市政污泥在超临界甲醇条件下酯化制油研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺和环境问题是当今世界面临的两大难题,能源短缺尤其是石油短缺阻碍了社会经济的快速发展。污泥来源于污水处理过程,其处理处置已成为世界性的难题。寻找新的处理处置方法,使其朝着无害化、减量化、稳定化、资源化方向发展成了一个日益关注的问题。污泥油化技术是很有前途的污泥资源化处置方式之一,在污泥无害化的基础上还能够得到和石油特性相似的生物油而受到广泛关注。本文采用间歇式高温高压反应釜对市政污泥在超临界甲醇条件下的油化行为进行了研究,并利用常压蒸馏法对反应生成液进行加工处理,采用量热仪、元素分析仪等仪器对生物油进行了全面分析。
     本文研究了市政污泥在超临界甲醇条件下的油化行为。主要考察了温度、停留时间、反应压力、污泥/甲醇配比、甲醇填充率、催化剂及催化剂浓度对污泥油化过程的影响。温度和停留时间是影响污泥油化反应最重要的两个因素。当温度控制在360℃,停留时间80min时,制得的生物油产量最高,其产油率可达44.7%。随着温度和压力的增加,产油量是提高的,但并不是温度越高压力越大,对反应就越有利,试验时要谨慎控制温度和压力。甲醇用量和污泥/甲醇的固液比都有个最优值,当甲醇用量为400mL,污泥和甲醇的固液比在1/20时,污泥和甲醇在超临界条件下的协同作用是较好的。加入催化剂能有效的促进污泥生物油的生成,碱性催化剂KOH有明显的催进效果。
     通过对制得的生物油的燃料性质与燃料油进行比较,除闪点、硫含量和灰分不符合标准外,基本可以满足4#燃料油的标准要求。生物油的稳定性差、固体颗粒含量高、含有一定量的金属离子,这些物质的存在影响生物油的储运和应用,需要对生物油进行改进性加工来消除固体颗粒物和金属离子等的影响,以得到高品质油品。污泥制得生物油的同时,会生成一定量的固体残炭,尽管其吸附能力较差,但由于来源便宜,因而可以作为一种廉价吸附剂来使用。
     最后通过对污泥油化过程进行能耗分析和经济效益核算,得出在不考虑反应釜热效率的前提下,当污泥含水率低于65%时,生物油的价值可以满足油化过程的能耗费用,而且还能盈利,而本实验所用污水含水率为82%,因此,在实验前需设法降低污泥含水率以提高污泥油化技术的经济效益。
Currently, the world is confronted with two difficult issuses as energy shortage and environmental problem. Energy shortage, especially the fossil fuel shortage, has impeded the development of the social economic. Sewage sludge is generated from the wastewater treatment process, the treatment and the disposal of which has become a worldwide problem. Finding new treatment and disposal ways to reduction, stability, development of resources technology methods has become a growing concern. The main experimental apparatus is an intermittent autoclave. Bio-oil is produced from sewage sludge in supercritical methanol. The liquid from reaction is further disposed by atmospheric distillation. The characteristics of bio-oil were roundly detected by calorimeter, elemental analyzer and so on in this article.
     The behavior of bio-oil from municipal sludge under the condition of supercritical methanol was studied. The article was aimed at an examination of effect of temperature, residence time, pressure, the ratio of sludge and methanol, methanol filling rate, catalyst and catalyst concentration on the process of bio-oil production. Temperature and residence time were the most important factors in the reaction of sludge and methanol. The yield of bio-oil is highest and the bio-oil ratio can be up to 44.7%with temperature 360℃and residence time 80min. Generally speaking, with the increasement of temperature and pressure, the yield of bio-oil. However, it was not that the more yield bio-oil could be produced with higher temperature and pressure. Temperature and pressure must be controlled carefully in the experiment. Both the amount of methanol and the ratio of sludge and methanol had a optimum value. When the amount of methanol was 400mL and the ratio of sludge and methanol was 1/20, synergistic effect of sludge and supercritical methanol would be best. The catalyst could efficaciously promote the formation of bio-oil. Base catalyst KOH had an obvious promoting effect.
     Compared with the fuel properties of fuel oil and bio-oil, except for flash point、sulphur content and ash content, it could meet 4# fuel oil's standard demand. Bad stability、high solid particle content and a certain amount of metal ion in the bio-oil had a great impact on bio-oil's saving and application. For the sake of high-quality bio-oil, high solid particle content and a certain amount of metal ion in the bio-oil must be eliminated. Meanwhile, some certain amount of solid carbon residue would be produced. Although its adsorption capacity was poor, it could be used as a cheap adsorbent because of its wide source.
     At last, through the social needs analysis of the bio-oil from sludge and the constant calculation of the process energy consumptions and outputs, it could be concluded that if the thermal efficiency was not considered, the output value was higher than energy consumption costs with the sludge moisture content below 65%. While the energy consumption costs became higher with high moisture content. However, the experimental sludge water content was up to 82%, therefore, we had to decrease the water content in sewage sludge for improving the economic benefits of the technology of bio-oil from municipal sludge.
引文
[1]周少奇.城市污泥处置与资源化[M].广州:华南理工大学出版社,2002.
    [2]何品晶,顾国维,李笃中.城市污泥处理与利用[M].北京:科学出版社,2003.
    [3]李娣.城市污泥低温制油技术研究进展[J].环境科学,2009,22(1):64-69.
    [4]Sako T, Sugeta T, Otake K. Depolymerization of polyethylene terephthalate to monomers with supercritical methanol[J]. Journal of chemical engineering of Japan,1997,30(2):342-346.
    [5]张辰,张善发,王国华.污泥处理处置研究进展[M].北京:化学工业出版社,2005.
    [6]解光武,蔡明招,郑文芝.国内外污泥的处理与处置技术[J].环境技术,2003,12(5):24-27.
    [7]Catello W. J., Comeaux J.L. Reductive hydrothermal treatment of sewage sludge[J]. Waste management,2008,28(11):2213-2219.
    [8]谷晋川,蒋文举,雍毅.城市污水厂污泥处理与资源化[M].北京:化学工业出版社,2008.
    [9]Dai J., Chen L., Zhao J.F, et al. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge[J]. Journal of environmental sciences-China,2006,18(6):1094-1100.
    [10]Harrison E.Z., Oakes S.R., Hysell M., et al. Organic chemicals in sewage sludge[J]. Science of the total environment,2006,367(2-3):481-497.
    [11]Rockefeller A. Notes on the history of the management of human exreta[J]. Civilization sludge,1996,39(6):19-112.
    [12]赵丽君,张大群,陈宝柱.污泥处理处置技术的进展[J].中国给排水,2001,17(6):23-25.
    [13]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2005:108-109.
    [14]李宇亮,李小明,郭亮.污泥发酵制氢技术的现状和展望[J].中国沼气,2008,26(1):3-11.
    [15]朱学红,黄广英.城市污水处理厂剩余污泥制肥的探讨[J].江苏环境科技,2005,18(3):35-37.
    [16]张宗国,吴永丽,何梦玲,等.城市污水处理厂污泥的土地利用[J].青岛建筑工程学院学报,2004,25(2):78-80.
    [17]Kim J., Park C., Kim T. H., et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge[J]. Journal of bioscience and bioengineering,2003,95(3):271-275.
    [18]Werther J., Ogada T. Sewage sludge combustion[J]. Progress in energy and combustion science,1995,25(1):55-116.
    [19]Planquart P., Bonin G., Prone A., et al. Distribution movement and plant availability of trace metals in soils amended with sewage sludge composts: application to low metal loadings[J]. Science of the total environment,1999, 241(1-3):161-179.
    [20]黄雅曦,李季,李国学,等.施用污泥堆肥对玉米产量及土壤性质的影响[J].东北农业大学学报,2010,41(9):43-49.
    [21]E. Pokorna, N. Postelmans, P. Jenicek, et al. Study of bio-oil and solids from flash pyrolysis of sewage sludge[J]. Fuel,2009,88(8):1344-1350.
    [22]I.H. Hwang, Y. Ouchi, T. Matsuto. Characteristics of leachate from pyrolysis residue of sewage sludge[J]. Chemosphere,2007,68(4):1913-1919.
    [23]Dominguez, J.A. Menendez, M. Inguanzo, et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresource technology,2006,97(10):1185-1193.
    [24]Jing-Pei Cao, Xiao-Yan Zhao, Kayoko Morishita, et al. Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge[J]. Bioresource technoloyg,2010,101(19): 7648-7652.
    [25]李桂菊,王子曦,赵茹玉.直接热化学液化法污泥制油技术研究进展[J].天津科技大学学报,2009,24(2):74-78.
    [26]Ching-Yuan Chang, Je-Lueng Shie, Kae-Long Lin, et al. Major products obtained from the pyrolysis of oil sludge[J]. Energy & Fuels,2000,14(6): 1176-1183.
    [27]Shen L., Zhang D. K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidized-bed[J]. Fuel,2003,82(4): 465-472.
    [28]GascoG, Blanco C G, Guerrero F, et al. The influence of organic matter on sewage sludge pyrolysis[J]. Journal of analytical & Applied pyrolysis,2005, 74(2):413-420.
    [29]Thipkhunthod P, Meeyou V, Rangsunvigit P, et al. Pyrolytic characteristics of sewage sludge[J]. Chemosphere,2006,64(6):955-962.
    [30]Shin-ya Yokoyama, Akira Suzuki. Oil production from sewage sludge by direct thermochemical liquefaction[J]. Trends in physical chemistry,2003(1):157-165.
    [31]曾宏,李洪明,方柏山.生物柴油超临界甲醇法生产工艺全流程模拟与经济 分析[J].过程工程学报,2010,10(6):1168-1173.
    [32]漆新华,庄源益.超临界流体技术在环境科学中的应用[M].北京:科学出版社,2005.
    [33]吴晓宇,吕秀阳.超临界甲醇中的化学反应[J].2009,29(12):26-30.
    [34]Imahara H, Minami E, Hari S, et al. Thermal stability of biodiesel in supercritical methanol[J]. Fuel,2008,87(1):1-6.
    [35]Genta M, Iwaya T, Sasaki M, et al. Depolymerization mechanism of poly in supercritical methanol[J]. Industrial and Engineering Chemistry Research,2005, 44(11):3894-3900.
    [36]Miller J E, Evans L, Littlewolf A, et al. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents[J]. Fuel, 1999,78(11):1363-1366.
    [37]Minami E, Saka S. Decomposition behavior of woody biomass in water added supercritical methanol[J]. Journal of wood science,2005,51(4):395-400.
    [38]陈曼.城市污水污泥热解特性与转化机理的研究[D].南京:东南大学能源与环境学院,2006.
    [39]姬爱民.污泥热解液加工方法及其产品的燃料特性研究[D].天津:天津大学环境学院,2010.
    [40]李细晓.城市污泥在超临界流体中的液化行为研究[D].长沙:湖南大学环境学院,2009.
    [41]Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment[J]. Bioresource Technology,2004,91(3): 289-295.
    [42]金儒霖.中国城市污水厂污泥处理的综述[J].武汉城市建设学院学报,1994,11(2):1-2.
    [43]姚舜化.消化脱水污泥处置与利用的探讨[J].中国市政工程,1994,29(4):46-50.
    [44]Fries G. F. Ingestion of sludge applied organic chemical by animals[J]. The science of the total environment,1996,185(13):93-108.
    [45]Dai J., Xu M., Chen J., et al. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China[J]. Chemosphere, 2007,66(2):353-361.
    [46]Hyun Ju Park, Hyeon Su Heo, Young-Kwon Park, et al. Clean bio-oil production from fast pyrolysis of sewage sludge:Effects of reaction conditions and metal oxide catalysts[J]. Bioresource technology,2010,101(1):583-585.
    [47]黄华军,袁兴中,曾光明,等.污水厂污泥在亚/临界丙酮中的液化行为[J].中国环境科学,2010,30(2):197-203.
    [48]曹洪涛,袁兴中,曾光明,等.超/亚临界水条件下生物质和塑料的共液化[J].林产化学与工业,2009,29(1):95-99.
    [49]彭锦星,邵千钧,陈丰农,等.基于超临界乙醇的竹子与聚乙烯共液化研究[J].太阳能学报,2009,30(8):1139-1144.
    [50]Grace Pokoo-Aikins, Aubrey Heath, Ray A. Mentzer, et al. A multi-criteria approach to screening alternatives for converting sewage sludge to biodiesel[J]. Journal of loss prevention,2010,23(3):412-420.
    [51]Inguanzo M., Dominguez A., Menendez J. A., et al. On the pyrolysis of sewage sludge:The influence of pyrolysis conditions on solid, liquid and gas fractions[J]. Journal of analytical and applied pyrolysis,2002,63(1):209-222.
    [52]昝元峰,王树众,张钦明,等.城市污泥超临界水氧化及反应热的试验研究[J].高校化学工程学报,2006,20(3):379-384.
    [53]Linghong Zhang, Chunbao Xu, Pascale Champagne. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy conversion and management,2010,51(5):969-982.
    [54]裴爱霞,郭烈锦,金辉.超临界水中花生壳气化制氢的试验及机理研究[J].西安交通大学学报,2006,40(11):1263-1267.
    [55]李淑培.石油加工工艺学(上册)[M].北京:中国石化出版社,1991.
    [56]贾相如,金保升,李睿.污水污泥在流化床中快速热解制油[J].燃烧科学与技术,2009,15(6):528-534.
    [57]G. Gasco, M. J. Cueto, A. Mendez. The effect of acid treatment on the pyrolysis behavior of sewage sludges[J]. Journal of analytical and applied pyrolysis, 2007,80(2):496-501.
    [58]Kim Y., Parker W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil[J]. Bioresource technology,2008, 99(5):1409-1416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700