Kudo, K. Hinokuma, K. Y. Liu, Y. Nishi. Olivine-type cathodes achievements and problems [J]. Journal of Power Sources,2003, 119-121:232-238.
    [74]K. Zaghib, J. Shim, A. Guerfi, P. Charest, K. A. Striebel. Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries [J]. Electrochemical and Solid-State Letters,2005,8(4):207-210.
    [75]H. Joachin, T. D. Kaun, K. Zaghib, J. Prakash. Electrochemical and thermal studies of carbon-coated LiFePO4 cathode [J]. Journal of the Electrochemical Society,2009,156(6): 401-406.
    [76]S, W, Oh, H, J, Bang, S, T, Myung, Y. K. Sun. The effect of morphological properties on the electrochemical behavior of high tap density C-LiFePO4 prepared via coprecipitation [J]. Journal of the Electrochemical Society,2008,155(6):414-420.
    [77]J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang. Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles [J]. Materials Letters,2007,61(4-5): 1260-1264.
    [78]Ying J R, Lei M, Jiang C Y. Preparation and characterization of high-density spherical Lio.97Cr0.01FePO4/C cathode material for lithium ion batteries [J]. Journal of Power Sources,2006,158(1):543-549.
    [79]J. R. Ying, C. Y. Jiang, C. K. Wan. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries [J]. Journal of Power Sources, 2004,129(2):264-269.
    [80]P. P. Prosini, M. Lisi, D. Earle, M. Pasquali. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics,2002,148(1-2):45-51.
    [81]C. H. Mi, G. S. Cao, X. B. Zhao. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode [J]. Materials Letters,2005,59(1):127-130.
    [82]P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar. Nano-network electronic conduction in iron and nickel olivine phosphates [J]. Nature Materials,2004,3:147-152.
    [83]唐致远,阮艳莉.不同碳源对LiFePO4/C复合正极材料性能的影响[J].化学学报,2005,63(16):1500-1504.
    [84]R. Dominko, M. Gaberscek, M. Remsker, D. Hanzel, S. Pejovnik, J. Jamnik. Impact of the carbon coating thickness on the elctrochemical performance of LiFePO4/C composite [J]. Journal of the Electrochemical Society,2005,52(3):607-610.
    [85]Y. Hu, M. M. Doeff, R. Kostecki, R. Finones. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries [J]. Journal of the Electrochemical Society,2004, 151(8):1279-1285.
    [86]M. M. Doeff, Y. Hu, F. Mclamoon, R. Kostecki. Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J]. Electrochemical and Solid-State Letters, 2003,6(10):207-209.
    [87]K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, K. T. Kang, H. G. Kim. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Communications,2004,129(5):311-314.
    [88]H. T. Chung, J. T. Blocking, Y. M. Chiang, Electronically conductive phosphor-olivines as lithium strorage electrodes [J]. Nature Materials,2001,1:123-128.
    [89]S. Shi, L. Liu, C. Ouyang, et al. Enhancement of electronic conductive of LiFePO4 by Cr doping and its identification by first-principles calculations [J]. Physical Review B,2003, 68(19):195108.
    [90]J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang. LiFePO4 doped with ions prepared by co-precipitation method [J]. Materials. Letters,2005,59(18):2361-2365.
    [91]D. Y. Wang, H. Li, S. Q. Shi, X. Huang, L. Chen. Improving the rate performance of LiFePO4 by Fe-site doping [J]. Electrochimica Acta,2005,50(14):2955-2958.
    [92]G. X. Wang, S. Needham, J. Yao, J. Z. Wang, R. S. Liu. A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries [J]. Journal of Power Sources,2006,159(1):282-286.
    [93]M. R. Yang, W. H. Ke. The doping effect on the electrochemical properties of LiFe0.95Mo.o5P04(M=Mg2+, Ni2+, Al3+, or V3+) cathode materials for lithium-ion cells [J]. Journal of the Electrochemical Society,2008,155(10):729-732.
    [94]N. Ravet, A. Abouimrane, M. Armand. On the electronic conductivity of phosphor-olivines as lithium storage electrodes [J]. Nature Materials,2003,2:702-706.
    [95]H. Yang, X. L. Wu, M. H. Cao, Y. G. Guo. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries [J]. The Journal of Physical Chemistry C,2009,113(8):3345-3351.
    [96]K. Saravanan, M. V. Reddy, P. Balaya, H. Gong, B. V. R. Chowdari, J. J. Vittal. Storage performance of LiFePO4 nanoplates [J]. Journal of Material Chemistry,2009,19(5): 605-610.
    [97]C. Y. Nan, J. Lu, C. Chen, Q. Peng, Y. D. Li. Solvothermal synthesis of lithium iron phosphate nanoplates [J]. Journal of Materials Chemistry,2011,21(27):9994-9996.
    [98]A. V. Murugan, T. Muraliganth, P. J. Ferreira, A. Manthiram. Dimensionally modulated, single-crystalline LiMPO4(M=Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage [J]. Inorganic Chemistry,2009,48(3):946-952.
    [1]邓飞,曾燮榕,邹继兆, 黎晓华.制备温度对热解炭包覆磷酸铁锂/气相生长炭纤维复合正极材料的影响[J].无机材料学报,2011.26(11):1141-1146.
    [2]F. Wu, G Q. Tan, R.J. Chen, L.Li, J, Xiang, Y.L.Zheng. Novel solid-state Li/LiFePO4 battery configuration with a ternary nanocomposite electrolyte for practical applications [J]. Advanced Materials.2011,23(43):5081-5085.
    [3]Z. H. Chen, Y. Ren, Y. Qin, H. M. Wu, S. Q. Ma, J. G. Ren, X. M. He, Y. K. Sun. K. Amine. Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction [J]. Jornal of Materials Chemistry,2011,21(15):5604-5609.
    [4]L. Gu, C. B. Zhu, H. Li, Y. Yu, C. L. Li, S. Tsukimoto, J. Maier, Y. Ikuhara. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution [J]. Journal of the America Chemistry Society,2011,133 (13):4661-4663.
    [5]丁燕怀,苏光耀,高德淑,刘黎,王承位.溶胶-凝胶法合成正极材料LiFePO4[J].电池,2006,36(1):52-53.
    [6]F. Croce, A. D. Epifanio, J. Hassoun. A. Deptulab, T. Olczacb, B. Scrosatia. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J]. Electrochemical andSolid-State Letters [J].2002,5(3):47-50.
    [7]W. Paraguassul, P. T. C. Freirel, V. Lemosl, S. M. Lala, L. A. Montoro, J. M. Rosolen. Journal of Raman Spectroscopy [J].2005,36(3):213-220.
    [8]钟参云,曲涛,田彦文。锂离子电池正极材料LiFePO4的研究进展[J].稀有金属与硬质合金,2005,33(2):38-42.
    [9]K. S. Park, K. T. Kang, S. B. Lee, G. Y. Kim, Y. J. Park, H. G. Kim. Synthesis of LiFePO4 with fine particle by co-precipitation method [J]. Materials Research Bulletin,2004, 39(12):1803-1810.
    [10]P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, M. Pasquali. Long-term cycl ability of nanostructured LiFePO4 [J]. EElectrochimica Acta,2003,48(28):4205-4211.
    [11]S. Scaccia, M. Carewska, P. Wisniewski, P. P. Prosinil. Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries [J]. Materials Research Bulletin,2003,38(7):1155-1163.
    [12]S. F. Yang, P. Y. Zavalij, M. S. Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes [J]. Electrochemistry Communications,2001,3(9):505-508.
    [13]J. Lee, A. S. Teja. Characteristics of lithium iron phosphate (LiFePO4) particles synthesized in subcritical and supercritical water [J]. The Journal of Supercrtical Fluids,2005, 35(1):83-90.
    [14]S. Franger, F. Le Cras, C. Bourbon, H. Rouault. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J]. Journal of Power Sources,2003,119-121:252-257.
    [15]Murugavel R, Gogoi N. Structural variations in layered alkaline earth metal cyclohexyl phosphonates [J]. Bulletin of Materials Science,2009,32(3):321-328.
    [16]C. Y. Panicker, H. T. Varghese, D. Philip. FT-IR, FT-Raman and SERS spectra of vitamin C [J]. Spectrochimica Acta A,2006,65(3-4):802-804.
    [17]E. Markevich, R. Sharabi, O. Haik, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M. A. Schmidt, N. Schall, C. Stinner. Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines [J]. Journal of Power Sources,2011,196(15):6433-6439.
    [18]I. Belharouak, C. Johnson, K. Aimne, Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4[J]. Electrochemistry Communications,2005,7(10): 983-998.
    [19]D. Y. W. Yu, K. Donoue, T. Kadohata, T. Murata, S. Matsuta, S. Fujitani. Impurities in LiFePO4 and their influence on material characteristics [J]. Journal of The Electrochemical Society,2008,155(7):526-530.
    [20]B. Roney, B. Space, E. W. Castner, R. L. Napoleon, P. B. Moore. A molecular dynamics study of aggregation phenomena in aqueous n-propanol [J]. The Journal of Physical Chemistry B,2004,108(22):7389-7401.
    [21]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1:123-126.
    [1]M. N. Guo, C. X. Guo, L.Y. Jin, Y. J. Wang, J. Q. Lu, M. F. Luo.Nano-sized CeO2 with extra-high surface area and its activity for CO oxidation [J]. Materials Letters.2010,64(14): 1638-1640.
    [2]B. Xua, L. Peng, G. Q Wang, G. P. Cao, F. Wu. Easy synthesis of mesoporous carbon using nano-CaC03 as template [J]. Carbon,2010,48(8):2377-2380.
    [3]M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, W. Ueda. Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation [J]. Journal of Materials Chemistry,2010,20(9): 1811-1818.
    [4]Y. Qin, A. L. Pan, L. F. Liu, O. Moutanabir, R. B. Yang, M. Knez. Atomic layer deposition assisted template approach for electrochemical synthesis of Au crescent-shaped half-nanotubes [J]. ACS Nano,2011,5(2):788-794.
    [5]J. Chen, K. Takanabe, R. Ohnishi, D. Lu, S. Okada c, H. Hatasawa, H. Morioka, M.Antonietti, J. Kubota, K. Domen. Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template [J]. Chemical Communication,2010,46(40):7492-7494.
    [6]Z.Y. Chu, Y. N. Zhang, X. L. Dong, W. Q. Jin, N. P. Xu, B. Tieke. Template-free growth of regular nano-structured Prussian blue on a platinum surface and its application in biosensors with high sensitivity [J]. Journal of Materials Chemistry,2010,20(36):7815-7820.
    [7]H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D.J. Norris, S. H. Oh. Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing [J]. ACS Nano,2011,5(8):6244-6253.
    [8]S. L. Shanthi, P. Michael, M. Ashok, R.V. Mangalaraja, T. Balasubramanian. Synthesis and characterization of nano crystalline hydroxyapatite spheroids using anionic template for bio applications [J]. Key Engineering Materials,2012,493-494:723-727.
    [9]S. Butun, N. Sahiner. A versatile hydrogel template for metal nano particle preparation and their use in catalysis [J]. Polymer,2011,52(21):4834-4840.
    [10]Y. Zhu, G. Xu, X. Ye, Y. Chen, D. He, J. Zhong. Micropattern of nano-hydroxyapatite/silk fibroin composite onto Ti alloy surface via template-assisted electrostatic spray deposition [J]. Materials Science and Engineering:C,2012,32(2): 390-394.
    [11]S. Y. Lim, C. S. Yoon, J. Cho. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries [J]. Chemistry of Materials,208,20(14):4560-4564.
    [12]C. M. Doherty, R. A. Caruso, C. J. Drummond. High performance LiFePO4 electrode materials:influence of colloidal particle morphology and porosity on lithium-ion battery power capability [J]. Energy and Environment Science,2010,3(6):813-823.
    [13]J. R. Mann, N. Vora, I. L. Repins. In situ thickness measurements of chemical bath-deposited CdS [J]. Solar Energy Materials and Solar Cells,2010,94(2):333-337.
    [14]S. U. Chung, J. T. Bloking, Y. M. Chiang. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1:123-128.
    [15]D. H. Kim, J. Kim, Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties [J]. Electrochemical Solid and State Letters,2006,9(9):439-442.
    [16]C. Schuffenhauer, R. Popovitz-Biro, R. Tenne. Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF) [J]. Journal of Materials Chemistry,2002,12(5): 1587-1591.
    [17]J. Li, H. C. Zeng. Hollowing sn-doped TiO2 nanospheres via Ostwald ripening [J]. Journal of American Chemistry Society,2007,129(51):15839-15847.
    [18]J. G. Yu, H. T. Guo, S. A. Davis, S. Mann. Fabrication of monodisperse calcium carbonate hollow microspheres by chemically induced self-transformation [J]. Advanced Functional Materials,2006,15(16):2035-2041.
    [19]J. G. Yu, H. G. Yu, H. T. Guo, M. Li, S. Mann. Spontaneous formation of a tungsten trioxide sphere-in-shell superstructure by chemically induced self-transformation [J]. Small, 2008,4(1):87-91.
    [20]D. Lepage, C. Michot, G. X. Liang, M. Gauthier, S. B. Schougaard. A soft chemistry approach to coating of LiFePO4 with a conducting polymer [J]. Angewandte Chemie International Edition.2011,50(30):6884-6887.
    [21]E. M. Jin, B. Jin, D. K. Jun, K. H. Park, H. B. Gua, K. W. Kim. A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method [J]. Journal of Power Sources,2008,178(2):801-806.
    [22]S. Franger, F. L. Cras, C. Bourbon, H. Rouault. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J]. Journal of Power Sources,2003,119-121:252-257.
    [23]A. V. Murugan, T. Muraliganth, A. Manthiram. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries [J]. Journal of Physics and Chemistry C,2008,112(37):14665-14671.
    [24]K. Dokko, S. Koizumi, K. Sharaishi, K. Kanamura. Electrochemical properties of LiFePO4 prepared via hydrothermal route [J]. Journal of Power Sources,2007,165(2): 656-659.
    [25]T. Muraliganth, A.V. Murugan, A. Manthiram. Nanoscale networking of LiFePO4 nanorods synthesized by a microwavesolvothermal route with carbon nanotubes for lithium ion batteries [J]. Journal of Materials Chemistry,2008,18(46):5661-5668.
    [26]A. Castets, D. Carlier, Y. Zhang, F. Boucher, N. Marx, L. Croguennec, M. Menetrier. Multinuclear NMR and DFT calculations on the LiFePO4·OH and FePO4·H2O homeotypic phases [J]. The Journal of Physical Chemistry C,2011,115(32):16234-16241.
    [27]K. Kimura, M. Miyayama. Li intercalation properties of LiFePO4/Carbon composites prepared by hydrothermal method [J]. Key Engineering Materials,2004,269:139-142.
    [28]邹晨,金向朝,鲍婕,齐文杰,翟登云.水热法制备四方相钛酸钡纳米粉末的工艺研究[J].绝缘材料,2004,6(2):25-27.
    [29]张克从,张乐惠.晶体生长科学与技术(上册)(第二版)[M].北京:科学出版社,1997,26-28.
    [30]卢春晓,杜进民, 时高峰。生物相容性水基磁流体的研究与进展[J].中国组织工程研究与临床康复,2008,12(6):1089-1092.
    [31]T Adschiri, Y Hakuta, K Arai. Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water [J]. Industrial and Engineering Chemistry Research,2000,39(12):4901-4907.
    [32]Hakuta, Y.; Terayama, H.; Onai, S.; Adschiri, T.; Arai, K. Production of ultra-fine ceria particles by hydrothermal synthesis under supercritical conditions [J]. Journal of Materials Science Letters.1998,17(14):1211-1213.
    [33]L.B. Archibaldl, A. D. E. Pullin. Solvent effects in infra-red spectra of compounds containing the carbonyl group [J]. Spectrochimica Acta,1958,12(1):34-40.
    [34]M Pietrzak, JP Wehling, S Kong, Symmetrization of Cationic Hydrogen Bridges of Protonated Sponges Induced by Solvent and Counteranion Interactions as Revealed by NMR Spectroscopy [J]. Chemistry-A European Journal,2010,16(5):1679-1690.
    [35]王文静.CdS纳米晶热溶剂合成及其薄膜的制备[M].天津大学,2010,56.
    [36]R.J. Sengwa, V. Khatri, S. Sankhla. Dielectric behaviour and hydrogen bond molecular interaction study of formamide-dipolar solvents binary mixtures [J]. Journal of Molecular Liquids,2009,144(1-2):89-96.
    [37]M. M. Feldsteinl, E. V. Bermesheval, Y. C. Jean, G. P. Misra, R. A. Siegel. Free volume, adhesion, and viscoelastic properties of model nanostructured pressure-sensitive adhesive based on stoichiometric complex of poly(N-vinyl pyrrolidone) and poly(ethylene glycol) of disparate chain lengths [J]. Journal of Applied Polymer Science,2011,119(4): 2408-2421.
    [39]K Saravanan, MV Reddy, P Balaya, H Gong. Storage performance of LiFePO4 nanoplates [J]. Journal of Materials Chemistry,2008,19(5):605-610.
    [40]左晶,赵楠,罗杰.铜掺杂的磷酸铁锂复合正极材料的制备和电性能研究[J].化工新型材料,2012,40(5):34-36.
    [41]C. P. E Varsamis, E. I. Kamitsos, T. Minami. N. Machida. Investigation of Cul-containing molybdophosphate glasses by infrared reflectance spectroscopy [J]. The Journal of Physical Chemistry C,2012,116(21):11671-11681.
    [42]S Zhu, H Zhou, T Miyoshi, M Hibino, I. Honma, M. Ichihara. Self-assembly of the mesoporous electrode material Li3Fe2 (PO4)3 using a cationic surfactant as the template [J]. Advanced Materials,2004,16(22):2012-2017.
    [1]F.J. Uribe-Romo, J. R. Hunt, H. Furukawa, Cornelius Klo, C. Klock, M. O. Keeffe, O. M. Yaghi. A crystalline imine-linked 3-D porous covalent organic framework [J]. Journal of the American Chemical Society,2009,131(13):4570-4571.
    [2]J. Zhang, F. Shi, J. Lin, D. Chen, J. Gao. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst [J]. Chemistry of Materials,2008,20(9):2937-2941.
    [3]G. K. Dimitrakakis, E. Tylianakis, G. E. Froudakis. Pillared graphene:a new 3-D network nanostructure for enhanced hydrogen storage [J]. Nano Letters,2008,8(10):3166-3170.
    [4]P. K. Schmieder, A. O. Aptula, E. J. Routledge, J. P. Sumpter, O. G. Mekenyan. Estrogenicity of alkylphenolic compounds:A 3-D structure-activity evaluation of gene activation [J]. Environmental Toxicology and Chemistry,2000,19(7):1727-1740.
    [5]G. E. Kostakis, G. Abbas, C. E. Anson, A. K. Powell. A new class of 3-D porous framework:[Ln (H2O)n]3+ions act as pillars between p-stacked and H-bonded sheets of (m-BDTH)- organic anions in [Ln(H2O)n](m-BDTH)-organic anions in [Ln(H2O)n](m-BDTH)3-9(H2O) (Ln=Pr, n=9; Ln= Gd, n= 8) [J]. Crystal Engineering Communications,2008,10(9):1117-1119.
    [6]S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf. Self-assembly of DNA into nanoscale three-dimensional shapes [J]. Nature,2009,454:414-418.
    [7]Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y. L.Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yul, M. Wu, J. W. Ager, A. Javey. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates [J]. Nature Materials,2009,8:648-653.
    [8]S. S. van-Bavel, E. Sourty, J. Loos. Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells [J]. Nano Letters,2009,9(2):507-513.
    [9]S. D. Oosterhout, M. M. Wienk, S. S. van Bavel The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells [J]. Nature Materials,2009,8: 818-824.
    [10]E. M. Sorensen, S. J. Barry, H. K. Jung, J. R. Rondinelli, J. T. Vaughey, K.R. Poeppelmeier Three-dimensionally ordered macroporous Li4Ti5O12:effect of wall structure on electrochemical properties [J]. Chemistry of Materials,2006,18(2):482-489.
    [11]S. W. Woo, H. Nakano, K. Kato, T. Takenaka, M. Takata, K. Shinozaki. Preparation of Three Dimensionally Ordered Macroporous LiCoO2 Cathode for Lithium Batteries [J]. Key Engineering Materials,2007,350:195-198.
    [12]F. Y. Kang, J. Ma, B. H. Li. Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries [J]. New Carbon Materials,2011,26(3):161-170.
    [13]C. K. Chan, R. N. Patel, M. J. O'Connell, B. A. Korgel, Y. Cui. Solution-grown silicon nanowires for lithium-ion battery anodes [J]. ACS Nano,2010,4(3):1443-1450.
    [14]A. Vadivel Murugan, T. Muraliganth, A. Manthiram. Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium Ion Batteries [J]. The Journal of Physical Chemistry C,2008,112(37): 14665-14671.
    [15]M Inagaki. Carbon coating for enhancing the functionalities of materials [J]. Carbon, 2011,52(9):3247-3266.
    [16]Z. Chen, J. R. Dahn. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. Journal of the Electrochemical Society, 2002,149(9):1184-1189.
    [17]B. Roney, B. Space, E. W. Castner, R. L. Napoleon, P. B. Moore. A molecular dynamics study of aggregation phenomena in aqueous n-propanol [J]. The Journal of Physical Chemistry B,2004,108(22):7389-7401.
    [18]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1:123-126.
    [19]Z. Lu, H. Chen, R. Robert, B. Y. X. Zhu, J. Deng, L.Wu, C.Y. Chung, C.P. Grey. Citric acid-and ammonium-mediated morphological transformations of ulivine LiFePO4 particles [J]. Chemistry of Materials,2011,23(11):2848-2859.
    [20]H. G. Deng, S. L. Jin, X. He, L. Zhan, W. M. Qiao, L. C. Ling. LiFePO4/C nanocomposites synthesized from Fe2O3 by a hydrothermal reaction-calcination process and their electrochemical performance [J]. Journal of Inorganic Materials,2012,27(9):1-6.
    [21]N. Chakroune, G. Viau, S. Ammar, N. Jouini, G. Patrick, M. J. Vaulay, F. Fievet, Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide:Co Ⅱ (C2H4O2) [J]. New Journal of Chemistry,2005,29(2):355-361.
    [22]F. Lei, B. Yan. Morphology-controlled synthesis, Physical characterization, and photoluminescence of novel self-assembled Pomponlike White light phosphor:Eu3+-doped sodium gadolinium tungstate [J]. The Journal of Physical Chemistry C,2009,113(3): 1074-1082.
    [23]M. T. Paques-Ledent, P. Tarte. Vibrational studies of olivine-type compounds-II orthoph osphates,-arsenates and-vanadates AIBIIXVO4 [J]. Spectrochimica Acta A,1974,30(3): 673-689.
    [24]C. M. Burba, R. Frech. Raman and FTIR spectroscopic study of LixFePO4:0    [25]K. Zaghib, A. Mauger, C. M. Julien. Overview of olivines in lithium batteries for green transportation and energy storage [J]. Journal of the solid state electrochemistry,2012,16(3): 835-845.
    [26]T. Azib, S. Ammar, S. Nowak, S. Lau-Truing, H. Groultb, K. Zaghibc, A. Maugerd, C.M. Julienb. Crystallinity of nano C-LiFePO4 prepared by the polyol process [J]. Journal of Power Sources,2012,217:220-228.
    [27]L. X. Li, X. C.Tang, H. T. Liu, Y. Qu, Z. G. Lu. Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4 [J]. Electrochimical Acta,2010,56(2): 995-999.
    [28]J. Liu, T. E. Conry, X. Song, M. M. Doeff, T. J. Richardson. Nanoporous spherical LiFePO4 for high performance cathodes [J]. Energy Environment Science,2011,4(3): 885-888.
    [29]Y. W. Denis, K. Donoue, T. Kadohata, T. Murata, S. Matsuta, S. Fujitani. Impurities in LiFePO4 and their influence on material characteristics [J]. Journal of the Electrochemical Society,2008,155(7):526-530.
    [30]C. L. Wong, S. Madhavi, N. Phonthammachai, T. J. White. Synthesis and crystal chemical evolution of fresnoite powders [J]. Journal of Solid State Chemistry,2012,187: 165-171.
    [31]D. Gopi, P. R. Bhalaji, V. C. A. Prakash, A. K. Ramasamy, L. Kavitha, J. M. F. Ferreira. An effective and facile synthesis of hydroxyapatite powders using oxalic acid-ethylene glycol mixture [J]. Current Applied Physics,2011,11(3):590-593.
    [32]G. Wang, R. Liu, M. Chen, H. Kang, X. Li, K. Yan. A novel synthesis of spherical LiFePO4/C composite using Fe1.5P and mixed lithium salts via oxygen permeation [J]. Korean Journal of Chemical Engineering,2012,29(8):1094-1101.
    [33]M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu. Measuring the thermal conductivity of a single carbon nanotube [J]. Physical Review Letters, 2005,95(6):1-4.
    [34]C. de la Calle, M. J. Martinez-Lope, V. Pomjakushin, F. Porcher, J. A. Alonso. Structure and magnetic properties of In2RuMnO6 and In2RuFeO6:heavily transition-metal doped In2O3-type bixbyites [J]. Solid State Communications,2012,152(2):95-99.
    [1]I. D Scott, Y. S. Jung, A. S. Cavanagh, Y. Yan, A. C Dillon, S. M. George, S. H. Lee. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications [J]. Nano Letters,2011, 11(2):414-418.
    [2]H. Chen, C. P. Grey. Molten salt synthesis and high rate performance of the "desert-rose" form of LiCoO2 [J]. Advanced Materials,2008,20(11):2206-2210.
    [3]Y. C Lu, A. N. Mansour, N. Yabuuchi. Probing the origin of enhanced stability of "AIPO4" nanoparticle coated LiCoO2 during cycling to high voltages:combined XRD and XPS studies [J]. Chemistry of Materials,2009,21(19):4408-4424.
    [4]S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li. Binder-free LiCoO2/Carbon nanotube cathodes for high-performance lithium ion batteries [J]. Advanced Materials,2012,24(17):2294-2298.
    [5]S. Laubach, S. Laubach, P.C Schmidt, D. Ensling, S. Schmid, W. Jaegermann, A. Thiben, K. Nikolowski, H. Ehrenberg. Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation [J]. Physical Chemistry Chemical Physics, 2012,14(17):14358-14364.
    [6]Y. Mizuno,.E Hosono, T. Saito, M. Okubo, D.N. Hamane, K. O. Ishi, T. Kudo, H. Zhao. Electrospinning synthesis of wire-structured LiCoO2 for electrode materials of high-power li-ion batteries [J]. The Journal of Physical Chemistry C,2012,116(19):10774-10780.
    [7]A. Sakuda, A. Hayashi, M. Tatsumisago. Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary vatteries using transmission electron [J]. Chemistry of Martials,2010,22(3):949-956.
    [8]W. Luo, X Li, J. R. Dahn. Synthesis and characterization of Mg substituted LiCoO2 [J]. Journal of the Electrochemical Society,2010,157(7):782-790.
    [9]D. Kramer, G. Ceder. Tailoring the morphology of LiCoO2:a first principles study [J]. Chemistry of Materials,2009,21(16):3799-3809.
    [10]J. Kim, D. H. Seo, S. W. Kim, Y. U. Park, K. Kang. Mn based olivine electrode material with high power and energy [J]. Chemical Communications,2010,46(8):1305-1307.
    [11]Y. Z. Dong, Y M. Zhao, H. Duan. Crystal structure and lithium electrochemical extraction properties of olivine type LiFePO4[J]. Materials Chemistry and Physics,2011, 129(3):756-760.
    [12]L. J. Zhang, B. R. Wu, N. Li, F. Wu. Particle morphology and electrochemical performance of LiFePO4 synthesized via hydro thermal process at 200℃ [J]. Advanced Materials Research,2012,391-392:926-930.
    [13]G. Liang, K. Park, J. Li, R. E. Benson, D. Vaknin, J. T. Markert. Anisotropy in magnetic properties and electronic structure of single-crystal LiFePO4[J]. Physical Review B,2008, 77(6):064414-1-064414-12.
    [14]J. L. Allen, T. R. Jow, J. Wolfenstine. Analysis of the FePO4 to LiFePO4 phase transition [J]. Journal of Solid State Electrochemistry,2008,12(7-8):1031-1033.
    [15]I. K. Lee, I. B. Shim, C. S. Kim. Temperature dependent valence states and magnetic propertyes of lithium delithiated Lio.59FeP04 [J]. Journal of Applied Physics,2010,107(9): 09A522-1-09A522-3.
    [16]Y. Zheng, X. Han, L. Lu, J. Li, M. Ouyang. Lithium ion battery pack power fade fault identification based on shannon entropy in electric vehicles [J]. Journal of Power Sources, 2012,223:136-146.
    [17]H. Z. Cen, X. Z. Wei, H. F. Dai, L. Song. A multi-dimensional coupled electro-thermal model of a LFP battery [J]. Advanced Materials Research,2012,569:386-390.
    [18]J. H. Huang, M. Cao, H. Guo, Design and implementation of electric vehicle power Lithium battery protection board [J]. Advanced Materials Research,2011,152-153:192-196.
    [19]K. Zaghib, J. Dube, A. Dallaire, K. Galoustov. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries [J]. Journal of Power Sources,2012,219:36-44.
    [20]M. Cuisinier, N. Dupre, J. F. Martin, R. Kanno. Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR [J]. Journal of Power Sources, 2012, in press.
    [21]Y. Wu, Z. Wen, J. Li. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li ion batteries [J]. Advanced Materials,2011,23(9): 1126-1129.
    [22]Z. J. Wu, B. F. Jiang, W. M. Liu, F. B. Cao, X. R. Wu, L. S. Li. Selective recovery of valuable components from converter steel slag for preparing multidoped FePO4 [J]. Industrial Engineering Chemistry Research,2011,50(24):13778-13788.
    [23]N. Chakroune, G. Viau, S. Ammar, N. Jouini, G. Patrick, M. J. Vaulay, F. Fievet. Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide:Co Ⅱ (C2H4O2) [J]. New Journal of Chemistry,2005,29(2):355-361.
    [24]F. Lei, B. Yan. Morphology-controlled synthesis, Physical characterization, and photoluminescence of novel self-assembled Pomponlike White light phosphor:Eu3+-doped sodium gadolinium tungstate [J]. The Journal of Physical Chemistry C,2009, 113(3):1074-1082.
    [25]M. T, Paques-Ledent, P. Tarte. Vibrational studies of olivine-type compounds-Ⅱ orthophosphates,-arsenates and-vanadates AIBIIXVO4 [J]. Spectrochimica Acta A,1974, 30(3):673-689.
    [26]C. M. Burma, R. Frech. Raman and FTIR spectroscopic study of LixFePO4:0    [27]K. Zaghib, A. Mauger, C. M. Julien. Overview of olivines in lithium batteries for green transportation and energy storage [J]. Journal of the solid state electrochemistry,2012,16(3): 835-845.
    [28]T. Azib, S. Ammar, S. Nowak, S. Lau-Truing, H. Groultb, K. Zaghibc, A. Maugerd, C.M. Julienb. Crystallinity of nano C-LiFePO4 prepared by the polyol process [J]. Journal of Power Sources,2012,217:220-228.
    [29]Y. Xia, W. K.Zhang, H. Huang, Y. P. Gan, J. Tian, X. Y. Tao. Self-assembled mesoporous LiFePO4 with hierarchical spindle-like architectures for high-performance lithium-ion batteries [J]. Journal of Power Sources,2011,196(13):5651-5658.
    [30]H. Chen, S. C. Han, W. Z. Yu, H. Z. Bo, C. L. Fan, Z. Y Xu. Preparation and electrochemical properties of LiFePO4/C composite cathodes for lithium-ion batteries [J]. Bulletin of Materials Science,2006,29(7):689-692.
    [31]N. Mars, L.Croguennec, D. Carlier, A. Wattiaux, F.L.Cras, E. Suard, C. Delmas. The structure of tavorite LiFePO4(OH) from diffraction and GGA+U studies and its preliminary electrochemical characterization [J]. Dalton Transactions,2010,39(21):5018-5016.
    [32]L. Castro, R. Dedryvere, M. El Khalifi, P. E. Lippens, J. Breger, C. Tessier, D. Gonbeau. The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-Lab XPS [J]. The Journal of Physical Chemistry C,2010,114(41):17995-18000.
    [33]O. K. Park, Y. Cho, S. Lee, H.C. Yoo, H.K.Song, J. Cho. Who will drive electric vehicles, olivine or spinel? [J]. Energy and Environmental Science,2011,4(5):1621-1633.
    [34]L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough. Development and challenges of LiFePO4 cathode material for lithium-ion batteries [J]. Energy and Environmental Science,2011,4(2):269-284.
    [35]F. Y. Kang, J. Ma, B. H. Li. Effects of carbonaceous materials on the physical and Electrochemical performance of a LiFePO4 cathode for lithium-ion batteries [J]. New Carbon Materials,2011,26(3):161-170.
    [1]陈清泉,孙立清.电动汽车的现况和发展趋势[J].科技导报,2005,23(4):24-28.
    [2]林宇峰,钟金,吴复立.智能电网技术体系探讨[J].电网技术,2009,33(12):8-14.
    [3]钟海云,李荐.新型能源器件-超级电容器研究发展最新动态[J].电源技术,2001,25(5):368-370.
    [4]王然,苗小丽.大功率超级电容器的发展与应用[J].电池工业,2008,13(3):191-194.
    [5]胡毅,陈轩恕,杜砚,尹婷.超级电容器的应用与发展[J].电力设备,2008,9(1):19-22.
    [6]汪形艳,王先友,黄伟国.超级电容器电极材料的研究[J].电池,2004,34(3):192-193.
    [7]L.L. Zhang, X. S. Zhao. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews,2009,38(9):2520-2531.
    [8]L. Athouel, F. Moser, R. Dugas, O. Crosnier. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte [J]. The Journal of Physical Chemistry C,2008,112(18):7270-7277.
    [9]R. K. Sharma, A. C. Rastogi, S. B. Desu. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor [J]. Electrochemistry Communications, 2008,10(2):268-272.
    [10]E. Beaudrouet, A. L. G. L. Salle, D. Guyomard. Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials [J]. Electrochimical Acta,2009, 54(4):1240-1248.
    [11]B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor [J]. Carbon.2010,48(2):456-463.
    [12]J. A. Greathouse, M. D. Allendorf. The interaction of water with MOF-5 simulated by molecular dynamics [J]. Journal of the American Chemistry Society,2006,128(33): 10678-10679.
    [13]K. A. Cychosz, A. J. Matzger. Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water [J]. Langmuir,2010,26(22):17198-17202.
    [14]L. M. Huang, H. T. Wang, J. X. Chen, Z. B. Wang, J. Y. Sun, D. Y. Zhao, Y S. Yan. Synthesis, morphology control, and properties of porous metal-organic coordination polymers [J]. Microporous and Mesoporous Materials,2003,58(2):105-114.
    [15]X. M. Chen, M. L. Tong. Solvothermal in situ metal/ligand reactions:a new bridge between coordination chemistry and organic synthetic chemistry [J]. Accounts of Chemical Research,2007,40(2):162-170.
    [16]J. Shen, J. Q. Hou, Y. Z. Guo, H. Xue, G. M. Wu, B. Zhou. Microstructure control of RF and carbon aerogels prepared by sol-gel process [J]. Journal of Sol-Gel Science and Technology,2005,36(1):131-136.
    [17]C. Moreno-Castilla, F. J. Maldonado-Hodar. Carbon aerogels for catalysis applications: an overview [J]. Carbon,2005,43(3):455-465.
    [18]M. Wiener, G. Reichenauer, T. Scherb, J. Fricke. Accelerating the synthesis of carbon aerogel precursors [J]. Journal of Non-Crystalline Solids,2004,350(1):126-130.
    [19]C. Han, A. Doepke, W. Cho, V. Likodimos. A multiwalled-carbon-nanotube-based biosensor for monitoring microcystin-LR in sources of drinking water supplies [J]. Advanced Functional Materials,2012, DOI:10.1002/adfm.201201920
    [20]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang. Supercapacitor devices based on graphene materials [J]. The Journal of Physical Cemistry C,2009,113(30):13103-13107.
    [21]L. L. Zhang, X. S. Zhao. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews,2009,38(9):2520-2531.
    [22]C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang. Graphene-based supercapacitor with an ultrahigh energy density [J]. Nano letters,2010,10(12):4863-4868.
    [23]L. L. Zhang, R. Zhou, X. S. Zhao. Graphene-based materials as supercapacitor electrodes [J]. Journal of Materials Chemistry,2010,20(29):5983-5992.
    [24]G. A. Snook, P. Kao, A. S. Best. Conducting-polymer-based supercapacitor devices and electrodes [J]. Journal of Power Sources,2011,196(1):1-12.
    [25]S. Biswas, L. T. Drzal. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes [J]. Chemistry of Materials,2010,22(20):5667-5671.
    [26]L. L. Zhang, S. Zhao, X. N. Tian, X. S. Zhao. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes [J]. Langmuir,2010, 26(22):17624-17628.
    [27]W. Xing, C. C. Huang, S. P. Zhuo, X. Yuan, G. Q. Wang. Hierarchical porous carbons with high performance for supercapacitor electrodes [J]. Carbon,2009,47(7):1715-1722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700