由电热法生产的一次铝硅合金制取铸造用铝硅合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在铝合金中,铝硅合金是品种最多,用途最广的一类,目前生产铝硅合金的方法主要是兑掺法,这种工艺方法能耗较高,流程较长,而且需要高品位的铝土矿。电热还原法是世界公认的优于兑掺法的铝硅合金生产方法,该方法流程短,可以利用低品位铝土矿或非铝土矿资源,符合我国铝矿资源特点。但是,电热法生产的一次铝硅合金中含有大量的金属杂质和熔渣。为了制取符合工业标准的铸造用铝硅合金,在生产过程中必须要将金属杂质和熔渣去除。本文对从高岭土直接用电热法制得的一次铝硅合金为原料,经加铝稀释、加精炼剂除渣、加锰除铁后制取铸造用铝硅合金进行了研究。
     矿热炉生产的一次铝硅合金中,除了铝和硅,含有的熔渣主要是Al2O3和SiO2,它们大部分以Al2O3·SiO2复合氧化物形式存在。金属杂质主要是钙,铁和钛,其中杂质铁主要是以FeAl3和Al4FeSi2的形式存在,钙是以CaAl2Si2形式存在,钛则以TiSi2的形式存在。
     实验过程中首先对一次铝硅合金进行加铝稀释,然后加精炼剂进行除渣。实验采用的熔剂精炼法,以冰晶石、氯化钠和氯化钾为除渣精炼剂,在960℃进行精炼。通过实验发现,随精炼剂量的加大,绝对渣量增加;合金中硅、铁含量都呈直线下降,当达到一定值后,绝对渣量和硅、铁含量的变化趋于平缓。在精炼除渣的过程中发现,一次合金中的主要金属杂质之一—钙在精炼过程中大部分以氟化钙的形式进入渣中。精炼剂的最佳加入量为铝硅合金量的3.5%,在该加入量时可以去除合金大部分的熔渣和金属钙杂质。
     精炼除渣后的铝硅合金中,铁是铝硅合金中主要的有害杂质元素,也是衡量铝硅合金质量最为重要的指标之一。精炼后铝硅合金中的铁以δ6铁相存在。以锰为除铁剂,在960℃除铁后降温过滤,合金中的铁和硅的含量随着锰加入量的增加而逐渐减少并趋于一定值,随过滤温度的升高而增加,随过滤骨料粒度的变细及骨料厚度的增加而降低。最佳的锰加入量为锰铁比1.2:1,最佳的过滤温度为580℃,过滤骨料的最佳粒度为3-5mm,厚度为4cm。铝硅合金中的铁主要以三种方式除去:一种是少量的铁以FeMnO3的形式进入熔渣中(熔渣主要指一次渣和二次渣);另一种是沉降到坩埚底部生成半固态的多元金属合金。另有一部分铁进入过滤滤渣中。当铝硅合金中富铁相(在合金中以四元金属间化合物的形式存在)中的锰铁和量较多时,合金中的铁相会沉到合金底部形成新的合金,当合金富铁相中的锰铁和量较少时,该部分富铁相一般不能自然沉降而是通过过滤去除较大块的铁相,剩余的铁相进入铸造用铝硅合金中。
     加氯化锰除铁时,虽然可以达到加锰除铁同样的效果,但由于铝损失较多不宜采用。锰铬联合除铁,由于铬的沉降较快,不能和富铁相生成含铬较多的金属间化合物,除铁效果不好。
     加入直流电磁场后,铝硅合金中的铁相体积增大,在磁场电流较小时,富铁相主要是以长片状和小片状形式存在,但仍有针状的富铁相存在,而当电流达到950A时,合金中的富铁相已经全部变成了球状。加入稳恒磁场后合金中富铁相中元素的含量发生了变化,富铁相中的锰量增加。合金中富铁相中含锰量越到合金的底部含锰量越高。锰与电磁场联合除铁时,在同样的过滤条件下,过滤后合金中的铁含量比加锰除铁法有所下降,除铁效果较好。
     一次铝硅合金经过除杂提纯后制取的ZL101合金和ZL102合金,化学成分能够达到国家标准要求,以锶作为变质剂进行变质处理后,制取的铸造铝硅合金ZL101和ZL102的力学性能达到国家标准的要求。
     在由一次铝硅合金生产铸造用铝硅合金工业试验的过程中,通过选择合理的过滤温度,过滤骨料的粒度和厚度,以及除渣除铁机制,最终获得了含铁量低于0.7%的铸造用铝硅合金。
Al-Si alloy has the most species and extensive use in aluminum alloy. At present, most Al-Si alloys are produced by melting pure aluminum and silicon. The energy consumption of the technics is high, the line of production is long and it need high grade ore. It recognized at the present in the world wide that Electrothermal reduction is superior to the method of melting pure Al and Si. The electrothermal reduction has short line of production and can use low grade bauxite and other resource. However, this method also suffers its defect that there are so many impurities in coarse Al-Si alloy. The main impurities are metal and non-metal slag. In order to gain casting Al-Si alloy conforming to industrial standard, refined and removed iron should be done first. This article studies the process of the coarse Al-Si alloy which is gotten by the kaolin with electrothermal reduction to produce the casting grade Al-Si alloy after diluting by Al, refining by flux and iron removal by manganese.
     The coarse Al-Si alloy produced by submerged arc furnace has the main slag are Al2O3 and SiO2 and the slag is mainly in the Al2O3·SiO2 compound oxidate form. The metal impurities are Ca, Fe and Ti. The impurity Fe is mainly in the FeAl3 and Al4FeSi2 form. The impurity Ca is mainly in the CaAl2Si2 form. And the impurity Ti is mainly in the form of TiSi2.
     The test use the Al as the dilution agent for the the coarse Al-Si alloy first. And then adopts a refining method by flux to remove slag, and treating the alloy with a molten mixture of sodiume chloride, potassium chloride and cryolite at 960℃. It can be concluded after the experiment that the net quantity of slag increases and the contents of Al and Si decline linearly with increasing of the purificant addition initially, but the change becomes unobvious after the purificant addition exceeded a specific value. The optimal addition of purificant is about 3.5% of the mass of aluminum-silicon alloy.
     Iron is the major impurity in aluminum-silicon alloy after the refining and slag removal, and the content of iron is one of the crucial scales for grading Al-Si alloy quality. After refining the iron in the alloy is 5 phase. Adding manganese into the molten alloy at 960℃ and then filtering after cooling, the content of Si and Fe decrease with the increasing of manganese until the contents reached a particular value. The content of Si and Fe also increase with the increasing of filtration temperature and decrease with the decreasing of aggregate size. Manganese's optimal addition is which make the mol ratio of Mn and Fe valuing 1.2:1, the filtration temperature is 580℃,and the filtration aggregate size is 3-5mm and the thickness is 4cm.The iron removal is mainly in three ways. A small amount of iron is fusing into the slag in the form of Fe2O3 and FeMnO3 (the slag contains first slag and second slag). Some of iron settling in the bottom of melting pot becomes semisolid multivariant intermetallic compound. And some of iron is in the filtration slag. The iron settles in the bottom of alloy and generates the new alloy when the sum content of Mn and Fe in the iron-rich phase(quaternary intermetallic compound) is more. But when the sum content of Mn and Fe in the ron-rich phase is little, the bigger iron phase is removed not by the way of the free settling but the filtration. The remainder of Fe phase is in the casting grade Al-Si Alloys.
     It can have the same iron removal result when the manganese chloride is used as deferrization agent. But the loss of Al is too high, the agent is not appropriate.
     The free settling speed of Cr is too high and cannot generate the intermetallic compound that containing more Cr with iron-rich phase. So the method of iron removal by Mn and Cr is not suitable.
     In the direct current electromagnetic field, the Fe phase volume in the Al-Si alloy is growing. The iron-rich phase is mainly in the forms of long flakes and small flakes but still has the acicular phase of the iron-rich phase when the electromagnetic current is small. But when the electric current achieves 950A, rich-iron phase in the alloy already completely turned into spherical phase. The contents in the rich-iron phase of the Al-Si alloy had changed in the adding of steady magnetic field, the content of manganese had increased. The manganese in iron-rich phase of the alloy is getting higher as approaching the alloy's bottom. The effect of iron removal is fairly good when the manganese and the electromagnetic field are both used. Under same filtration condition, the iron content of the alloy is lower than using the manganese.
     The chemical compositions of ZL101 and ZL102 produced by the coarse Al-Si alloy can meet the national standard. And after modification by strontium the mechanical property of the ZL101 and the ZL102 can meet the commercial production request. During the process of producing the casting grade Al-Si alloy with the coarse Al-Si alloy, the casting grade Al-Si alloy which the iron content is under0.7% is gotten by choosing the suitable conditions including the filtration temperature, the aggregate size, the aggregate thickness, and iron removal method.
引文
1.冯乃祥.铝电解[M],北京:化学工业出版社,2006,1-7.
    2.邱竹贤.预焙槽炼铝(第三版)[M],北京:冶金工业出版社,2005,3-4,445-449.
    3.刘静安,谢水生.铝合金材料的应用与技术开发[M],北京:冶金工业出版社,2004,1-22.
    4.陆文华,李隆盛,黄良余.铸造合金及其熔炼[M],北京:机械工业出版社,2002,262-339.
    5. D.K. Ward, W.A. Curtin, Yue Qi. Aluminum-silicon interfaces and nanocomposites:A molecular dynamics study [J], Composites Science and Technology 66 (2006):1151-1161.
    6. Y.L. Saraswathi, S. Das, D.P. Mondal. Influence of microstructure and experimental parameters on the erosion-corrosion behavior of Al alloy composites [J], Materials Science and Engineering A.2006, (3):11-21.
    7.彭晋民,钱翰城.铸态铸造铝硅合金的现状和发展[J],铸造技术,2000,(6):32-34.
    8.徐君莉,石忠宁,刘政.铝-硅基复合材料中硅相组织形态影响因素研究[J],轻合金加工技术,2004,32(1):35-37.
    9. Z.K.Zhao, J.C.Li, Q.Jiang. Hypereutectic Al-Si Binary Alloys Prepared by Melt Spinning Method [J], Advance engineering metarials,2004, (5):303-307.
    10. Dheerendra Kumar Dwivedi. Wear behaviour of cast hypereutectic aluminium silicon alloys [J], Materials and Design,2006,27:610-616.
    11. A.J. Moffat, S. Barnes, B.G. Mellor, ect al. The effect of silicon content on long crack fatigue behaviour of aluminium-silicon piston alloys at elevated temperature [J], International Journal of Fatigue,2005,27:1564-1570.
    12.赖华清,李怀君,赖俊传.铝硅合金中共晶硅的粒化[J],汽车工艺与材料,2002,(1):27-29.
    13.卢建中.A356.2铝硅合金的生产工艺研究与应用[J],轻金属,1999,(12):50-51.
    14.张万福.利用俄罗斯技术建设我国的电热铝硅合金工厂[J],轻金属,1998,(3):38-42.
    15.李升,侯景星,董亦民.对铸造铝硅合金生产现状与发展的认识[J],中国有色工程,2006,(3):18-23.
    16.李升,潘丽红,周新民,等.浅析铝合金熔体的净化方法[J],内燃机配件,2003,(3):22-24.
    17.杨冠群,杨升.电解法直接生产铝硅钛多元合金可行性分析[J],铸造,1997,(1):44-46.
    18.杨升,杨冠群,顾松青.电解法生产铝基合金[J],特种铸造及有色合金,2001,(2):102-104.
    19.杨涤心,李杏瑞.电解铝硅钛合金的特性[[J],热加工工艺,2004, (9):56-57.
    20.吕政堂.俄罗斯用块状炉料和团块炉料生产工业硅,用矿石直接生产粗铝硅合金[J],轻金属, 2004,(3):63-64.
    21.东北大学轻金属冶炼教研室.专业轻金属冶金学[M],北京:冶金工业出版社,1959,351-417.
    22.狄贵华,任剑.浅析国内外铝电解能耗状况[J],有色冶金节能,2004,21(4):41-43.
    23.陶玉敏.加强节能管理与改造促进节能降耗[J],有色冶金节能,2002,19(6):26-31.
    24.刘祥民.中国铝土矿资源可持续发展战略研究[J],中国通报,2006, (14):9-11.
    25.陈祺,关慧勤,熊慧.世界铝工业资源—铝土矿、氧化铝开发利用情况[J],世界有色金属,2007,(1):27-31.
    26.柳连舜.电热法制取铝硅合金—发展铝工业的捷径[J],轻金属,1995,(6):35-38.
    27.姚广春.电热法制取铝硅合金[M],沈阳:东北大学出版社,1998,1-6,206-216.
    28.程永强,姚爱民.铸造铝合金的直接熔炼[J],有色矿冶,2004,20(4):38-40.
    29.陈福亮.铸造铝合金的杂质控制[J],云南冶金,1999,28(4):53-55.
    30.陈晏.电热法生产铝硅合金问题探讨[J],轻金属,1989,(9):41-43.
    31.张晓明,姚广春.电热法冶炼铝硅合金用矿热炉[J],有色金属:冶炼部分,1999,(5):36-39.
    32.姚广春.电热法制取铝硅合金[M],沈阳:东北大学出版社,1998,52.
    33.罗跃辉.电热直接还原法熔炼铝硅铁合金的工业试验与研究[C],有色金属冶金及材料国际学术会议论文集,沈阳东北大学,1996:107-114.
    34.刘长福,于金海,张海霞.3.5MVA矿热炉冶炼硅铝铁合金的实践[J],铁合金,2006,186(1):18-20.
    35.邱竹贤.电热法还原生产铝硅铁合金[J],轻金属,1991,(1):31-34.
    36.姚广春,张晓明,孙挺,等.电热法制取硅铝合金中制团对还原反应的影响[J],有色金属:冶炼部分,1998,(1):26-27,30.
    37.张卫东.用矿热法冶炼硅铝铁的试验,铁合金,1999,149(6):21-26.
    38.姚广春,孙挺,张晓明,等.电热还原高岭土制取铝硅合金的研究[J],有色金属,1997,(4):15-18.
    39.姚广春.电热法制取铝硅合金[M].沈阳:东北大学出版社,1998,206-207.
    40. Wang Yaowu, Feng Naixiang, You Jing etal. Study on expansion of TiB2/C compound cathode and sodium penetration during electrolysis[C], Light Metals,2007:477-479.
    41.王筱留.钢铁冶金学(炼铁部分)[M],北京:冶金工业出版社,2006,256-257.
    42.王艳,张忠华,边秀房.铝及其合金用固态熔剂[J],轻合金加工技术,2003,31(8):11—14.
    43.孙庆夫,朱献文.熔化铝合金用的熔剂[J],铝加工,1996,19(4):1—5.
    44.罗启全.铝合金熔炼与铸造[M],广州:广东科技出版社,2002,109—127.
    45.傅高升,康积行.铝熔体净化处理技术的研究进展[J],福建冶金,1998,(3):22—26.
    46. Utigard T A. The properties and Uses of fluxes In Molten Aluminium Processing[J],JOM,1998,11:38-41.
    47. Cochran B P. Flux Practice in Aliminium Melting [J], AFS Transtractions,1992,88:737-742.
    48. Raja R, Roy Y s. Interfacial Tension between Aluminium Alloy and Molten Salt Flux [J], Materials Transactions, JIM,1997,38 (6):546-552.
    49.孙伟成.稀土在铝合金中的行为[M],北京:兵器工业出版社,1992,32—34.
    50.季德铭.铸钢冒口覆盖剂保温原理探讨及应用[J],铸造技术,1994,(4):17—19.
    51.李凤鸣.对铸造铝合金无毒精炼剂及变质剂的机理和效果的商榷意见[J],特种铸造及有色合金,1987,(1):5—10.
    52.中南矿冶学院冶金系轻冶教研室编.小铝厂生产实践[M],北京:冶金工业出版社,1973.
    53.杨冠群.直接电解生产铝硅钛合金试验结果概述[J],铝镁通讯,1991,(1):32-38.
    54.段淑贞.熔盐化学-原理及应用[M],北京:原子能出版社,1990.
    55.李升,刘冬梅,杨保安.铸造铝硅合金的生产[J],内燃机配件,2001,(2):13-15.
    56. N. Stoichev, S. Yaneva, P. Kovachev, E. Momchilova. Kinetics of Structural Coarsening of Microcrystalline Al-Si-Mg Alloys during Thermal Treatment and Compacting, Cryst. Res. Technol,1998,33(3):483-487.
    57.邱竹贤.冶金学(有色金属冶金)(第一版)[M],沈阳:东北大学出版社,2001,1-10.
    58. M.V.Kral. A crystallographic identification of intermetallic phases in Al-Si alloys [J], Materials Letters,2005, (59):2271-2276.
    59. T.Turmezey, V. Stefaniay. Proceedings of International Workshop on the Effect of Iron and Silicon in Aluminium and its Alloys [J], Trans Tech Publ,1990, (5):57-62.
    60. L.F. Mondolfo, Aluminum Alloys:Structure and Properties [M], London:Butterworths and Co.Ltd,1976,270-301.
    61.王苏北.铝硅合金中铁的有害影响及控制措施[J],铸造设备研究,2002,10(5): 35-36.
    62.杨江波,印飞.改善铝硅合金中铁相形态的措施[J],铸造,2000,49(8):454-459.
    63.尉海军,张磊,姚广春,等.改善铝中富铁相形貌对电磁净化的影响[J],铸造,2005,54(4):363-366.
    64.周晓霞,张仁元,刘银赤.铝硅合金中铁相存在的形态及影响其形成的因素[J],广东有色金属学报,2003,13(1):51-54.
    65. J.Z. Yi, Y.X. Gao, P.D. Lee etal. Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum-silicon alloy (A356-T6) [J], Materials Science and Engineering A,2004, 386:396-407.
    66. Couture A. Iron in Aluminum Casting Alloys-A literature Survey [J], AFS Transactions,1981,(11): 9-17.
    67.印飞.消除铝硅合金中铁相有害作用的方法分析[J],热加工工艺,2001,(3): 61.
    68.林小征,印飞.铁对铝硅合金性能的影响及抵消其有害作用的措施[J],铸造技术,1999,(5):29-32.
    69. P. N. Crepeau. Effect of Iron in Al-Si Casting Alloys:A Critical Review [J], AFS transactions, 1995, (103):361-365.
    70.印飞,杨江波,孙宝德.高含铁量铝硅合金中铁相的凝固行为与形貌控制[J],上海交通大学学报,2002,36(1):43-46.
    71. L.A.Narayanan, F.H.Samuel, J.E.Gruzleski. Crystallization Behavior of Iron-containing Intermetallic Compounds in 319 Aluminium Alloys [J], Metallurgical and Materials Transaction, A,1992, (25A):1761.
    72.韩成年,田李平.高强度铝硅合金熔炼要点分析[J],材料工艺,2003,(5): 32-34.
    73.许振明,李天晓等.电磁过滤Al-Si合金熔体中初生富铁相去除效率的理论分析[J],自然科学进展,2001,2(11):179-186.
    74. Gobrecht J. Gravitional Separation of Fe and Mn in Al-Si Alloys [J], Giesserei,1975,62(10): 263-266.
    75.张磊,焦万丽,姚广春.锰结合预先热处理对铝硅合金中富铁相组织和力学性能的影响[J],中国有色金属学报,2005,3(15):368-373.
    76. You Jing, Wang Yaowu, Feng Naixiang. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy [J], Transaction of Nonferrous Metals Society of China,2008, 18(1):116-120.
    77.尤晶,王耀武,冯乃祥,等.由电热法一次铝硅合金制取铸造铝硅合金的研究[J],轻金属,2008,(1):55-58.
    78. Xu Zhenming, Li Tianxiao, Zhou Yaohe. Elimination of Fe in Al-Si cast alloy scrap by electromagnetic filtration [J], JOURNAL OF MATERIALS SCIENCE,2003,38:4557-4565.
    79.秦学智.铝熔体高频电磁净化效率研究[D],大连:大连理工大学,2004.
    80.梁英教,车荫昌.无机物热力学数据手册[M],沈阳:东北大学出版社,1994:450-470.
    81.杨江波,印飞.改善铝硅合金中铁相形态的措施[J],铸造,2000,49(8):454-458.
    82.印飞,扬江波,王亦新,等.消除铝硅合金中铁相有害作用的方法分析[J],热加工工艺,2001,(3):61-63.
    83.勃列日涅夫德聂伯罗彼特罗夫斯克冶金研究所.去除铁和钛杂质精炼共晶铝硅合金的方法,1987,[P]86103277.
    84.尤晶,王耀武,冯乃祥,等.由电热法生产的一次铝硅合金制取共晶铝硅合金的研究[C],中国国 际铝业论坛:681-683.
    85.张磊,焦万丽,蔚海军,等.富铁相杂质形态对电磁净化铝熔体效果的影响[J],特种铸造及有色合金,2005,25(3):131-132.
    86.钟云波,任忠鸣,邓康,等.金属净化技术的一种革命性方法—电磁净化法[J],包头钢铁学院学报,1999,18(9):363-368.
    87.钟云波,任忠鸣,邓康,等.行波磁场连续净化铝合金液实验[J],中国有色金属学报,2001,11(2): 167-171.
    88.张磊.电磁分离铝合金中富铁相杂质的研究[D],沈阳:东北大学,2005.
    89. Zhang L, Yao G.C, Jiao W.L. Study on the motion states of impurity particles in static magnetic field[C], Proceedings of the TMS Fall Extraction and Processing Conference,2004,3:345-349.
    90.许振明,李天晓,疏达,等.电磁过滤Al-Si合金熔体中初生富铁相去除效率的理论分析[J],自然科学进展,2001,2(11):179-186.
    91. Xu Zhenming, Li Tianxiao, Zhou Yaohe. Elimination of Fe in Al-Si cast alloy scrap by electromagnetic filtration [J]. Journal of Materials Science,2003, (38):4557-4565.
    92.程守洙,江之永.普通物理学2[M],北京:高等教育出版社,1997,234.
    93.尤晶,王耀武,冯乃祥,等.稳恒电磁场对铸造用共晶铝硅合金中铁相的影响研究[J],稀有金属与硬质合金,2008,(1):26-29.
    94.林钢,林慧国,赵玉涛.铝合金应用手册[M],北京:机械工业出版社,2006,.529-533.
    95.《中国航空材料手册》编辑委员会.中国航空材料手册(第2版)[M],北京:中国标准出版社,2001,375~379.
    96.林炯辉,林德成.金属材料金相图谱[M],北京:机械工业出版社,2006,1631-1664.
    97.王凤玲.ZL101合金一次熔炼法的工艺实践[J],铸造,2001,50(11):699-700.
    98. Pedro R. Goulart, Jose E. Spinelli et al. Mechanical properties as a function of microstructure and solidification thermal variables of Al-Si castings [J], Materials Science and Engineering,2006, (A 421):245-253.
    99.董光明,孙国雄,廖恒成.共晶硅的变质[J],铸造,2005,51(1):1-4.
    100.张静武,李慧,孟显哲,等.ZL101合金的变质[J],中国有色金属学报,2001,11(2):91-94.
    101.SensH, EustathopoulosN, Camel D, etal.Solidification of binary and Sr-modified eutectic alloy theoretical analysis of solute fields [J], Acta Metall Mater,1983,40(7):1992-1994.
    102.董光明,孙国雄,廖恒成.锶在铸造铝硅合金中的变质行为[J],特种铸造及有色合金,2005,25(3):146-149.
    103. K. Nogita, H. Yasuda, Yoshida, etal. Determination of strontium segregation in modified hypoeutectic Al-Si alloy by micro X-ray fluorescence analysis[J], Scripta Materialia, 2006,55:787-790.
    104. M.M. Haque, Ahmad F. Ismail. Effect of superheating temperatures on microstructure and properties of strontium modified aluminium-silicon eutectic alloy[J], Journal of Materials Processing Technology,2005,162-163:312-316.
    105.刘富如.有色金属电热熔体(第一版)[M],北京:中国工业出版社,1964,241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700