高强度高电导率铸造铝合金的研制与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了铝导体的应用研究现状及铸造铝合金在电力系统中的应用,分析了铸造铝合金电导率的影响因素和强化方法,研究了合金元素优化配比、热处理工艺和复合变质对铸造铝合金力学性能和电导率的影响。
     首先采用正交试验,找出合金元素(Si、Cu、Mg)对电导率和力学性能的影响趋势,得出高力学性能和高电导率的最优选择。然后参照ZL105及ZL101A的热处理规范,结合本次试验的合金成分,采用T6处理,并用单项试验方法确定时效时间。最后根据变质与细化原理,通过向合金添加铝锑和铝锆中间合金的方法,进行复合变质处理。利用金相显微镜,扫描电镜、能谱分析,XRD,D60K型导电仪及力学性能测试等手段,研究合金元素、T6处理和复合变质对合金的显微组织、力学性能和电导率的影响,并分析其作用机理。
     试验结果表明:(1)正交试验分析得出:Si、Mg、Cu元素分别对合金的强度、硬度和电导率的影响最显著。成分优化选择铸态为Al3.0Si1.5Cu0.6Mg,T6态为A14.0Si1.0Cu0.6Mg。(2)本次试验的T6热处理工艺确定为:525±5℃×6h→180℃×10h。经T6处理后,合金力学性能和电导率均得到提高。Al4.0Si0.5Cu0.6Mg(s-4)合金铸态时抗拉强度σb为185MPa、布氏硬度HBS为73,电导率σ为24.1Ms/m,T6后抗拉强度σb为338MPa、布氏硬度HBS为112,电导率。为26.3Ms/m,比铸态分别提高了83%、53%、9%。(3)复合变质后,合金力学性能和电导率也明显提高,A14.0Si1.0Cu0.6Mg(x-2)合金未复合变质前的抗拉强度σb为343MPa、电导率。为23.7Ms/m,复合变质后,抗拉强度σb为387MPa、电导率。为26.1Ms/m,比复合变质前分别提高了13%、10%。
     分析结果表明:(1)合金力学性能的提高是因为强化相的弥散析出阻碍了位错运动;合金电导率的提高是因为溶质原子的均匀析出增加了基体的均匀性和纯净度,减少了晶格畸变和电子波的散射几率。(2)复合变质使α(Al)晶粒细化、共晶Si变质,是细化剂Al-Zr和变质剂Al-Sb共同作用的结果。Al3Zr粒子通过包晶反应细化了晶粒;Sb按TPRE机制使共晶Si由板条状变为粒状。合金经成分优化、复合变质和T6处理后,力学性能和电导率已经达到国内同类合金的领先水平,可以满足高强度高电导率电讯结构部件的需要。
The status of Aluminum conductors'applications and research were described in the article. The applications of cast Aluminum alloy in power system were described too. The factors that affect its electrical conductivity and reinforcement methods were analyzed. The effects of optimal ratio of elements, the process of heat treatment and complex modification on the mechanical properties and electrical conductivity were studied deeply.
     The effect trends of elements'components(Silicon, Copper and Magensium) on electrical conductivity and mechanical properties of alloys were identified by orthogonal test to obtain the optimal components. Then, according to reference of Z1105 and Z1101A heat treatment and alloying elements' components in this experiment, T6 was established and the aging time was determined by single test. Finally, Sb and Zr were fused into alloys melts according to the principle of Aluminum alloys modification and grain refinement. These effects on the microstructure, mechanical properties and electrical conductivity of the alloys were investigated by OM, SEM, EDS, XRD, and EUMTS, etc. The mechanisms were also analyzed.
     There were three experiment results as felloys:Firstly, the tensile strength, the hardness and the electrical conductivity were affected most significantly respectively by Silicon, Magensium and Copper. The optimization of elements' components were cast state Al3.0Si1.5Cu0.6Mg and T6 state Al4.0Si1.0Cu0.6Mg. Secondly, the T6 heat treatment process of this test was identified as 525±5℃×6h→180℃×10h. The mechanical properties and electrical conductivity were improved greatly after T6 treatment. The Al4.0Si0.5Cu0.6Mg(s-4) alloy's tensile strengthσb in cast state was 185MPa, the HBS hardness 73, and the electrical conductivity 24.1MS/m. However, they were respectively 338MPa, 112,26.3Ms/m after T6 and increased respectively by 83%,53%,9% than the cast alloys. Thirdly, the mechanical properties and electrical conductivity were improved greatly after complex modification. The Al4.0Si1.0Cu0.6Mg(x-2) alloy's tensile strengthσb in T6 state was 343Mpa, and the electrical conductivity 23.7MS/m. However, they were respectively 387MPa,26.1Ms/m after complex modification and increased respectively by 13% and 10%.
     There were two analysis results as felloys:on the one hand, the mechanical properties were improved greatly because the dispersion strengthening phase precipitated and impeded dislocation movement. Due to precipitation of solute atoms, the uniformity and purity of the substrate were increased and the lattice distortion and the probability of electron waves were reduced. Therefore, the electrical conductivity were improved greatly. On the other hand, the grains were refined and the eutectic Si phase was modificated after Al-Zr refinement and Al-Sb modification. Al3Zr particles refined grains by the peritectic reaction. Sb changed the eutectic Si particle into the lath-shaped oval by TPRE(twin plane regeneration stage). The mechanical properties and electrical conductivity of the alloys have reached the advanced level and met the needs of high strength and high electrical conductivity structural components after optimization of elements'components, complex modification and T6 heat treatment.
引文
[1]中国机械工程学会铸造分会.铸造手册,第三卷,铸造非铁合金[M].北京:机械工业出版社,2001:96-97.
    [2]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006:57-201.
    [3]Z. Li, A. M. Samuel, F. H. Smauel, C. Ravindran, H. W. Doty, S. Valtierra. Parameters controlling the Performace of AA319-type alloys part II [J]. impact properties and fractography. Mater. Sci. Eng. A,2004,367:111-122.
    [4]董光明,孙国雄,廖恒成.共晶硅的变质[J].铸造.2005,54(1):1-5.
    [5]黄良余.铝硅合金变质机理的新发展和新观点[J].特种铸造及有色合金,1995(4):29-32.
    [6]Paoilo Fioriai. WIRE INDUSTRY.1979, Vol.4=265-268.
    [7]王祝堂.导电铝材的进展[J].有色金属加工,1988,vol.1:1-8.
    [8]上海电缆研究所.导电用稀土铝合金研究成果简介[J].电线电缆,1990,Vol.1:27-34.
    [9]唐远景.我国铝及铝合金的应用及趋势浅析[J].轻金属,1994,vol.5:61-64.
    [10]三宅保彦.铝线的进步技术[J].轻金属,1986,Vol.1,No.1:36-40.
    [11]王礼堂.世界各地区原铝产量及逐年总产能利用率[J].轻金属,2000,vol.8:16.
    [12]http://www.bmlink.com/news/message/121499.html.
    [13]贾先知.架空输电线路大跨越导线的选择[J].电线电缆,1990,5:47-48.
    [14]刘士璋.钢绞线、钢芯铝绞线交直流电阻及载流量的计算[J].电线电缆,1988,6:6-12.
    [15]王守礼,余德.铝包钢绞线在高海拔多冰雪地区输电线路上的应用[J].电线电缆,1994:52-58.
    [16]于洪才.户外低压架空绝缘线缆[J].电线电缆,1988,1:10-12.
    [17]余虹云,袁群.全铝合金导线与钢芯铝导线的能耗对比分析[J].电力建设,2000,2: 31-33.
    [18]刘顺华.高导电率含硼铝合金[J].电器工业,材料专辑,2002,12:36-37.
    [19]汪良宣.稀土铝合金导体材料在电线电缆中的应用概况[J].中国稀土学报,1995,7,Vol.13:404-407.
    [20]唐定骧,王成辉.我国独具特色的稀土电工铝和铝稀土合金[J].有色工业信息, 1990(中国科学院长春应化所):1-8.
    [21]高国忠,贺维勇,陈继志.稀土对铝导电性的影响[J].中国有色金属学报,1992,2(1): 78-81.
    [22]刘顺华,王桂芹,高洪吾等.高电导率含硼铝导体的研制[J].电线电缆,2003,8,V01.4:16-19.
    [23]黄崇棋,储成教关森等.稀土优化处理在电工铝导体生产中的应用[J].电线电缆,1986,6:31-35.
    [24]刘岩,高淑阁.铝-镁-硅合金管母线在高压配电装置中的应用[J].轻合金加工技术.2001,29(12):35.
    [25]Aluminium alloys for electrical and mechanical applications[J]. Wire and cable AsiA, 2002, (5/6):3.
    [26]Properzi[Z]. 《2002' AsiA》样本.
    [27]吴克义.铝线材中的杂质及其影响[J].轻合金加工技术,1989,6:13-20.
    [28]Y. Wang, Y. Xiang. Effects of beryllium in Al-Mg-Si-Ti cast alloy[J]. Mater. Sci & Eng.2000, A280:124.
    [29]桂满昌,贾均,李培杰,陈玉勇.合金元素对铸造A1-Si-Cu-Mg合金机械性能的影响[J].材料科学与工艺,1993,1(4):73-79.
    [30]张冀粤等.热处理工艺参数对铸造AlSi7Mg合金导电率的影响[J].铸造技术,1997(3).
    [31]Mondolfo L F. Aluminum Alloys:Structure and Property [M]. New York: Butterworths Press,1996,260-320.
    [32]D. L. Zhang, L. H. Zheng, D. H. Stjohn. Effect of Solution Treatment Temperature on Tensile Properties of AL-7Si-0.3Mg Alloy[J]. Materials Science andTechnology,1998,14(7):619-62.
    [33]H. W. Zandbergen, S. J. Andersen, J. Jansen. Structure determination of Mg5Si6 particales in Al dynamic electron diffraction studies[J].Science,1997,277:1221-1225.
    [34]S. Shivkumar, C. Keller, D. Apelian. Aging Behavior in Cast Al-Si-Mg Alloys[J]. AFS Transactions,1990,98:905-910.
    [35]K. T. Kashyap, S. Murali, K. S. Raman. Casting and Heat Treatment Variables of Al-7Si-Mg[J]. Materials Science Technology,1993,9:189-203.
    [36]S. Murali, KS. Raman, K. S. S. Murthy. Effect of Mg, Fe and Solidification Rates on the Fracture Toughness of Al-7Si-0.3Mg Casting Alloy[J]. Materials Science Engineering,1992,151A(1):1-10.
    [37]B. Closset, J. E. Gruzleski. Structure and Properties of Hypoeutectic Al-Si-Mg Alloys Modified with Pure Strontium[J]. Metallurgical TransactionA,1982,13A(6):945-951.
    [38]G. Gustafsson. T. Thorvaldsson, G. L. Dunlop. The Influence of Feand Cr on the Microstructure of Cast Al-Si-MgAlloys[J]. Metallurgical TransactionA,1986,17A(1): 45-52.
    [39]Q. G. Wang, C. H. Caceres, J. R. Griffiths. Cracking of Fe-Rich Intermetallics and Eutectic Si Particles in an Al-7Si-0.7Mg Casting Alloy[J]. AFS Transactions, 1998,106:131-136.
    [40]Almmhoflex. Firmen Information Societa Alluminio a Metalli S. P. A. (Alumetal) [J]. Milano,1980,2:168-172.
    [41]毛卫民,朱景川,俪剑等.金属材料结构与性能[M].清华大学出版社,2008.
    [42]崔忠忻.金属学与热处理[M].机械工业出版社,1989,45.
    [43]梁克中.金相原理与应用[M].北京:中国铁道出版社,1983.
    [44]姚巍,杨贵海,王建军.亚共晶Al-Si合金熔体处理工艺研究[J].铸造,2005,54(9):916-919.
    [45]P. C. Van Wiggen[J]. Light Metals,1997,771-776.
    [46]H. G, Kang, etal. Influence of cooling rate and additions of Sr and Ti-B on solidification structures of AC4B type alloy[J]. Proceeding of 3rd Asian Foundry Congress, Kyongju Korea,1995.
    [47]L. F. MONDOLFO.铝合金的组织与性能[M].北京:冶金工业出版社,1988,351-353.
    [48]HIDEO YOSHIDA, YOSHIO BABA. The role of zirconium to improve strength and stress-corrosion resistance of Al-Zn-Mg and Al-Zn-Mg-Cu alloys [J]. Transactions of the Japan Institute of Metals, Vol.23, No.10(1982):620-630.
    [49]王祝堂,张燕,江斌.钪-铝合金的新型微量合金元素[J].轻合金加工技术,Vol.28,No.1,2000,31-32.
    [50]虞觉奇,易文质,陈邦迪,陈宏鉴(编译).二元合金状态图集[M].湖南大学:上海科学技术出版社,1984.
    [51]谢优华,杨守杰等.锆元素在铝合金中的应用[J].航空材料学报,22.4(2002).
    [52]余琨,李松瑞,黎文献,肖于德.微量Sc和Zr对2618铝合金再结晶行为的影响[J].中国有色金属学报,Vol.9,No.4,1999,709-713.
    [53]Hahn G T, Rosenfield A R. ASTM STP432,1968,5.
    [54]Wagner J A, Shenoy R N. Metall TransA,1991,22A(Nov):2809.
    [55]松出好夫等.耐热铝合金在导线中的作用[J].电线电缆,1983(3):26-28.
    [56]张绍华.电工铝合金[M].电线电缆译丛,1990(2):55-57.
    [57]李元元,郭国文,罗宗强,龙雁.高强韧铸造铝合金材料研究进展[J].特种铸造及有色合金,2000(6):45-47.
    [58]H. M. Tensi, J. Hogerl. Influence of heat treatment on the Microstructure and mechanical behavior of high strength AlSi cast alloys[J]. Proceedings of The 16th ASM Heat Treating Society Conference & Exposition.19-21 March 1996, Cincinnati, Ohio: 243-247.
    [59]吕杰,刘伯操,杨凯,戴圣龙.高强韧铸造铝合金[J].铸造,2000(49):66-69.
    [60]彭晋民,钱翰城.铸态铸造铝硅合金的现状和发展[J].铸造技术,2000(6):32-34.
    [61]Takahashi, Tsuneo. Mechanism of Al-Si alloys castings modified with sodium, strontium and antimony[J]. Keikinzoku Journal of Japan Institute of Light Metals, 1982,32(10):511-51.
    [62]有色金属及其热处理编写组.有色金属及其热处理[M].北京:国防工业出版社,1981.
    [63]H. G, Kang, etal. Influence of cooling rate and additions of Sr and Ti-B on solidification structures of AC4B type alloy[J]. Proceeding of 3rd Asian Foundry Congress, Kyongju Korea,1995.
    [64]HanqueMM, Strontium Modification of Aluminum-Silicon casting alloy and factors Affecting it[J]. Met. Forum,1983, Vol.6, No.1,54-56.
    [65]刘启阳.稀土对铝硅合金凝固过程的变质作用[J].铸造,1990(4):13-17.
    [66]李金.稀土对共晶铝硅合金变质行为的探讨[J].材料科学与工艺,1993(3):59-64.
    [67]Zeng yun Jian. Influence of lanthanum on the structure and mechanical properties of luminum-silicon eutectic alloy[J]. Journal of the Chinese Rare Earth Society (English Edition), vol.8, No.3,1990,206-211.
    [68]Jacob Sylvain. Modification of Al-Si by Sodium, Antimony, and Strontium right bracket [J]. Fonerie,1977,363:13-24.
    [69]董光明,廖恒成,孙国雄等.Sb在Al-Si合金中的变质行为[J].铸造,2008,57(3).
    [70]盛险峰等.国内外Al-Si合金变质处理的研究现状[J].机械,1997,24(6):48-50.
    [71]汪沛雨,徐淑清,张新颖.Al-Si-Cu合金加人Sr复合变质剂的变质效果[J].特种铸造及有色合金,1995(2):6-8.
    [72]马自力.新型Al-Sr-RE复合细化变质剂及其在ZL102合金中的作用[J].稀有金属,2001,25(1):60-63.
    [73]KORI S A. Development of an efficient grain refiner for Al-7Si alloy [J]. Materials Science and Engineering,2000, A280:58-61.
    [74]LI J G, ZHANG B Q, WANG L, etal. Combined effect and its mechanism of Al-3wt%Ti-4wt%B and Al-10wt%Sr master alloy on microstructures of Al-Si-Cu alloy[J]. Materials Science and Engineering,2002, A328:169-176.
    [75]LIAOH, SUNG. Mutual poisoning effect between Sr and B in Al-Si casting alloys [J]. ScriptaMater,2003,48:1035-1039.
    [76]PRASADA RAO A K, DASK, MURTY B S, etal. Microstructural and wear behavior of hypoeutectic Al-Si alloy(LM25) grain refined and modified with Al-Ti-C-Sr master alloy[J]. Wear,2006,261(2):133-139.
    [77]白慧龙等.Al-Ti-C-Sr对A356合金组织和性能的影响[J].轻合金加工技术,2008,36(8):15-17.
    [78]刘启阳,李庆春,朱培械.共晶合金第二相粒状化学动力学[J].金属科学与工程,1987,(1):65-71.
    [79]张蓉,黄太文,刘林.过共晶Al-Si合金熔体中初生硅生长特性[J].中国有色金属学报,2004,14(2):262-266.
    [80]陆伟,吕先年.铝合金的热处理工艺[J].世界有色金属,2005,31(10):28-29.
    [81]李荣德,于海朋.亚共晶铝硅镁铸造合金共晶硅相在固溶处理过程中形貌变化的定量金相分析[J].铸造,1996(6):12-18.
    [82]F. H. Samuel. Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al-Si-Cu-Mg(319)alloys during solution heat treatment[J]. J. Mater. Sci.1998,33:2283-2297.
    [83]Guiqing Wang, Xiufang Bian, Weimin Wang, Junyan Zhang. Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys[J]. Mater. Lett., 2003,57:4083-4087.
    [84]贾均,桂满昌.工艺品因素对ZLAlSi6Cu2Mg合金组织的性能的影响[J].铸造,1993(1):28-31.
    [85]北冈山治,藤仓潮三,神尾彰彦.Al-Si系合金[J].轻金属,1988,38:426-446.
    [86]Chakrabarti D J. Murray JL. Eutectic Melting in Al-Cu-Mg-Si Alloys[J]. Materials Science Forum,1996,217-222.
    [87]R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan, and Z. Q. Hu:Mater. Lett.2004, vol.58(15), pp.2096-101.
    [88]王宁,石峰.电导率用于铝合金热处理工艺控制和过程检查[J].材料工程,1994(6):37-39.
    [89]D. Argo, R. A. L. Drew, and J. E. Gruzleski:Trans. Amer. Foundrymen's Society[J],1987, vol.95, pp.55-64.
    [90]MILLER M K. Atom probe tomography:analysis at the atomic level[M]. New York: Kluwer Academic,2000:35-36.
    [91]王孟君,王金亮.LD31铝合金时效工艺的研究[J].金属热处理,1998(8):24.
    [92]王祝堂.铝合金及其加工手册[M].长沙:中南工业大学出版社,1989.
    [93]许德珠、司乃钧等.金属工艺学[M].上海:高等教育出版社,1984,22.
    [94]M u lazimoglu M H, etal. The electrical conductivity of cast Al-Si alloys in the range 2 to 12.6wt pct silicon[J]. Metal TransA,1989,20A.
    [95]连法增等.材料物理性能[M].沈阳:东北大学出版社,2005,95-97.
    [96]D. K. Hale:J. Mater. Science,1976, vol.2, pp.2105-47.
    [97]A. Hellawell:Prog. Mater. Science,1973, vol.15, pp.1-76.
    [98]P. B. Crossley and I. F. Mondolfo:Modern Castings,1966, vol.49, pp.53-64.
    [99]李娅珍等,A1-Sb-Mg中间合金对A356合金显微组织的影响[J].热加工工艺,2009(01).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700