水润滑轴承数值仿真及其材料摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水润滑轴承具有成本低、结构简单、维修方便等优点。以水作为工作介质,既可以节省大量油料和贵重有色金属等战略资源,又能从根本上避免漏油对水资源的污染,在船舶、水工和深海机械中有广泛的应用前景。因此,水润滑轴承,作为环境科学、材料学和机械学研究领域的重要对象,已引起了高度关注。但是,从基础理论到工程应用,水润滑轴承都还不如油润滑轴承成熟,存在一些不完善之处。特别是水润滑轴承间隙内流场分布情况、流体压力与轴套变形的相互影响等问题至今没有进行过系统的研究,水润滑轴承材料耐空蚀性能的研究尚处于空白,新型聚合物材料用于水润滑轴承的摩擦学基础研究还不够透彻,制约了水润滑轴承技术的发展。
     本文以船舶艉轴水润滑轴承的结构、材料设计所面对的关键基础问题为对象,运用计算流体力学方法,通过数值仿真,系统的研究了水润滑轴承的间隙内流场分布特征、流体压力与沟槽结构、轴套变形等之间的相互关系;在大量试验的基础上探讨了典型水润滑轴承材料的抗气蚀性能及其在淡水、海水环境下的滑动摩擦性能变化规律,为水润滑轴承的结构设计、科学选材与合理应用提供理论依据和实验数据。主要研究内容和结论如下:
     (1)运用二维数值模拟计算研究了水润滑轴承间隙大小、沟槽形状和数量、开槽位置以及偏心率的大小对流体流场分布的影响。结果发现:流体压力均随着轴颈偏心率的增加而增加,随着间隙的增加而降低。间隙、偏心率、沟槽形状和分布对流场压力分布的交互影响作用较大,偏心率为0时,沟槽形状对间隙内流体压力影响规律为:圆弧形>矩形>矩弧形;偏心率为0.8时,矩弧形>矩形>圆弧形;圆弧形槽偏心率为0.8时间隙内流场压力随着间隙的增加呈波浪型降低;间隙为1mm时,四矩形槽、六矩弧形槽和六圆弧形槽承载能力最差;与矩形槽相比,在矩弧形沟槽的沟槽处,流体流动方向相对平稳。
     (2)采用流固耦合算法以矩弧形水槽水润滑轴承为对象,深入研究了轴套材料变形条件下,水润滑轴承偏心率与轴套材料的变形特征对流场分布规律的影响。结果发现:随着偏心率增大,轴套的最大变形量可增加2个数量级;偏心率较小时,轴套变形对速度场影响较小,对压力场影响较大;偏心率较大时,轴套变形对速度场和压力场影响都很大。
     (3)设计了一种基于磁致伸缩仪的反击式聚合物材料空蚀试验方法,试验研究水润滑轴承材料的空蚀性能,结合表面形貌、能谱等分析,探讨其空蚀机理。试验证实:由于粘弹性和非晶特征,超高分子量聚乙烯材料具有极佳的抗空蚀性能;赛龙材料的成分不均匀,导致部分颗粒状材料在气蚀作用下松动脱落,形成深度和直径较大的坑,抗空蚀性能较差;飞龙材料空蚀试验中,部分粘结剂产生裂纹,在气泡冲击作用下,粘结剂脱落,导致编织物纤维裸露、脱落,抗空蚀性能最差。
     (4)试验研究了赛龙、飞龙、超高分子量聚乙烯在淡水介质和人工海水介质中的滑动摩擦磨损性能。结果发现:
     a、超高分子量聚乙烯/GCr15摩擦副在人工海水介质中的摩擦系数(0.069-0.082)低于在淡水介质中的摩擦系数,随转速的增加而降低,磨损体积较小;磨损机制主要为磨粒磨损、塑性变形和材料变形。
     b、飞龙/GCr15摩擦副在人工海水介质中的摩擦系数(0.148-0.192)略低于在淡水介质中的摩擦系数(0.15-0.21),随时间增加呈现先升高后缓慢降低的趋势,随转速的增加而降低,磨损体积较大;磨损机制主要为磨粒磨损和材料疲劳磨损。
     c、赛龙/GCr15摩擦副在淡水介质中的摩擦系数比较大(0.345-0.425),随时间的增加呈上升趋势,随转速的增加呈降低,磨损机制主要是磨粒磨损、材料剥落磨损、材料疲劳磨损和材料变形;在人工海水介质中摩擦系数(0.185-0.335)随时间和转速的增加呈现逐渐下降趋势,磨损机制主要为磨粒磨损、材料疲劳磨损和材料变形。
     (6)基于材料在一定工况下承载能力、变形量、磨损量、摩擦系数和空蚀性能与转速、时间的定量关系研究,建立了水润滑承载材料综合性能评估模型。
Water lubricated bearing is commonly used in propeller shaft system of ship because it is cheap, structurally simple, and easy for maintenance. The use of water as working and lubricating medium in a water lubricated bearing system strategically saves a large number of resources, typically like mineral oil and rare metal. It also alleviates water resource pollution fundamentally from the possible oil leaks. Consequently, water lubricated bearing becomes a major subject in the field of studying environmental science, material science and mechanics. It has subsequently attracted a great deal of academic attention. Unfortunately, the practical use of water lubricated bearing on the basis of its basic theory is not as mature as that of oil lubricated bearing. Subsequently, there are still many relevant areas required to be further explored and systematically investigated. These areas may include:(i) the flow field distribution of water lubricated bearing, (ii) the interaction between fluid pressure and sleeve deformation, (iii) the resistance to cavitation erosion behaviors of materials, and (iv) the throughout study of tribological properties of some new polymers as water lubricated bearing materials. As a result, the advancement in the technological development of water lubricated bearing has been severely jeopardized and to certain extent badly restricted.
     This dissertation started with studying the fundamental key problems associated with the structural and materials designs of water lubricated bearing in ship's stern bearing, followed by systematically investigating the flow field distribution of water lubricated bearing and its interaction of fluid pressure and sleeve deformation computationally and numerically. This dissertation also focused on the study of tribological properties of water lubricated bearing materials under tap water and artificial sea water, and the behaviors of bearing resistance to cavitational erosion in water medium. It is anticipated that the results so yielded can provide theoretical and experimental data and physical understanding to guide the efficent selection and application of water lubricated bearing materials. The novelties and contributions of this research are mainly as described below:
     1. The study analyzed the influence of space size, grooves number, grooves shape, grooves position, and eccentricity ratio on fluid flow field distribution by two-dimensional numerical simulation. Results of the analysis show (a) an increasing trend of fluid pressure with increase in eccentricity ratio, and (b) a decrease trend with space increase. The study has revealed that: (i) the disciplinarian of fluid pressure in circle-arc space is greater than that in its rectangular counterpart which in turn is greater than that in rectangular-arc one when eccentricity ratio is 0; (ii) the disciplinarian of fluid pressure in rectangular-arc space is greater than that in rectangular one which in turn is greater than in its circle-arc counterpart when eccentricity ratio is 0.8; and (iii) fluid pressure giving an undulation decreasing trend with the increase in the size of space when eccentricity ratio is 0.8. It has also found that:(a) the capacity of bearing is lowest when the groove is of four rectangular, or six rectangular-arcs, or six rectangular-arcs; (b) When the groove is a rectangular-arc, the stability of fluid flow in the rectangular-arc groove is higher than in the rectangular groove when eccentricity ratio is 0.
     2. Using the fluid-structure interaction algorithm, the study thoroughly investigated the influence of eccentricity ratio and sleeve deformation on fluid flow field distribution in rectangular-arc groove water lubricated bearing. The results show two orders of magnitude increase in maximum deformation with the increase of eccentricity ratio. Although the effect of sleeve deformation on speed velocity field is very small, it becomes bigger with the increase in eccentricity ratio. Evidence of its effect on pressure field is clearly seen.
     3. The study performed experiments to derive the design of a new impact method for measuring the cavitation erosion properties of polymer materials by mainly considering the magnetostriction, materials cavitation erosion properties of water lubricated bearing. It went on to discuss the mechanisms of cavitation erosion through the analyses of surface morphologies and EDS investigations. Experimental results have confirmed that the viscoelasticity and amorphous characteristics of Ultra-high molecular weight polyethylene (UHMWPE) result in its best resistance to cavitation erosion. The observation of the appearance of some loosening particles and the gradual enlargement of holes which, were formed by the erosion of bubble, on the Thordon surface, suggest its inhomogeneous composition. In the cavitation erosion experiment of Tenmat (which usually has very low resistance to cavitation erosion), cracks due to some agglomerant as a result of cavitation erosion were seen. The felling off of agglomerant from the surface by the impact of bubble exposed the basketwork fiber which invited further quick erosion.
     4. Tribological properties of UHMWPE, Thordon and Tenmat under tap water and artificial sea water were respectively investigated. Results are summarized as follows:
     a. The friction coefficient, ranging between 0.069 and 0.082, of UHMWPE/GCr15 pair under artificial sea water is lower than that under tap water, and has tendency to decrease with the decrease in velocity. Its wear volume is smaller and its wear mechanism is mainly attributed to abrasive wear, plastic deformation, and materials transfer.
     b. The friction coefficient, ranging between 0.148 and 0.192, of Tenmat/GCrl5 pair under artificial sea water is lower than that under tap water which is in range of 0.15-0.21. It tends to firstly increase and then:(i) decrease slowly with the increase in time, (ii) decrease with the increase in velocity, and (iii) increase with the enlargement of wear volume. Its wear mechanism is mainly identified as abrasive wear and materials fatigue.
     c. The friction coefficient, in range of 0.345~0.425, of Thordon/GCr15 pair is much higher than that under tap water. It shows an increasing trend with the increase in time, and a decreasing trend with the increase in velocity. Its wear mechanism is identified as mainly due to abrasive wear, materials peeling off, and material fatigue and deformation. The friction coefficient, in range of 0.185~0.335, for the Thordon/GCr15 pair tends to decrease with the time and increase with the velocity under artificial sea water. The wear mechanism involved is mainly of abrasive wear, materials properties and deformation in nature.
     5. On the basis of correlating the capacity of bearing with the value of deformation, the wear volume, the friction coefficient, the cavitation erosion properties to rotational velocity, and the test time, etc, mathematic model which optimizes the materials properties were established and proposed.
引文
[1]Yoshiki N., Heiichiro N., Tatsuo F.. Water lubricated bearing device[P]. United States Patent,1974, Appl. No.:472043.
    [2]长坂浩治,木村芳一,衫山宪一,等.水润滑轴承或水润滑轴承密封件[P].中华人民共和国国家知识产权局,2002,专利号:CN 1077661C.
    [3]姜存辰,周永枝,练跃东,等.水润滑艉轴密封装置[P].中华人民共和国专利局,1992,专利号:2111929U.
    [4]孙守驯,孙晶,邹高万,等.卧式径向水润滑金属塑料轴承[P].中华人民共和国知识产权局,2002,专利号:CN 2594529Y.
    [5]Wang Y. Q., Yang C. R.. The Development and Study of the Water Lubricated Rubber Bearings[J]. Lubrication Engineering,2001,2:65-67.
    [6]Basu B., Vleugels J., Van Der Biest O.. Fretting wear behavior of TiB2-based materials against bearing steel under water and oil lubrication [J]. wear,2001, 250:631-641.
    [7]张仁红,吴军令,武中德,等.纯碳石墨水润滑轴承[P].中华人民共和国国家知识产权局,2008,专利号:CN 201177007Y.
    [8]王优强,李鸿琦,佟景伟.水润滑赛龙轴承综述[J].机械工程师,2002,11:3-6.
    [9]王国钦.水润滑尾轴承浅析[J].舰船科学技术,2002,6:70-72.
    [10]彭晋民.水润滑塑料合金轴承润滑机理及设计研究[D].重庆大学博士学位论文,2003.
    [11]彭晋民,王家序.提高水润滑轴承承载能力关键技术研究[J].农业机械学报,2005,6:149-151.
    [12]王家序,王帮长.圆环槽水润滑橡胶合金轴承[P].中华人民共和国国家知识产权局,2005,专利号:CN 100398854C.
    [13]潘啟聪,罗权焜.硫化剂TCY/硫黄并用硫化体系对ACM性能的影响[J].橡胶工业,2008,55:138-141.
    [14]Harish H. A., Manish V.. Tribological study of elastomeric bearings for marine propeller shaft system[J]. Tribology International,2009,42:378-390.
    [15]FernBndez J. E., Wang Y. L., Mantes H. J.. et al. Friction and wear behaviour of Thordon XL and LgSn80 in sliding against plasma-sprayed Cr2O3 coatings[J]. Tribology International,1996,29:323-331.
    [16]徐芝良.浅谈飞龙材料轴承在舵系中的应用[J].船舶设计通讯,2006,1:15-18.
    [17]Gawarkiewicz R., Wasilczuk M.. Wear measurements of self-lubricating bearing materials in small oscillatory movement[J]. Wear,2007,263:458-462.
    [18]张文光,王家序,肖科.玻纤增强改性酚醛树脂复合材料在水润滑轴承上的应用研究[J].润滑与密封,2007,9:116-118.
    [19]邱明恒,关绳武,孙曼灵,等.树脂基水润滑抗磨材料[P].中华人民共和国专利局,1987,专利号:CN 87102143 B.
    [20]海明.轴承用高强耐磨尼龙专用料.上海塑料,2008,3:33.
    [21]Baets P. D.. Comparison of the wear behaviour of six bearing materials for a heavily loaded sliding system in seawater[J]. wear,1995,180:61-72.
    [22]甄建军,霍文.微相分离对聚氨酯弹性体耐热性能的影响研究[J].研究开发,2009,1:23-25.
    [23]王本仁.渔船水润滑聚氨脂尾轴承的应用[J].中国水产,1994,1:38.
    [24]陈江明.一种水润滑轴承[P].中华人民共和国国家知识产权局,2007,专利号:CN 201053449Y.
    [25]郭力.水润滑轴承研究的进展[J].精密制造与自动化,2007,1:7-9.
    [26]Schneider. Water-lubricated rubber bearings apply for military [J]. Presented at the Naval Ship Maintenance and Modernization Symposium. Philadelphia, USA. October 1988,12-19.
    [27]Schneider. Rubber bearings design and research[J]. Presented at the Naval Ship Maintenance and Modernization Symposium. Philadelphia, USA. October 1988, 20-27.
    [28]王家序,陈战,秦大同.水润滑塑料轴承的摩擦性能研究[J].机械工程材料,2002,11:36-38.
    [29]华细金.基于FLUENT的纵向沟槽水润滑轴承流体润滑数值分析[D].重庆大学硕士论文,2009.
    [30]余江波.基于资源节约与环境友好的高性能水润滑轴承关键技术研究[D].重庆大学博士学位论文,2006.
    [31]张霞,王新荣,牛国玲,等.水润滑轴承的研究现状与发展趋势[J].装备制造技术,2008,1:101-102.
    [32]郭力,水润滑轴承研究的进展[J].精密制造与自动化,2007,1:6-9.
    [33]温诗铸,杨沛然,弹性流体动力润滑[M].第1版北京:清华大学出版社,1992:7-58.
    [34]Medldahl A.. Contribution to the theory of the lubrication of gears and of the stressing of the lubricated flanks of gear teeth[J]. Brown Boveri Review,1941,28: 174-186.
    [35]Gatcombe E. K.. Lubrication characteristics of in volute spru-gears—a theoretical invesrigation[J]. Trans. ASME,1945,45:1261-1275.
    [36]Dorr J.. Schmiermitteldruck und Randverformugnet des rollenlagers[J]. Ingenieur-Archiv,1954,3:476-488.
    [37]Weber C., Saalfeld K.. Schmierfilm bei Walzen mit Verformung[J]. Zeitschrift fur angewandte Mathematik und Mechanik,1954,1-2:79-90.
    [38]Stephenson R. R., Osterle J. F.. A direct solution of the elastohydrodynamic lubrication problem[J]. Trans. ASLE,1962,5:342-350.
    [39]Hamrock B. J., Jacobson B. O.. Elastohy dirodynamic lubrication of line contacts[J]. Trans. ASLE,1984,27:N.4.
    [40]Dowson D., A Numerical Solution to the Elastic Hydrodynamic Problem[J]. Journal of Mechanical Engineering Science,1959,8:26-35.
    [41]候克平,温诗铸.重载条件下线接触弹流问题的数值分析[J].清华大学学报,1985,3:31-38.
    [42]彭晋民等.水润滑塑料合金轴承材料力学性能改性[J].润滑与密封,2004,6.
    [43]杨沛然.流体润滑数值分析[M].国防工业出版社,1998.
    [44]温诗铸.摩擦学原理[M].清华大学出版社,2002.
    [45]Lubrecht A. A., Bosma R.. Multigrid, an alternative method for calculating film thichness and pressure profiles in elastohydrodynamic lubricated line contacts [J]. Trans. ASLE Journal of Tribology,1989,4:551-556.
    [46]陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,1987.
    [47]刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1987.
    [48]Alex D. K., Ron A. J., Daniel J. R.. Calculation of Stribeck curves for (water) lubricated journal bearings[J]. Tribology International,2007,40:459-469.
    [49]Tan K. H. R. T.. Modelling of Fluid Flow in Multiple Axial Groove Water Lubricated Bearings Using Computationsl Fluid Dynamics[D]. Queendland University of Technology, Australia,2007.
    [50]Litwin W.. Water lubricated hydrodynamic bearing with full and grooved bearing bushing[J]. Proceedings of the ASME Tribology Division-2005,2005,49-57.
    [51]Litwin W.. Marine water lubricated stern tube bearings-Design and operation problems[J]. Proceedings of the ASME/STLE International joint tribology conference,2008, PTS A AND B,211-213.
    [52]Pai, R. S.. Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load[J]. Journal of engineering tribology,2008, J5: 683-691.
    [53]Pai, R. S.. Non-linear transient analysis of multiple axial groove water-lubricated journal bearings[J]. Journal of engineering tribology,2008, J4:549-557.
    [54]Lahmar M.. Elastohydrodynamic lubrication analysis of a compliant journal bearing considering static and dynamic deformations of the surface coating[J]. Proceedings of the ASME/STLE International joint tribology conference,2008, PTS A AND B, 363-365.
    [55]Liu F.. Numerical design method for water-lubricated hybrid sliding bearings[J]. International journal of precision engineering and manufacturing,2008,1:47-50,
    [56]Zhu J. J.. Structural design and lubrication mechanism of water-lubricated plasticalloy bearing[J]. Proceedings of the International Conference on Mechanical Transmissions,2006,1-2:739-743.
    [57]Wu X. J.. Numerical simulation model of water-lubricated plastic alloy bearing[J]. Proceedings of the International Conference on Mechanical Transmissions,2006, 1-2:747-751.
    [58]Yoshimoto S., Kume T., Shitara T.. Axial load capacity of water-lubricated hydrostatic conical bearings with spiral grooves for high speed spindles [J]. Tribology International,1998,6,331-338.
    [59]Cabrear D. L., Woolley N. H.. Film pressure distribution in water-lubricated rubber journal bearings[J]. Proceedings of the I MECH E Part J Journal of Engineering Tribology,2005,2:125-132.
    [60]Peter A., Pekka L.. Load-carrying capability of water-lubricated ceramic journal bearings[J]. Tribology International,1994,5:315-321.
    [61]Garside D. W., Hother-Lushington S.. The influence of clearance and journal surface finish on the load capacity of water-lubricated, plain bearings [J]. Wear, 1967,10:77.
    [62]Brennen C. E.. Cavitation and Bubble Dynamics [M]. New York:Oxford University Press,1995.
    [63]罗经.气蚀破坏行为与超声空化的特征研究[D].机械科学研究总院,2008.
    [64]王国玉,曹树良,赵令家,刘淑艳.高速水流中旋涡空化所引起的空蚀和振动[J].工程热物理学报,2002,6:707-710.
    [65]王国玉,曹树良.通气对空化引起振动的影响[J].水力发电学报,2001,2:55-62.
    [66]Tsochatzidis N. A., Guiraud P., Wilhelm A. M.. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique[J]. Chemical Engineering Science,2001,56:1831-1840.
    [67]Labouret S., Frohly J., Rivart F.. Evolution of an 1 MHz ultrasonic cavitation bubble field in a chopped irradiation mode[J]. Ultrasonics Sonochemistry,2006, 13:287-294.
    [68]Alexei M., Christian G., Bertrand D.. Cone-like bubble formation in ultrasonic cavitation field[J]. Ultrasonics Sonochemistry,2003,10:191-195.
    [69]Bai L.X., Xu W. L., Tian Z.. A High-speed photographic study of ultrasonic cavitation near rigid boundary[J]. Journal of Hydrodynamics,2008,5:637-644.
    [70]Cole R.H.. Underwater explosions [M]. Princeton U.P., Princeton,1948.
    [71]Plesset M. S., Chapman R. B.. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary [J]. Journal of Fluid Mechanics,1971,47: 283-290.
    [72]Philipp, Lauterborn. Cavitation Erosion by Single Laser-Produced Bubbles [J]. Journal of Fluid Mechanics,1998,361:75-116.
    [73]Alexei M., Christian G., Bertrand D.. Ultrasonic cavitation in thin liquid layers[J]. Ultrasonics Sonochemistry,2005,12:415-422.
    [74]安琦,Taylorcm.以超声振动原理模拟滑动轴承的气蚀磨损[J].摩擦学学报,2001,3:232-234.
    [75]李健,张永振,彭恩高,等.冲蚀与气蚀复合磨损试验研究[J].摩擦学学报,2006,2:164-168.
    [76]Prevenslik T.V.. The Cavitation Induced Becquerel Effect and the Hot Spot Theory of Sonoluminescence [J]. Ultrasonics,2003,41:313-317.
    [77]梁召峰,周光平,张亦慧,等.空化噪声谱的分离[J].声学技术,2005,2:113-116.
    [78]Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine,1917,34:94-98.
    [79]李志民,黄继汤.金属材料的抗空蚀性能与应变能间的关系[J].水利学报,1985,4:60-65.
    [80]陈文革,谷臣清.0Cr13Ni4Mo钢的气蚀破坏微观分析[J].理化检验—物理分册,2000,1:16-17.
    [81]傅万堂,张东升.奥氏体铬锰氮不锈钢在气蚀过程中的组织变化[J].钢铁,1999,10:42-44.
    [82]陈岩.不同材料抗气蚀性能的比较[J].热加工工艺,2000,3:24-25.
    [83]陈文革,谷臣清,沈福三.钢的气蚀抗力与力学性能的相关性[J].水力发电学报,1998,2:79-88.
    [80]郝远,李子全,任虎平.高强度锑铸铁及其抗气蚀性能[J].机械工程材料,1993,6:51-57.
    [85]张秀丽,孙冬柏,俞宏英.金属材料空蚀过程中的腐蚀作用[J].腐蚀科学与防护技术,2001,3:162-163.
    [86]陈文革,谷臣清.热处理对M50NiL和16CrNi4Mo钢的抗气蚀与磨蚀性能的影响[J].金属热处理,1999,3:5-8.
    [87]何筱奎.热处理对0Cr13Ni4Mo钢叶片的抗气蚀性能的影响[J].金属热处理,1987,8:19-24.
    [88]魏葆春.热处理工艺对不锈钢抗气蚀性能的影响[J].金属热处理,1990,4:51-54.
    [89]杨政,田杰谨.结构陶瓷的空蚀性研究[J].功能材料,2003,2:200-204.
    [90]Lu J. J., Schneider J.. Microstructural effects on the resistance to cavitation erosion of ZrO2 ceramics in water[J]. Wear,2008,265:1680-1686.
    [91]于洪利,王志强.用柔软陶瓷复合材料修复水泵气蚀[J].中国设备工程,2003,8:23.
    [92]蒋硕忠,方绪非,薛希亮.树脂涂层材料在水工建筑中的应用[J].人民长江,1990,12:16-20.
    [93]蓝成根,金维俊.聚氨醋弹性体抗泥沙磨损抗气蚀水轮机叶片的应用[J].聚氨酯工业,1994,2:24-27.
    [94]单桂芳,杨伟,李忠明.聚合物材料空化效应研究进展[J].高分子通报,2005,5:36-91.
    [95]Cheng C., Hiltner A., Baer E., et al.. Deformation of rubber-toughened polycarbonate:Macroscale analysis of the damage zone[J]. Journal of Applied Polymer Science,1994,52:177-193.
    [96]Liang J. Z., Li R. K. Y.. Rheological properties of glass bead-filled low-density polyethylene composite melts in capillary extrusion[J]. Journal of Applied Polymer Science,1999,73:1451-1456.
    [97]Huang Y., Kinloch A.. The toughness of epoxy polymers containing microvoids[J]. Polymer,1992,33:1330-1332.
    [98]Huang Y., Kinloch A.. Modelling of the toughening mechanisms in rubber-modified epoxy polymers[J]. Journal of Materials Science,1992,27:2753-2762.
    [99]Jiang W., Yuan Q., An L. J., et al. Toughening mechanism of polymer blends: Influence of voiding ability of dispersed-phase particles[J]. Polymer,2002,43: 1555.
    [100]Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine,1917,34:94-98.
    [101]Nagrath S., Jansen K., Lahey J. R.T., Akhatov I.. Hydrodynamic Simulation of Air Bubble Implosion Using a Level Set Approach[J]. Journal of Computational Physics,2006,215:98-132.
    [102]Noltingk B. E., Neppiras E. A.. Cavitation produced by Ultrasonics[C]. Proc Phys. Soc., London,1950,63B:674-685.
    [103]Gilmore F. R.. The growth and collapse of a spherical bubble in a viscous compressible liquid [R]. Hydro Lab Calif Inst Tech Report,1952.
    [104]Shina A., Takayama A., Tomita Y.. Mechanisms of the bubble collapse near a solid wall and the induced impact pressure generation[J]. Rep Inst High Speed Mech, 1984,48:77-97.
    [105]Brijesh V., Hansson L. H.. The cavitation erosion2corrosion of stainless steel[J]. Corrosion Science,1990,30:240-245.
    [106]Karimi, Martin J. L.. Cavitation erosion of metals [J]. International Metals Reviews, 1986,1:1-26.
    [107]Nour W. M. N., Schneider J., Gahr K.Z.. The effect of surface finish and cavitating liquid on the cavitation erosion of alumina and silicon carbide ceramics [J]. Ceramics Silikaty,2007,51:30-39.
    [108]Vaidya S., Preece C. M.. Experiment s on cavitation erosion in water[J]. Met all, Trans.,1978,11:147-154.
    [109]Kwok C. T., Man H. C., Leung L. K., et al. Effect of t emperature, pH and sulphide on the cavit at ion[J]. Wear,1997,211:84-93.
    [110]Plesset M. S.. On the stability of the spherical shape of a vapour cavity in the liquid[J]. J. basic Eng. Trans.ASME,1972.
    [111]Howard R. L., Ball A.. The solid particle and cavit at ion erosion of tit anium alumin ide int ermet allic alloys[J]. Wear,1995,186-187:123-128.
    [112]柳伟,郑玉贵,姚治铭,等.金属材料的空蚀研究进展[J].中国腐蚀与防护学报,2001,4:250-255.
    [113]Karimi A., Martin J. L.. Cavitation erosion of metals[J]. International Metals Reviews,1986,31:1-26.
    [114]Hattori S. J., Mikami N.. Cavitation erosion resistance of stellite alloy weld overlays[J]. Wear,2009,267:1954-1960.
    [115]Howard R. L., Ball A.. The solid particle and cavitation erosion of titanium aluminide intermetallic alloys[J]. Wear,1995,186-187:123-128.
    [116]Fu W. T., Zheng Y. Z., Jing T. F., et al. Structural changes after cavitation erosion for a Cr-Mn-N stainless steel[J]. Wear,1997,205:28-31.
    [117]Richman R. H., Rao A. S., Hodgson D. E.. Cavitation erosion of NiTi alloys[J]. Wear,1991,157:401-407.
    [118]Zimmerly C. A., Inal O. T.. Explosure welding of a near-equiatomic nickel-titanium alloy to low-carbon steel[J]. Materials Science and Engineering, 1994, A188:251-254.
    [119]Richman R. H., Rao A. S., Kung D.. Cavitation erosion of NiTi explosively welded to steel[J]. Wear,1995,181-183:80-85.
    [120]Hattori S. J., Inoue T., Hirofumi S.. Cavitation erosion mechanism of NiTi coatings made by laser plasma hybrid sprayings[J]. Wear,1999,231:272-278.
    [121]Hattori S. J., Atsushi T.. Cavitation erosion of Ti-Ni base shape memory alloys[J]. Wear,2007,262:191-197.
    [122]Hattori S. J., Tetsuo K.. Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data[J]. Wear,2010,269:443-448.
    [123]David N.. Cavitation erosion behavior of ceramics in aqueous solutions[J]. Wear, 2007,263:295-300.
    [124]Garcia-Atance Fatjo G., Hadfield M., Vieillard C.. Early stage cavitation erosion within ceramics—An experimental investigation[J]. Ceramics International,2009, 35:3301-3312.
    [125]Brujan E. A., Al-Hussany A. F. H., Williams R.L.. Cavitation erosion in polymer aqueous solutions[J]. Wear,2008,264:1035-1042.
    [126]Zhang J., Richardson M. O. W., Wilcox G. D.. Assessment of resistance of non-metallic coatings to silt abrasion and cavitation erosion in a rotating disk test rig[J]. Wear,1996,194:149-155.
    [127]陈战.水润滑轴承的摩擦磨损性能及润滑机理的研究[D].重庆大学博士学位论文,2002.
    [128]Hooke C. J., Kukureka S.N., Liao K., et al.. Wear and friction of nylon-glassfibre composites in non-conformal contact under combinedrolling and sliding[J]. Wear, 1996,197:115-122.
    [129]段芳莉.橡胶轴承的水润滑机理研究[D].重庆大学博士学位论文,2002.
    [130]董曾南,章梓雄.非粘性流体力学[M].北京:清华大学出版社,2003.
    [131]Bhushan B..葛世荣译.摩擦学导论[M].机械工业出版社,2006.
    [132]Bhushan B.. Principles and Applications of Tribology[M]. Wiley, New York,1999.
    [133]Pinkus, O., Sternlicht, B.. Theory of Hydrodynamic Lubrication[M]. McGraw-Hill, New York,1961.
    [134]温正,石良辰,任毅如.FLUENT流体计算应用教程[M].清华大学出版社,2009.
    [135]FLUENT6.2 User's Guide, Fluent Inc,2005.
    [136]岳戈,梁宇白,陈晨等.ADINA流体与流固耦合功能的高级应用[M].人民交通出版社,2010.
    [137]冯卫民,宋立,肖光宇.基于ADINA的压力管道流固耦合分析[J].武汉大学学报,2009,42:264-267.
    [138]田海霞.超声空化对金属材料力学性能的影响[D].陕西师范大学硕士学位论文,2010.
    [139]黄继汤.空化与空蚀的原理及应用.北京:清华大学出版社,1991.
    [140]Himmitt F. G. Cavitation and multiphase flow phenomena. USA:McGraw-Hill Inc, 1980,5-6.
    [141]Luo J., Li J.. Erosion characteristics in ultrasonic cavitation[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2009, 223:985-991.
    [142]Preece C. R.. Treatise on materials science and technology, volume16:Erosion. New York:Academic Press,1979,249-252.
    [143]Luo J., Li J.. Two-Dimensional Simulation of the Collapse of Vapor Bubbles Near a Wall[J]. Journal of Fluids Engineering,2008,130:128-131.
    [144]薛伟,陈昭运.空蚀破坏的微观过程研究[J].机械工程材料,2005,29(2):59-62.
    [145]骆素珍,敬和民,郑玉贵,等.CrMnN双相不锈钢的空泡腐蚀行为研究[J].中国腐蚀与防护学报,2003,23:276-281.
    [146]康进兴,徐英鸽,赵文轸.WC/Ni和WC/Cu基复合覆盖的耐气蚀[J].中国有色金属学报,2002,12:673-676.
    [147]陈岩.不同材料抗气蚀性能比较[J].热加工工艺,2000,3:24-25.
    [148]Kurtz S. M.. The UHMWPE hadbook[M]. ACADEMIC PRESS,2004.
    [149]裴召辉.可控气氛摩擦试验机研制与聚合物材料摩擦学性能研究[D].机械科学研究总院硕士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700