水润滑塑料合金轴承润滑机理及设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴承是机器中用来支撑轴的一种重要零件,如何减少轴承与轴之间的动摩擦,提高机械效率,一直是滑动轴承设计者所研究和迫切需要解决的课题,设计者们在轴承结构、润滑剂、减摩材料及制造加工工艺等方面进行了大量的改进工作。利用天然水替代矿物油作为各种机械传动和流体动力系统工作介质以及利用非金属作为传动摩擦副的研究课题,是机械传动系统的高效节能与环境保护科学研究领域的前沿,现已引起了人们的普遍关注,并成为国内外竞相研究的热点。
    水润滑轴承便是因兼顾以上优点而得以广泛应用的传动结构件之一。但水润滑轴承作为一个研究课题,仍存在大量问题需要解决。在理论上,进一步完善水润滑轴承的润滑理论,研究非金属材料摩擦副在以水为润滑介质情况下的润滑机理;在设计和应用上提高该轴承的承载能力扩大其应用范围;这些研究均具有普遍而重要的意义。论文的研究工作得到“九五”国家重点科技攻关项目的资助。
    论文针对水润滑轴承的结构和润滑特点结合弹性力学和弹流润滑理论,建立了由水润滑条件下的雷诺方程、变形方程和载荷方程组成的基本方程组,并将该方程组作为润滑机理的数学模型。
    塑料合金的弹性变形对载荷的敏感性是基本方程组不易得到收敛的数值解的重要原因,作者应用多重网格法并采用适当的网格划分和迭代初值编制了计算程序,成功求得数值解。根据数值解结果绘出了压强分布曲线和水膜形状曲线,以此作为理论基础分析了轴承的润滑特性。在理论分析的基础上,通过实验考查了水润滑轴承摩擦学性能,验证了润滑机理的正确性。
    论文对水润滑轴承的材料进行改性研究,从硫化体系、补强填充体系和软化增塑体系等方面选择适当的配方来提高其力学性能和摩擦学性能。通过实验分析了各体系对材料性能的影响并确定了各种填料的含量。在确定基础配方后,运用玻璃纤维和碳纤维的增强作用,并加入纳米级的氧化锌晶须(ZnOw),提高了轴承材料的力学性能,同时还降低了其摩擦因数。最终得到的新型塑料合金轴承材料力学性能可达到或超过美国国防部颁布的MIL-B-17901(船舶)军用标准。
    在实验研究的基础上得到了水润滑塑料合金轴承的结构参数,并分析了制造过程中的主要工艺参数-温度、压强和时间对轴承性能的影响,得到了制造轴承的最佳工艺路线,保证轴承有良好的使用性能和较长的使用寿命。
    运用屏显式MPV-20B摩擦磨损实验机模拟实际工况,研究了间隙、载荷及转
    
    速对水润滑轴承润滑性能的影响;得到其最大承载能力和最高转速。
The bearing is a kind of important part in the machine for supporting spindles. It is an urgent question for discussion to solve how to reduce the friction between bearings and shafts and how to improve the efficiency. Devisers have done many works to improve the performance of bearings, which include structure, lubricant, subtract friction material, and manufacturing process aspect. The topic of using tap water to substitute mineral oil as medium in many kinds of mechanical transmissions and liquid dynamical systems is the front of saving energy sources in mechanical transmission systems and environment protection science research area. It has also arose the attention pervasively, and been a hotspot in developed countries in the world.
    Water lubrication bearing is one of the components widely used in transmission because it has lots of merits mentioned above. But from research and development of the water lubrication bearing, we can see that as a young topic, it still has many problems to be researched. The topic has prevalent and import meaning not only on the mechanism but also in design and application. It includes perfect the lubricate mechanism on water lubricated bearings, and to fill up mechanism of non-mental material friction pairs make water as the lubrication medium, even to enlarge the apply range of the bearings and material.
    Basic equations include Reynolds equation, deform equation and load equation are set on the base of bearings' structure. Elastic mechanic theory and elastic hydrodynamic lubricated(EHL) theory are used during deduce equations. Equations are made as mathematic model in the paper.
    The important reason of not easy to get the convergent numerical solution is that plastic alloy's elasticity deform is sensitive to the load. Multi grid method is used and appropriate grid is set during get the numerical solution. Calculate program are programmed after choose alternate initial value. Numerical solution is get by the program. The pressure distributing graph and water membrane figure are protracted by the Numerical solution. Then we used it as the mechanism basic to analyse the bearings' lubrication characteristic. The influence for bearings on speed and load are discussed by experiments. Currents of the experimental result are same as the theory analysis. From that the mechanism is proved to be correct.
    Research on modifying bearings' material performance was done in the paper. Vulcanize system, stronger filling in system, fence system, and intenerate increase mold
    
    system are selected to advance its mechanic performance and tribology performance. Influence between appropriate component and material are discussed by experiment. At the same time, short fiber technique are used to enhance the dynamics capability of the bearing' material, and reduce its co-friction obviously. Then the new material for BTG water lubrication plastic alloy bearings is get. Its mechanic capability should attain or exceeded MIL-B-17901B standard (shipping) issued by US DOD.
    In the structure design, experience formula and experiment data are combined to get the bearings' figure parameter. PVT graph and appropriate long: diameter ratio are get. The best L: D ratio is 4:1. At the same time, some experiments of the pressure about time and temperature are done. Even then the best molding parameter of the BTG water lubrication plastic alloy bearings are get.
    Influence that caused by different factors on the lubricate capability of the water lubrication bearings are discussed through the experiment. Finally performance about the great carrying capacity and the speed are get.
引文
[1] 黄函.长江船舶尾轴水润滑系统的应用研究.武汉造船.1997(4) 4~8
    [2] 王家序,李太福.用水为润滑介质的摩擦副研究现状与发展趋势.《99全国流体动力与机电一体化技术学术年会》论文专辑.1999(3~4) 9~10
    [3] ROY L. Orndororff. Water-lubricated rubber bearings, history and new developments. Presented at the Naval Ship Maintenance and Modernization Symposium. New York, USA. 1984 October 3~4
    [4] 杨和庭,唐育民.船舶水润滑尾管橡胶轴承的设计.武汉造船.2000(2): 19~22
    [5] 吴仁荣. 水润滑轴承在船用泵中的应用. 流体工程. 1989(5). 12~15
    [6] 刘卿. 玻璃钢泵的研究与发展. 流体工程. 1988(6). 23~37
    [7] 陈钊君,黄普林. 轴承的应用与润滑. 香港大千出版公司. 1981 58~69
    [8] Nakata. Rubber Bearings Apply for Pumps. Pump information. 1980(1). 28~32
    [9] 雄谷千夫. 电机上使用的轴承. 国外轴承. 1990(6). 15~18
    [10] 江邦治. 关于核泵水润滑轴承的设计. 水泵技术. 1997 (5). 16~19
    [11] 闻力生. 塑料滑动轴承的新结构及摩擦特性. 润滑与密封. 1987(3). 10~13
    [12] I. Rymuza. 小型塑料轴承的设计. 国外轴承. 1991(6). 16~18
    [13] 王优强,杨成仁.水润滑橡胶轴承研究进展.润滑与密封.2001(2):65~67
    [14] Ei-TayebNS, GadelrabRM. Friction and wear properties of E-glassfiber reinforced epoxy composites under different sliding contact conditions[J].Wear,1996,192:112~117
    [15] BahadurS. The effect of reinforcement and the synergism between CuS and carbon fiber on the wear of nylon[J].Wear,1994,178:123~130
    [16] CirinoM,PipesRB,FriedrichK. The abrasive wear behavior of continuous fiber polymer composites. MaterSci,1987,22:2481~2490
    [17] 罗松承. 水润滑陶瓷轴承的试验研究. 润滑与密封, 97, (3):34~36
    [18] 傅林. 超高分子量聚乙烯的现状与展望. 化工技术与经济, 1999, 17(1): 14~16
    [19] 刘广建. 超高分子量聚乙烯的改性及摩擦磨损研究. 塑料,2000,(1)35~37
    [20] Marcus, C. Allen. The sliding wear of Ultra High Molecular Weight Polyethylene in an aqueous environment[J].Wear,1994,178:17(25
    [21] A. Wang, D. C. Sun, C. Stark, J. H. Dumble ton. Wear mechanisms of UHMWPE in total point replacement, Wear,1995, 181-183:241(249
    
    
    [22] BahadurS, PolineniVK. Tribological studies of glassfabric-reinforced polyamide composites filled with CuO and PTFE[J].Wear,1996,200:95~104
    [23] 刘广建. 超高分子量聚乙烯. 化学工业出版社. 北京. 2001. 58~73
    [24] Schncider. Water-lubricated rubber bearings apply for military. Presented at the Naval Ship Maintenance and Modernization Symposium. Philadelphia, USA. 1988 October 12~19
    [25] Schncider. Rubber bearings design and research. Presented at the Naval Ship Maintenance and Modernization Symposium. Philadelphia, USA. 1988 October 20~27
    [26] Roger F. Jones. Short Fiber reinforce plastic. USA. Research Studios. 1989. 5~36
    [27] Champ D H,Southern E and Thomas A C. Fracture mechanics applied to rubber abrasion. Advances in Polymer Friction and Wear, Lee L H(ed.),New York and London: Plenum Press,1974. 133~138
    [28] Southern E , Thomas A G. Strdies of rubber abrasion. Rubber Chem. Technol, 1979,52~88
    [29] 王优强.硕士学位论文.水润滑橡胶轴承润滑机理的研究. 青岛建筑工程学院. 1995. 7~22
    [30] Martin H.M. The lubrication of greet teeth. Engineering. 1912(5) 102~105
    [31] Block H. Fundamental mechanical aspects of thin film lubrication. Acad. Sci. 1950(5) 53~58
    [32] Dowson D. A numerical solution to the elastic hydrodynamic problem. Journal of mechanical engineering science. 1959(8) 26~35
    [33] 候克平,温诗铸. 重载条件下线接触弹流问题的数值分析. 清华大学学报. 1985(3) 31~38
    [34] 杨沛然,温诗铸. 用残量法求弹流问题完全数值解. 第一届清华大学摩擦学学术会议论文. 清华大学出版社. 1986. 68~73
    [35] 温诗铸,杨沛然.弹性流体动力润滑.第一版.北京:清华大学出版社.1992.9:7~58
    [36] 小野京右. 弹流问题数值解. 日本润滑学会22届东京讲习会集. 1977 87~95
    [37] 温诗铸,朱东. 等温弹流润滑问题的直接迭代解. 润滑与密封. 1985(4) 5~8
    [38] Christensen H. The variation of film thickness in highly load contacts. Trans. ASLE. 1964(7) 52~62
    [39] Dowson D. Elastohydrodynamics. Proc. Inst. Mech. Eng. London. 1968 182~187
    [40] Hamrock B J. Elastohydrodynamics lubrication of line contacts. Trans. ASLE.
    
    1984(4). 27~29
    [41] Houpert L G. Fast approach for calculating film thicknesses and pressure in elastohydrodynamics lubrication contacts at high loads. NASA Technical Memorandum 87032. 1985
    [42] 艾晓岚. 硕士学位论文. 线接触非稳态弹流润滑的完全数值解及其应用研究. 清华大学. 1986 52~58
    [43] Okamura H. A contribution to the numerical analysis of isothermal elastohydrodynamics lubrication. Proc. of 9th Leed-Lyon Symposium on Tribology. 1982 53~59
    [44] Stephenson R. A direct solution of the elastohydrodynamics lubrication problem. Trans. ASLE 1992. 33~38
    [45] Taylor C. A numerical solution of the EHL problem using finite elements. Journal of Mechanical Engineering Science. 1988(8) 35~39
    [46] 杨沛然,温诗铸. 线接触弹流问题一种新的解算方法及更准确的油膜厚度公式. 清华大学科学报告. 1988 22~26
    [47] Moore D. F. The Friction and Lubrication of Elastomers. Pergamon Press,Oxford,1972 92~96
    [48] Ahman L and Oberg A. Mechanisms of micro-abrasion-in-situ studies in SEM. Wear of Materials 1983,Ludenma K C (ed.), ASME 1983 112~118
    [49] Gent A N and Pulford C T R. Mechanisms of rubber abrasion. Appl. Polym. Sci.,1983,28~43
    [50] Zhang S W. Mechanisms of rubber abrasion in unsteady state. Rubber Chem. Technol.,1984,57~755
    [51] Zhang S W. Investigation of abrasion of nitrile rubber. Rubber Chem. Technol., 1984,57~69
    [52] Fukahori Y and Yamazaki. Mechanism of rubber abrasion. Part Ⅰ:Abrasion pattern formation in natural rubber valcanizate, Wear,1994,171~195
    [53] 王家序译. 美国MIL-B-17901B(船舶)军用标准. 重庆大学传动实验室科技报告. 1995 57~59
    [54] 袁晓梅.油尼龙在船舶艉轴承上的应用.中国修船.1996(3):14~16
    [55] 张鹏顺,陆思聪.弹性流体动力润滑及其应用.第一版.北京:高等教育出版社.1995.7:5~38
    [56] CirinoM, PipesRB, FriedrichK. The abrasive wea rbehavior of continuous fiber polymer composites. JMaterSci,1987(22) 2481~2490
    
    
    [57] Verduim, Automatic Control System, Modern Plastics International,1990, 20(10) 5~9
    [58] ModyPB, ChouTW, FriedrichK. Effect of testing conditions and microstructure on the sliding wear of graphite fiber/PEEK matrix composites. JMaterSci,1988(23) 4319~4327
    [59] 杨成仁,苏逢荃,王优强.八纵向沟水润滑橡胶轴承润滑机理的实验研究.青岛建筑工程学报.1995,16(4) 51~58
    [60] CartledgeHCY, BaillieC, MaiYiu-Wing. Friction and wear mechanisms on athermoplastics
    composite GF/PA6 subjected to different thermalhistories[J].Wear,1996,194 178~184
    [61] FriedrichK, Karger-KocsisJ. On the sliding wear performance of polyethernitrile composites[J].Wear,1992,158 157~170
    [62] CirinoM,FriedrichK,PipesRB. The effect of fiberorien-tation on the abrasivewear behavior of polymer composite materials[J].Wear,1988,121 127~136
    [63] CirinoM,FriedrichK,PipesRB. Evaluation of polymer composites for sliding and abrasivewear applications[J].Composites,1988,19(5) 383~392
    [64] Li Y, Yang S Det al. Development of Hydraulic Pump to Operate with Raw Water. Proceedings of 1998 ASME International Fluids Engineering Division Summer Meeting, June Washington D.C. ,USA 1998 21~25,
    [65] Frik Trostman eta al .Hydraulic Componets Using Tap Water as Pressure Medium. Proceedings Of 4th cand. Int. Conf. On Fluid Power. Finland, 1995 67~69
    [66] 刘大华主编.合成橡胶工业手册. 第一版. 化学工业出版社. 1991 1~3
    [67] BahadurS. Mechanical and tribological behaviour of polyester reinforced with shortfibers
    of carbon and aramid[J].LubrEng,1991,47:661~667
    [68] BahadurS, ZhengY. Mechanical and tribological behaviour ofpolyester reinforced with
    shortglass fibers[J].Wear,1990,137:251~266
    [69] Fukahori Y and Yamazaki. Mechanism of rubber abrasion. Part Ⅱ:General rule in abrasion pattern formation in rubber-like materials, Wear,1994,109~118
    [70] Fukahori Y and Yamazaki. Mechanism of rubber abrasion. Part Ⅲ:How is friction linked to fracture in rubber abrasion?, Wear,1995:19~28
    [71] 周义光. 可倾瓦水润滑推力轴承中的水膜厚度分析. 水动力学研究, 1996,31
    
    (3) 17~20
    [72] 粟木弘嗣. 水下滑动轴承的材料和设计技术. 机械设计,1988,32(11):47~52
    [73] 王贤烽,林青,胡茂横,唐育民,海鹏洲. 水润滑橡胶尾管轴承的性能研究. 船舶工程,1993(4) 45~49
    [74] 陈荐,沈保罗,肖建梅等.纤维取向对复合材料磨损性能影响的统计学研究.复合材料学报,1997,14(4) 75~79
    [75] 梁亚南.增强塑料中纤维排列方向对冲击磨粒磨损行为影响研究.新型表面材料技术,1994,8 319~324
    [76] O.平克斯,B.斯德因李希特. 流体动力润滑理论. 北京:机械工业出版社, 1980 126~135
    [77] 张真明. 滑动轴承的流体动力润滑理论. 北京:高教出版社,1986 112~119
    [78] 张桂芳. 滑动轴承. 北京:高教出版社,1985 198~208
    [79] 孙荣恒,黄雯莹,伊亨云.数理统计.第一版.重庆:重庆大学出版社.1995.11:181~240
    [80] L. A. Zadeh. Fuzzy Sets. Inform. And Control, 1965,8 22~31
    [81] Steven C. Computer-aided Optimization of the Vulcanization Process. Elastomers. Plast. 1994(3). 26~31
    [82] 贺仁生. 平板硫化机的现状与发展趋势. 橡胶技术与装备. 95(5). 17~21
    [83] 李纪生. 我国平板硫化的技术进步与市场分析. 橡胶技术与装备. 1997(1). 22~25
    [84] J. Buckiey. Modern Controls For Plastics & Rubber Extrusion. IEEE Conf. Rec Annu Conf Electr Eng Probl Rubber Plast Ind. 1989 56~61
    [85] Bhowmick A K and De S K. Dithiodimorpholine-based accelezatoi system in tire tread compound for high-temperature vulcanization, ibid,1979 52~85
    [86] YU. M. Pleskachevsky, A. L.Zuitsev. Oxidation and its influence on low pressure Poly ethylene wear. Wear, 1995.181-183 222(229
    [87] Tanaka K. Transfer of semicrystalline polymers sliding against a smooth steel surface. Wear.
    1982. 75(3) 183(199
    [88] 王承鹤. 塑料摩擦学?塑料的摩擦磨损润滑理论与实践. 机械工业出版社,北京,1994 15~21
    [89] 张嗣伟、路永明、李宏伟. 聚四氟乙烯和丁腈橡胶的湿磨粒磨损机理的试验研究. 摩擦磨损,1987(1):32~34
    [90] 张嗣伟.橡胶磨损原理.第一版.北京:石油工业出版社.1998.3:2~3,8~25,128~133
    
    
    [91] Pascoe M R and Tabor D. The friction and deformation of polymers,Proc. Roy. Soc.,A,1956 210~218
    [92] VermaAP, VishwanathB, RaoKCVS. Effect of resin modification on friction and wear of glassphenolic composites[J]. Wear,1996, 193~198
    [93] BahadurS, GongDL. The action of fillers in the modification of the tribological behavior of polymers[J].Wear,1992, 41~59
    [94] HookeCJ, KukurekaSN, LiaoK,etal. Wear and friction of nylon-glassfibre composites in non-conformal contact under combinedrolling and sliding[J].Wear,1996 115~122
    [95] 邓礼平. 屏蔽式主泵水润滑推力滑动轴承中惯性力的影响. 核动力工程,1994(4):42~44
    [96] Tanaka K, Kawakami S. Effects of various fillers on the friction and wear of PTFE-based composites. Wear, 1982,78 241(249
    [97] Gong D, Zhang B, Xue Q, Wang H. Investigation of adhesion wear of filled PTFE by ESCA. AES and XRD. Wear, 1990,137: 25(29
    [98] Bahadur S, Gong D. The action of fillers in the modification of the tribological behavior of polymers. Wear. 1992.158: 41(59
    [99] 王优强,杨成仁. 八纵向沟水润滑橡胶轴承润滑性能研究. 润滑与密封. 2001(4):37~39
    [100] 王贤烽,林青,胡茂横,唐育民,海鹏洲.水润滑橡胶尾管轴承的性能研究.船舶工程.1993(4):45~49
    [101] Schncider. Structure and design on Water-lubricated bearings. Presented at the Naval Ship Maintenance and Modernization Symposium. Philadelphia, USA. 1988 October 28~36
    [102] HookeCJ, KukurekaSN, LiaoK,etal. Wear and friction of nylon-glassfibre composites in non-conformal contact under combinedrolling and sliding[J].Wear,1996,197:115~122
    [103] BahadurS. The effect of reinforcement and the synergism between CuS and carbon fiber on the
    wear of nylon Wear,1994(178) 123~130
    [104] BahadurS, PolineniVK. Tribological studies of glassfabric-reinforced polyamide composites filled with CuO and PTFE. Wear,1996(200) 95~104
    [105] BolvariA, GlennS, JanssenR,etal. Wear and friction of aramid fiber and polytetrafluoroethylene filled composites.Wear,1997(202) 697~702
    
    
    [106] BahadurS. Mechanical and tribological behaviour of polyester reinforced with short fibers of carbon and aramid. LubrEng,1991( 47) 661~667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700