锑化物自组织量子点的MOCVD制备研究及热光伏器件结构模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锑化物材料及其构成的量子点等低维结构由于其独特性质而被广泛关注,主要应用于红外探测器,红外激光器及热光伏器件等方面。利用金属有机气相化学沉积(MOCVD)技术在GaAs衬底上制备GaSb和InSb二元化合物半导体的量子点结构,并通过研究生长参数对量子点形貌的影响,制备出低尺寸,高密度且分布均匀的锑化物量子点。对于GaSb/GaAs量子点结构,通过系统的研究各生长参数对量子点表面形貌的影响,并利用热力学及生长动力学等理论对其进行了解释。优化后的GaSb量子点密度可达1010cm2量级,高度约为4nm。由于InSb/GaAs晶格失配较大,研究了生长时间对量子点生长模式的影响,并优化了生长温度,反应室压强及气相V/III等生长参数,最后解释了不同InSb量子点形状的成因。
     首次使用Silvaco/Atlas软件设计、模拟并优化了GaSb/GaInAsSb单结及双结(叠层)热光伏电池,给出了各子电池器件参数对单结及叠层电池特性的影响,得到了优化后的器件结构。分析了工作温度及辐射温度等温度参数对单结及叠层电池输出特性的影响。
Recently, semiconductor quantum dots (QDs) with three-dimensional confinedstructure have been paid great attention for their unique electrical and opticalproperties. The density, size and uniformity of QDs have strong influence on theperformance of QDs devices. High quality quantum dots structure can be obtainedby controlling the growth parameters. A lot of work has been done on the preparationof Sb-based materials and device, but less has been done for its simulation. In thiswork, GaSb and InSb quantum dots structure are prepared by MOCVD, the effect ofgrowth parameters on quantum dot morphology is analyzed. On the other hand,Sb-based TPV device is simulated by Silvaco/Atlas software. the effects of thedevice parameters and the temperature are analyzed on the device characteristics.
     GaSb/GaAs quantum dots with high density and small size is preparaed byusing MOCVD technology. GaSb quantum dots with an average height of4.94nm,an average diameter of32.8nm and a density of2.45×1010cm-2are obtained byoptimizing growth parameter. The growth temperature, reaction pressure, gas phaseV/III, and growth process parameters are analyzed systematically for growth GaSbquantum dots. The thermodynamics theory and the property of organic source areemployed to explain the dependence of surface morphology of GaSb QDs on growthparameter. Whether the growth temperature is too high or too low will cause a largesize of quantum dot with the decreased density. The reaction pressure affects thequantum dot morphology by growth rate. With the increasing of V/III, the density ofquantum dots reaches a maximum and then drops down. The uniformity of quantumdots is affected by interruption time and loops.
     Then, InSb nanodots are prepared by MOCVD. The influence of growthparameters on the morphology of InSb nanodots is studied. Since the In source issolid, and the lattice mismatch between InSb and GaAs is14%. It is difficult toprepare InSb quantum dots with high density. InSb nanodots with small size andhigh density are growth at475C. The InSb nanodots are dome-like at high pressure.InSb nanodots with different growth time were verified in the effect of differentgrowth modes of quantum dot morphology.
     Finally, the GaSb/GaInAsSb single and tandem thermophotovoltaic (TPV) cellsare simulated using Silvaco/Atlas software. The effect of devices parameters and thetemperature on the output characteristics of the TPV device is studied. Thesimulation of tandem TPV cells with optimized device parameters is carried out. Forsingle TPV cells, P-type of GaInAsSb material is the main region for light absorption,its minority mobility is much larger than the majority mobility which improve theefficiency of collecting photon-generated carriers. The influence of thickness on thecharacteristic of the TPV cells is mainly on increasing the optical absorption areaand the junction width; the effect of doping concentration for the TPV cell is mainlyon the composite mechanism and less mobility and other aspects.
     The tandem TPV cells consist of the GaSb homojunction as the top cell andGaInAsSb homojunction as the bottom cell. Based on the simulation results, withemitter and base thickness of the top cell increasing, Pmaxof the tandem cellsdecreases. For bottom cell, Pmaxincreases rapidly as the base thickness of the bottomcell increases. For the effects of carrier concentration on Pmaxof the top cell and thebottom cell, with base carrier concentration increasing, Pmaxdeclines overall. In thetop cell, Pmaxis somewhat influenced by the emitter carrier concentration, but it isstrongly influenced by base carrier concentration. Pmaxdecreases rapidly with basecarrier concentration increasing. In the bottom cell, Pmaxdecrease rapidly with theincrease of emitter concentration. The simulation is carried out with deviceparameters fixed. Pmaxof the tandem TPV cell is almost2times that of thesingle-cells.
     Effects of radiator and working temperature on properties of TPV device are simulated. Along with the increase of the temperature of radiator, the optical powerdensity and the spectrum range increases, this will increase the Pmaxand Isc of TPVcells. The high working temperature reduces the Vocof TPV cells by carrierconcentration increasing.
引文
[1] J. D. Kim, D. Wu, J. Wojkowski, et al. Long-wavelength InAsSbphotoconductors operated at near room temperatures (200–300K)[J]. Appl.Phys. Lett.,1996,68:99.
    [2] H.R.Jen, K. Y. Ma et al. Long-range order in InAsSb[J]. Appl. Phys. Lett.,1989,54,1154.
    [3] D.M.Folltaedt et al.[J]. J. Electron Mater,1995,24:819.
    [4] D.S.Cao, Z.M.Fang, et al. Organometallic vapor-phase epitaxial growth ofAlxGa1xSb and AlxGa1xAsySb1y[J].J.Crystal Growth,1991,113:441.
    [5] T. Koljonen, M.Sopanen, et al. Metalorganic vapor phase epitaxial growth ofAlGaSb and AlGaAsSb using all-organometallic sources[J]. J. Crystal Growth,1996,169:417.
    [6]彭英才,王英民,李星文,傅广生.半导体超薄层微结构的外延生长技术[J].真空科学与技术,1996,16(3):185.
    [7] Tommila J, Tukiainen A, Viheri l J, Schramm A, Hakkarainen T, Aho A,Stenberg P, Dumitrescu M, Guina M. Nanoimprint lithography patterned GaAstemplates for site-controlled InAs quantum dots[J]. Journal of Crystal Growth,2011,323(1):183.
    [8]张珂.光子带隙热库中原子的发光特性研究[D].长春:吉林大学物理学院,2008.
    [9] Y.Arakawa and H.Sakaki. Multidimensional quantum well laser and temperaturedependence of its threshold current[J]. Appl. Phys. Lett.,1982,40:939.
    [10]A. Dunbar, U. Bangert, P. Dawson, et al. Structural, compositional and opticalproperties of self-organised Ge quantum dots[J]. Phys. Stat. Sol.(b),2001,224(1):265.
    [11] N. Kistaedter, N. N. Ledentsov, M. Grundman et al. Low threshold, large ToInjection laser emission from (InGa)As quantum dots[J]. Electron. Lett.,1994,30:1416.
    [12] V.M.Ustinov, A.E.Zhukov, A.Y.Egorov. Extremely low thresholdAlGaAs/InGaAs quantum dot injection laser[J]. Inst. Phys. Conf.Series,1997,155:557.
    [13] I.R Sellers, H.Y Liu, Groom K.M.et al.1.3μm InAs/GaAs multilayerquantum-dot laser with extremely low room-temperature threshold currentdensity[J]. Electronics Letters,2004,40(22):1412.
    [14]李林.高密度、长波长InGaAs量子点材料的制备与表征[J].高等学校化学学报.2010,03-0452-04.
    [15] D. Guimard, et al. Ground state lasing at1.30μm from InAs/GaAs quantum dotlasers grown by metal–organic chemical vapor deposition[J]. Nanotechnology,2010,21:105604.
    [16] Rajesh M., et al., Effect of Antimony on the Photoluminescence Intensity ofInAs Quantum Dots Grown on Germanium-on-Insulator-on-Silicon Substrate[J].Applied Physics Express,2011,4(4):045201.
    [17] Yang T, Tatebayashi J, Tsukamoto S, Nishioka M and Arakawa Y. Narrowphotoluminescence linewidth (    [18] Joyce P B, Krzyzewski T J, Bell G R, Jones T S and Murray R. Optimizing thegrowth of1.3μm InAs/GaAs quantum dots[J]. Phys. Rev. B,2001,64:235317.
    [19] Qiu Y, Gogna P, Forouhar S, Stintz A and Lester L F. High-performance InAsquantum-dot lasers near1.3μm[J]. Appl. Phys. Lett.2001,79:3570
    [20] Chang F Y, Wu C C and Lin H H. Effect of InGaAs capping layer on theproperties of InAs/InGaAs quantum dots and lasers[J]. Appl. Phys. Lett.,2003,82,4477.
    [21] J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G.Monte, and M. Hopkinson. Fine structure of charged and neutral excitons inInAs-Al0.6Ga0.4As quantum dots[J]. Phys. Rev. B,2002,66:153316.
    [22] B. Urbaszek, R. J. Warburton, K. Karrai, B. D. Gerardot. P. M. Petroff, and J, M.Garcia, Fine Structure of Highly Charged Excitons in Semiconductor QuantumDots [J]. Phys. Rev. Lett.,2003,90:247403.
    [23] Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p–nJunction Solar Cells[J]. J. Appl. Phys.1961,32:510.
    [24] Nozik, A. J. Quantum Dot Solar Cells[J]. Physica E2002,14:115.
    [25] Nozik, A. J. Spectroscopy and Hot Electron Relaxation Dynamics inSemiconductor Quantum Wells and Quantum Dots[J]. Annu. Rev. Phys. Chem.2001,52,193–231.
    [26] Schaller R. D. and Klimov V. I. High Efficiency Carrier Multiplication in PbSeNanocrystals Implications for Solar Energy Conversion[J]. Phys. Rev. Lett.2004,92,186601.
    [27] Beard, M. C. Knutsen, K. P. Yu, P. R. Luther, J. M. Song, Q. Metzger, W. K.Ellingson, R. J.; Nozik, A. J. Multiple Exciton Generation in Colloidal SiliconNanocrystals[J]. Nano Lett.2007,7,2506-2512.
    [28] Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as LightHarvesters[J], J. Phys. Chem. C,2008,112,18737-18753.
    [29] Brown, P.; Kamat, P. V. Quantum Dot Solar Cells. Electrophoretic Deposition ofCdSe–C60Composite Films and Capture of Photogenerated Electrons withnC60Cluster Shell[J], J. Am. Chem. Soc.,2008,130,8890-8891.
    [30]Nairn, J. J. Shapiro, P. J. Twamley, B. Pounds, T. von Wandruszka, R. Fletcher, T.R. Williams, M. Wang, C. Norton, M. G. Preparation of Ultrafine ChalcopyriteNanoparticles via the Photochemical Decomposition of MolecularSingle-Source Precursors[J], Nano Lett.2006,6,1218-1223.
    [31] Choi, S. H. Kim, E. G. Hyeon, T. One-Pot Synthesis of Copper-Indium SulfideNanocrystal Heterostructures with Acorn, Bottle, and Larva Shapes[J], J. Am.Chem. Soc.2006,128,2520-2521.
    [32] Peng, H.; Schoen, D. T.; Meister, S.; Zhang, X. F.; Cui, Y. Synthesis and PhaseTransformation of In2Se3and CuInSe2Nanowires[J], J. Am. Chem. Soc.2007,129,34-35.
    [33] Pan, D.; An, L.; Sun, Z.; Hou, W.; Yang, Y.; Yang, Z.; Lu, Y. Synthesis ofCu–In–S Ternary Nanocrystals with Tunable Structure and Composition[J], J.Am. Chem. Soc.2008,130,5620-5621.
    [34] Allen, P. M.; Bawendi, M. G. Ternary I–III–VI Quantum Dots Luminescent inthe Red to Near-Infrared[J], J. Am. Chem. Soc.2008,130,9240–9241.
    [35] Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E.A.;Agrawal, R.; Hillhouse, H. W. Development of CuInSe2Nanocrystal andNanoring Inks for Low-Cost Solar Cells[J], Nano Lett.2008,8,2982–2987.
    [36] Koo, B.; Patel, R. N.; Korgel, B. A. Synthesis of CuInSe2Nanocrystals withTrigonal Pyramidal Shape[J], J. Am. Chem. Soc.2009,131,3134–3135.
    [37] Hideki Gotoh, Hidehiko Kamada, Tadashi Saitoh, Hiroaki Ando, and JiroTelnrnyo. Effects of biexcitons on exciton decoherence processes inInxGa1-xAs quantum dots[J]. Phys.Rev.B,2004,69,155328
    [38]. W.T.Tsang, T.H.Chiu, D.W.Kisker and J.A.Dizenberger, Molecular beamepitaxial growth of In1xGaxAs1ySbylattice matched to GaSb [J].Appl.phys.lett.1985,46,283.
    [39] T.H.Chiu, J.L.Zyskind, W.T.Tsang.[J] J.Electron.Mater,1987,16,57.
    [40]. M.J.Cherng and H.R.Jen, C.A.Larsen and G.B.Stringfellow. Complex flowphenomena in MOCVD reactors: I. Horizontal reactors[J]. J.Cryst.Growth.1986,77,108.
    [41]. A.N. Baranov, A.N. Imenkov, M.B. Mikhailova, Yu.P.Yakovlev,[J] Proc. SPIE1992,78,1371.
    [42]. J. Lucas, Interferometric studies of VT relaxation times in a regime of stronglaser excitation[J]. Infrared Phys.1985,25,277.
    [43]. Choi H K and Eaglash S J High-efficiency high-power GaInAsSb-AlGaAsSbdouble-heterostructure lasers emitting at2.3μm [J]. IEEE J. Quantum Electron.1991,27,1555.
    [44] Coutts TJ, A review of progress in thermophotovoltaic generation ofelectricity[J]. Renewable and Sustainable Energy Reviews,1999,3:77-184.
    [45] Kolm H H. Solar-battery power source quarterly progress report solid stateresearch[M]. MIT-Lincoln Laboratory: USA,1956.
    [46] Marti D, et al., Development of GaSb photoreceiver arrays for solarthermophotovoltaic systems [J]. Journal of Solar EnergyEngineering-Transactions of the Asme.2007,129:283-290.
    [47] Su N, et al., Characterization and modeling of InGaAs/InAsPthermophotovoltaic converters under high illumination intensities [J]. Journal ofApplied Physics.2007,101:064511.
    [48] Alfred Schock, Chuen T, Effect of revised data base and analysis onperformance of radioisotope thermophotovoltaic converter[J]. Acta Astronautica.1997,40:129-136.
    [49] Robert J. Noble. Radioisotope electric propulsion of sciencecraft to the outersolar system and ear-interstellar space[J]. Acta Astronautica.1999,44:193-199.
    [50] Robert G. Lange, Wade P. Carroll, Review of recent advances of radioisotopepower systems [J]. Energy Conversion&Management.2008,49:393-401.
    [51] B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, H.R. Tschudi, Characterisation ofrare earth selective emitters for thermophotovoltaic applications [J]. SolarEnergy Materials&Solar Cells.2002,73:221-234.
    [52] Fraas L,et al.,Thermophotovoltaics for combined heat and power using lowNOx gas fired radiant tube burners [C]. The5th Conference onThermophotovoltaic Generation of Electricity, Rome, Italy,2003.
    [53] Yugami H, Sasa H,Yamaguchi M, Thermophotovoltaic systems for civilian andindustrial applications in Japan [J]. Semiconductor Science and Technology.2003,18:239-246.
    [54] Andreev YM, Khvostikov VP, Khvostikova OA, Rumyantsev VD, Gazarjan PY,Vlasov AS, Solar thermophotovoltaic converters: efficiency potentialities[C].The6th Conference on Thennophotovoltaic Generation of Electricity, Freiburg,Germangy,2004.
    [55] Colangelo, G., A. de Risi, D. Laforgia, Experimental study of a burner with hightemperatureheat recovery system for TPV applications [J]. Energy Conversionand Management.2006,47:1192-1206.
    [56] Wilhelm Durisch, BemdBitnar, Novel thin film thermophotovoltaic system[J].Solar Energy Materials&Solar Cells.2010,94:960-965.
    [57] COUTTS T J. An overview of thermophotovoltaic generation of electricity [J].Sol. Energy Mater. Sol. Cells.,2001,66:443-452.
    [58] HORNE W E, MORGAN M D, HORNE W Paul, et al. Frequency SelectiveSurface Bandpass Filters Applied To Thermophotovoltaic Generators.Thermophotovoltaic Generation of Electricity:6th International Conference onThermophotovoltaic Generation of Electricity:Freiburg, June,2004[C]. AIPConf. Proc.,2004,738:189-197.
    [59] FRASS LEWIS, BALLANTYNE RUSS, HUI SHE, et al. Commercial GaSbcell and circuit development for the Midnight Sun TPV stove.Thermophotovoltaic Generation of Electricity:4th NREL Conference: Denver,October,1998[C]. AIP Conf. Proc.,1999,460:480-487.
    [60] L M Fraas,Huang Han Xiang, She Hui, et al.,Development of a small aircooled"midnight sun" thermophotovoltaic electric generator[C]. The2nd Conferenceon Thermophotovoltaic Generation of Electricity, Colorado Springs, USA,1995.
    [61] Aleksandr S. Kushch, Steven M. Skinner, Richard Brennan,Development of acogenerating thermophotovoltaic powered combination hot waterheater/hydronic boiler[C]. The3rd Conference on ThermophotovoltaicGeneration of Electricity. Colorado Springs, USA,1997.
    [62] L M Fraas, J E Avery, W E Daniels,H X Huang,TPV tube generator forapartment building and industrial furnace applications[C]. The5th Conferenceon Thermophotovoltaic Generation of Electricity, Rome, Italy,2003.
    [63] W.M. Yang, S.K. Chou, Design, fabrication, and testing of a prototypemicrothennophotovoltaic system [J]. Journal of microelectromechanicalsystems.2004,13;851-856.
    [64] Ole M. Nielsen, Leonel R. Arana, Chelsey D. Baertsch, A thermophotovoltaicmicro-generator for portable power applications[C]. The12th internationalconference on solid state sensors, actuators and Microsystems, Boston, USA,2003.
    [65] Lars Broman, Jorgen Marks, Cogeneration of electricity and heat fromcombustion of wood poweder utilizing thermophotovoltaic conversion[J]. AIPConference Proceedings.1995,321:133-138.
    [66] W.E. Home, M.D. Morgan, V.S. Sundaram, T. Butcher,500Watt diesel fueledTPV portable power supply[C]. The5th Conference on ThermophotovoltaicGeneration of Electricity, Rome, Italy,2003.
    [67] Narihito Nakagawa, Hideki Ohtsubo, Yoshiharu Waku, Hiroo Yugami, Thermalemission properties of AlsOs/Ei^AlsOu eutectic ceramics [J]. Journal of theEuropean Ceramic Society.2005,25:1285-1291.
    [68] Yueh-Heng Li, Yung-Sheng Lien, Yei-Chin Chao, Derek Dunn-Rankin,Performance of a mesoscale liquid fuel-film combustion-driven TPV powersystem[J]. Progress in Photovoltaics: Research and Applications.2009,17:327-336.
    [69] SHOCK A, OR C, KUMAR V, et al. Small radioisotope thermophotovoltaic(RTPV) generators[C]. Thermophotovoltaic Generation of Electricity:2ndNREL Conference: Colorado Springs, July,1995. AIP Conf. Proc.,1994,358:81-97.
    [70] YUGAMI HIROO, SASA HIROMI, YAMAGUCHI MASAFUMI.Thermophotovoltaic systems for civilian and industrial applications in Japan[J].Semicond. Sci.Technol,2003,18: S239-S246
    [71] ANDREEV V M, KHVOSTIKOV V P, KHVOSTIKOVA O A, et al. Solarthermophotovoltaic system with high temperature tungsten emitter.31th IEEEPhotovoltaic Specialist Conference and Exhibition, Orlando, January3-7,2005[C]. Conference record of the thirty-first IEEE.
    [72] ANDREEV V M, KHVOSTIKOV V P, KHVOSTIKOVA O A, et al. SolarThermophotovoltaic Converters: Efficiency Potentialities. ThermophotovoltaicGeneration of Electricity:6th NREL Conference: Freiburg, June,2004[C]. AIPConf. Proc.,2004,738:96-104.
    [73] ANDREEV V M, GRILIKHES V A, KHVOSTIKOV V P, et al. ConcentratorPV modules and solar cells for TPV systems[J]. Sol. Energy Mater. Sol. Cells.,2004,84:3-17.
    [74] KHVOSTIKOV V P, KHVOSTIKOVA O A, GAZARYAN P Y, et al.Photovoltaic Cells Based on GaSb and Ge for Solar and ThermophotovoltaicApplications[J]. J. Sol. Energ.,2007,129:291-297.
    [75] ANDREEV V M, VLASOV A S, KHVOSTIKOV V P, et al. SolarThermophotovoltaic Converters Based on Tungsten Emitters[J]. J. Sol. Energ.,2007,129:298-303.
    [76] STONE KENNETH W, CHUBB DONALD L, WILT DAVID M, et al. Testingand modeling of a solar thermophotovoltaic power system. ThermophotovoltaicGeneration of Electricity:2nd NREL Conference: Colorado Springs, July24-27,1994[C]. AIP Conf. Proc.,1994,358:199-209.
    [77] Bauer T, Forbes I, Pearsall N,The potential of thermophotovoltaic heatrecovery for the UK industry[J]. Int J Ambient Energy.2004,25:19-25.
    [78] JX Crystals, Inc. Glass project fact sheet: Thermophotovoltaic Electric PowerGeneration Using Exhaust Heat, September2001[R]. Office of IndustrialTechnologies Energy Efficiency and Renewable Energy-U.S. Department ofEnergy, Washington, DC.
    [79] BITNAR B, Silicon, germanium and silicon/germanium photocells forthermophotovoltaics applications[J]. Semicond. Sci. Technol.,2003,18:S221-S227.
    [80] SULIMA O V, BETT A W, MAUK M G, et al. Diffusion of Zn in TPV materials:GaSb, InGaSb, InGaAsSb and InAsSbP. Thermophotovoltaic Generation ofElectricity, Fifth Conference: Rome, September,2002[C]. AIP Conf. Proc.,2003,653:402-413.
    [81] GEVORKYAN V A, AROUTIOUNIAN V M, GAMBARYAN K M, et al.Liquid-phase electro-epitaxial growth of low-bandgap p-InAsPSb/n-InAs andp-InAsP/n-InAs diodes heterostructures for thermo-photovoltaic application[J].Thin-Solid Films,2004,415-452:124-127.
    [82] HEINZEL A, BOERNER V, GOMBERT A, et al. Microstructured tungstensurfaces as selective emitters. Thermophotovoltaic Generation of Electricity:4th NREL Conference: Denver, October,1998[C]. AIP Conf. Proc.,1999,460:191-196.
    [83] HORNE W E, MORGAN M D, SUNDARAM V S,500Watt Diesel FueledTPV Portable Power Supply. Thermophotovoltaic Generation of Electricity:Fifth Conference on Thermophotovoltaic Generation of Electricity: Rome,September2002[C]. AIP Conf. Proc.,2003,653:91-100.
    [84] FLEMING J G, LIN S Y, KADY I E, et al. All-metallic three-dimensionalphotonic crystals with a large infrared bandgap[J]. Nature,2002,417:52-55.
    [85] BETT A W, SULIMA O V. GaSb photovoltaic cells for applications inTPVgenerators[J]. Semicond. Sci.Technol.,2003,18: S184-S190.
    [86] AICHER T, K STNER P, GOPINATH A, et al. Development of a Novel TPVPower Generator. Thermophotovoltaic Generation of Electricity:6th NRELConference: Freiburg, January,2004[C]. AIP Conf. Proc.,2004,738:71-78.
    [87] FRAAS L M, AVERY J E, DANIELS W E, et al. TPV Tube Generators forApartment Building and Industrial Furnace Applications. ThermophotovoltaicGeneration of Electricity:5th NREL Conference: Rome, September,2002[C].AIP Conf. Proc.,2003,653:38-48.
    [88] FRAAS L, AVERY J, MALFA E, et al. Thermophotovoltaics for CombinedHeat and Power Using Low NOx Gas Fired Radiant Tube Burners.Thermophotovoltaic Generation of Electricity:5th NREL Conference: Rome,September,2002[C]. AIP Conf. Proc.,2003,653:61-70.
    [89] QIU K, HAYDEN A C S. Electric Power Generation Using Low Bandgap TPVCells in a Gas-fired Heating Furnace. Thermophotovoltaic Generation ofElectricity:5th NREL Conference: Rome, September,2002[C]. Melville: AIPConf. Proc.,2003,653:49-58.
    [90] MORRISON ORION, SEAL MICHAEL, WEST EDWARD, CONNELLYWILLIAM, et al. Use of a thermophotovoltaic generator in a hybrid electricvehicle. Thermophotovoltaic Generation of Electricity:4th NREL Conference:Denver, October,1998[C]. AIP Conf. Proc.,1999,460:488-496
    [91] WANG C A. Antimonide-based III–V thermophotovoltaic devices.Thermophotovoltaic Generation of Electricity:6th International Conference onThermophotovoltaic Generation of Electricity:Freiburg, June,2004[C]. AIPConf. Proc.738(2004)255-266.
    [92] DASHIELL M W, BEAUSANG J F, EHSANI H, et al. Quaternary InGaAsSbThermophotovoltaic Diodes [J]. IEEE Trans. Electron. Dev.,2006,53:2879-2891.
    [93] HUANG R K, RAM R J, MANFRA M J, et al. Heterojunctionthermophotovoltaic devices with high voltage factor[J]. J. Appl. Phys.,2007,101:046102.
    [94] HITCHCOCK C, GUTMANN R, BORREGO J, et al., GaInSb and GaInAsSbthermophotovoltaic device fabrication and characterization.Thermophotovoltaic Generation of Electricity:3rd International Conference onThermophotovoltaic Generation of Electricity: Colorado, May,1997[C].Woodbury: AIP Conf. Proc.1997,401:89-103.
    [95] CHOI H K, WANG C A, TURNER G W, et al. High-performance GaInAsSbthermophotovoltaic devices with an AlGaAsSb window[J]. Appl.Phys.Lett.1997,71:3758–3760.
    [96] WANG C A, CHOI H K, OAKLEY D C, et al. Extending the cutoff wavelengthof lattice-matched GaInAsSb/GaSb thermophotovoltaic devices.Thermophotovoltaic Generation of Electricity:4th NREL Conference: Denver,October,1998[C]. Woodbury: AIP Conf. Proc.,1999,460:256–265.
    [97] KHALFIN V B, GARBUZOV D Z, LEE H, et al. Interfacial recombination inIn(Al)GaAsSb/GaSb thermophotovoltaic cells. Thermophotovoltaic Generationof Electricity:4th NREL Conference: Denver, October,1998[C]. AIP Conf.Proc., Woodbury:1999,460:247–277.
    [98] HITCHCOCK C W, GUTMANN R J, EHSANI H, et al. Ternary andquaternary antimonide devices for thermophotovoltaic applications[J]. J. Cryst.Growth.,1998,195:363–372.
    [99] SHELLENBARGER Z A, TAYLOR G C, SMELTZER R K, et al. Highperformance InGaAsSb TPV cells via multiwafer OMVPE growth.Thermophotovoltaic Generation of Electricity: Fifth Conference onThermophotovoltaic Generation of Electricity: Rome, September2002[C].Melville: AIP Conf. Proc.,2003,653:314–23.
    [100] SHELLENBARGER Z A, MAUK M G, DI N L, et al. Recent progress inInGaAsSb/GaSb TPV devices.25th IEEE Photovoltaic Specialist Conference,Washington, D.C., May13-17,1996[C]. NewYork: IEEE,1996. p81–84.
    [101] BOUGNOT G, DELANNOY F, FOUCARAN A, et al. Growth of GaInAsSballoys by MOCVD and characterization of GaInAsSb/GaSb p-n photodiodes[J].J. Electrochem. Soc.1988,135:1783–1788.
    [102] CHARACHE G W, EGLEY J J, DANIELSON L R, et al. Current status oflow-temperature radiator thermophotovoltaic devices.25th IEEE PhotovoltaicSpecialist Conference, Washington, D.C., May13-17,1996[C]. NewYork:IEEE,1996. p137–140.
    [103] SOUTH J T, SHELLENBARGER Z A, MAUK M G, et al.1997AlxGa1-xSb window layers for InGaAsSb/GaSb thermophotovoltaic cells.Thermophotovoltaic Generation of Electricity:3rd International Conference onThermophotovoltaic Generation of Electricity: Colorado, May,1997[C].Woodbury: AIP Conf. Proc.1997,401:545–553.
    [104] SHELLENBARGER Z A, MAUK M G, COX J A, et al. Improvements inGaSb-based thermophotovoltaic cells. Thermophotovoltaic Generation ofElectricity,3rd Conference: Springs, May18-21,1997[C]. Woodbury: AIP Conf.Proc.,1997,401:117-128.
    [105] SULIMA O V, BECKERT R, BETT A W, et al. InGaAsSb photovoltaic cellswith enhanced open-circuit voltage. Proc.3rd World Conf. on PhotovoltaicSolar Energy: Osaka, May11-18,2003[C]. Anchorage: IEEE,2004,1:199-204.
    [106] Seki Y, Tanno K, Lida K, Ichiki E. Properties of epitaxial GaAs layers from aTriethylgallium and Arsine system[J]. J Electrochem Soc.,1975,122:1108-1112.
    [107] Dupuis R D, Dapkus P D. Continuous room temperature operation ofGaAlAs-GaAs DH laser grown by MOCVD[J]. Appl Phys Lett.,1978,32:406-407.
    [108]李香萍. ZnO薄膜的MOCVD制备及ZnO/Si发光器件研究[D].长春:吉林大学.2009.
    [109] Stringfellow G B. hermodynamic aspects of organometallic vapor phaseepitaxy [J]. J Crystall Growth.,1983,62:225-229.
    [110]彭新村.中红外InAsSb材料的MOCVD生长特性研究[D].长春:吉林大学电子科学与工程学院,2007.
    [111] Stringfellow G. B. Organometallic Vapor-Phase Epitaxy: Theory andPractice[M]. Second. Academic Press,1999.
    [112]周春峰. LEC砷化镓单晶生长技术[D].天津:天津大学,2009.
    [113]王可定,徐福培,计算机模拟及其应用[M].东南大学出版,1997.
    [114]阮刚,集成电路工艺和器件的计算机模拟—IC TCAD技术概论[M].复旦大学出版社,2007.
    [115] ATLAS User’s Manual. Vols.1-2, Silvaco International,2010
    [116] LI S H, LARSEN C A, STRINGFELLOW G B, et al. Decomposition studiesof triisopropylantimony and triallylantimony[J]. J. Electron. Mater,1991,20:457-463
    [117] AARDVARK A, MASON N J, WALKER P J. The growth of antimonides byMOVPE[J]. Prog. Crystal Growth Character. Mater.,1997,35:207-241.
    [118] István Daruka and Albert-László Barabási. Dislocation Free Island Formationin Heteroepitaxial Growth: An Equilibrium Study[J]. Appl Phys Lett.1997,79(16),1.
    [119] QIU Y, UHL D. Effect of thin GaAs interface layer on InAs quantum dotsgrown on InGaAs/InP using metalorganic vapor phase epitaxy[J]. J. Cryst.Growth.,2003,257:225-230.
    [120]陆大成,段树坤.金属有机化合物气相外延基础及应用[M].北京:科学出版社,2009.
    [121] Daruka I, Tersoff J, Barabasi A L, Shape Transition in Growth of StrainedIslands[J]. Phys Rev Lett.,1999,82,2753.
    [122] Werner Seifert, Niclas Carlsson, Jonas Johansson, Mats-Erik Pistol, LarsSamuelson. In situ growth of nano-structures by metal-organic vapour phaseepitaxy[J]. Journal of Crystal Growth.,1997,170:39-46.
    [123] Wang T, Forchel A, Growth of self-organized GaSb islands on a GaAs surfaceby molecular beam epitaxy[J]. J. Appl. Phys.1999,85(5):2591-2594.
    [124] Madelung Otfried. Semiconductors: Data Handbook[M].3rd ed. Springer,2004.
    [125] Wang J P, Zhou W M, Wang C Y, et al., Morphologies of epitaxial islands on alattice-misfitted substrate[J]. Chin Phys B.2008;17,3008.
    [126] STRINGFELLOW G B, SHURTLEFF J K, LEE R T, et al. Surface processesin OMVPE-the frontiers[J]. J. Cryst. Growth.,2000,221:1-11.
    [127] MATSUURA T, MIYAMOTO T, KAGEYAMA T, et al. Surfactant Effect ofSb on GaInAs Quantum Dots Grown by Molecular Beam Epitaxy[J]. Jpn. J.Appl. Phys.,2004,43:605-607.
    [128] P. M ck, G. R. Booker N.J. Mason, R. J. Nicholas, E. Aphandery, T. Topuria,N. D. Browning. MOVPE grown self-assembled and self-ordered InSb quantumdots in a GaSb matrix assessed by AFM, CTEM, HRTEM and PL[J]. MaterialsScience and Engineering.80(2001):112-115.
    [129] Bierwagen O, Masselink W T. Self-organized growth of InAs quantum wiresand dots on InP (001): The role of vicinal substrates[J]. Appl. Phys. Lett.2005,86:113110.
    [130] Fuster D, Gonzalez M U, González L, et al. Size control of InAs/InP(001)quantum wires by tailoring P As exchange[J]. Appl. Phys. Lett.2004,85:1424-1426.
    [131] Kawaguchi K, Ekawa M, Aakiyama T, et al. Surfactant-related growth ofInAs1xSbx quantum structures on InP(001) by metalorganic vapor-phaseepitaxy[J]. J. Cryst. Growth2006,291:154-159.
    [132] Qiu Y, Uhl D. Self-assembled InAsSb quantum dots on (001) InP substrates[J].Appl. Phys. Lett.2004,84:1510-1512.
    [133] Zinke-allmang M, Stoyan Stoyanov S. Surface Diffusion Coefficients onStranski-Krastanov Layers[J]. Jpn. J. Appl. Phys.1990,29:1884-1887.
    [134] X. Zhang, et al. A transmission electron microscopy and reflection high-energyelectron diffraction study of the initial stages of the heteroepitaxial growth ofInSb on GaAs (001) by molecular beam epitaxy[J]. J. Appl. Phys.1990,67:800-806.
    [135] Anikeev S, Donetsky D, Belenky G, et al. Measurement of the Augerrecombination rate in p-type0.54eVGaInAsSb by time-resolvedphotoluminescence[J]. Appl. Phys. Lett.2003,83:3317-3319.
    [136] MOON R L, ANTYPAS G A, JAMES L W. Bandgap and lattice constant ofGaInAsP as a function of alloy composition[J]. Journal of Electronic Materials.1974,3,635-644.
    [137]刘超,增一平.锑化物半导体材料与器件应用研究进展[J].半导体技术,2009,34:525-530.
    [138] MARTíN D, ALGORA C. Temperature-dependent GaSb material parametersfor reliable thermophotovoltaic cell modeling[J]. Semicond Sci.Technol.2004,19:1040-1052.
    [139] Stollwerck G, Sulma O V, Bett A W, et al. Characterization and simulation ofGaSb device-related properties[J]. IEEE Trans. Electron. Dev.2000,47:448-447.
    [140]Caughey D M, Thomas R E. Carrier Mobilities in Silicon Empirically Relatedto Doping and Field[J]. Proc. IEEE.1967,55:2192-2193.
    [141]Sotoodeh M, Khalid A H, Rezazadeh A A. Empirical low-field mobility modelfor III–V compounds applicable in device simulation codes[J]. J. Appl. Phys.2000,87:2890-2900.
    [142] Borrego J M, Saroop S, Gutmann R J, et al. Photon recycling andrecombination processes in0.53eV p-type InGaAsSb[J]. J. Appl. Phys.2001,89:3753-3759.
    [143] Rogalski A, Ciupa R, Larkowski W. Near room-temperature InAsSbphotodiodes: Theoretical predictions and experimental data[J]. Solid-StateElectron.1996,39:1593-1600.
    [144] Tian Y, Zhou T, Zhang B. The effect of Auger Mechanism on n+-p GaInAsSbinfrared photovoltaic detectors[J]. IEEE Trans. Electron. Dev.1999,6:656-660.
    [145] Kumar R J, Gutmann R J, Borrego J M, et al. Recombination Parameters forAntimonide-Based Semiconductors Using the Radio FrequencyPhotoreflectance Technique[J]. J. Electron. Mater,2004,33:94-100.
    [146] Adachi S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb,AlxGa1-xAs, and In1-xGaxAsyP1-y[J]. J. Appl. Phys.1989,66:6030-6040.
    [147] Adachi S. Optical dispersion relations for Si and Ge[J]. J. Appl. Phys.1989,66:3224-3231.
    [148] K. L. Janssens, B. Partoens, and F. M. Peeters, Single and vertically coupledtype-II quantum dots in a perpendicular magnetic field: Exciton ground-stateproperties[J]. Phys. Rev. B,2002,66,075314.
    [149] Yoshiaki Nakamura, Tomohiro Sugimoto, Masakazu Ichikawa, Formation andoptical properties of GaSb quantum dots epitaxially grown on Si substratesusing an ultrathin SiO2film technique[J]. J. Appl. Phys.,2009,105,014308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700