多源多时相SAR资料反演水下地形的同化模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)是重要的微波传感器之一,在海洋遥感领域得到了广泛应用。浅海水下地形SAR探测是SAR海洋应用的重要部分之一,发展业务化水下地形SAR探测技术是水下地形SAR探测研究的最终目标。现有的水下地形SAR探测是基于单景SAR影像开展的,探测结果不能全面反映水下地形。因此,发展一种基于多源多时相SAR影像的水下地形反演方法是该研究方向的前沿问题。
     本文基于水下地形SAR成像机制和袁业立(1997)导出的海波高频谱解析表达式,首次建立了基于多源多时相SAR影像的水下地形反演的同化模型与算法,并通过该模型在台湾浅滩水下地形SAR探测中的应用检验了该模型和算法的可行性。本文还开展了已有的浅海水下地形SAR探测技术(浅海水下地形单景SAR影像反演)在台湾浅滩水下地形探测中的应用研究,以及反演初始水深对水下地形SAR反演结果影响的研究。此外,本文还对中国近海水下地形SAR成像能力进行了分析。
     在浅海水下地形SAR探测技术应用于台湾浅滩研究方面,基于7景SAR影像开展了台湾浅滩单景SAR影像反演计算,反演结果表明同一水下地形不同时相SAR影像反演结果不能全面反映真实地形特征。
     在反演初始水深对水下地形SAR反演结果影响研究方面,通过不同初始水深条件下台湾浅滩水下地形SAR反演结果的比较分析,可以得出:初始水深影响水下地形反演结果的准确性,初始水深的选取需要较粗的实际水深的支持;
     在多源多时相水下地形SAR反演同化模型研究方面,建立了多源多时相水下地形SAR反演的同化模型与算法,通过基于多源多时相SAR影像的台湾浅滩五种不同情形水下地形反演计算,证明了多源多时相水下地形SAR反演同化模型和算法是可行的,并给出了基于多源多时相SAR影像的水下地形反演计算中SAR影像的选取原则。
     在中国近海浅海水下地形SAR响应能力分析方面,基于对中国近海潮汐潮流状况、水下地形概况和已有中国近海SAR影像中水下地形特征等的分析,总结出中国近海适合开展浅海水下地形SAR探测的区域主要有:渤海海域、苏北近海海域、台湾海峡海域和南沙群岛海域。
Synthetic Aperture Radar (SAR) is one of the important microwave sensors and it is widely used in the field of ocean remote sensing. Underwater topography detection with SAR image is one of the important applications of SAR in the oceanic research. The final purpose of the research on the underwater topography detection with SAR image is to develop the operational detection technology of underwater topography with SAR image. The existing underwater topography detection with SAR image is based on the single SAR image and the detection result can't reflect the whole features of the underwater topography. So to develop an underwater topography detection method with SAR images acquired in the different times by the different satellites becomes the main work in this research field.
     Assimilation model and its algorithm of underwater topography detection with SAR images acquired in the different times by the different satellites was presented in this paper, which was based on the underwater topography SAR imaging mechanism and the representation of high frequency spectra of ocean waves presented by Yuan Yeli, and the feasibility of this model and algorithm was testified by the underwater topography of Taiwan Shoal detection with SAR images by this model. In this paper, the existing underwater topography detection technology with SAR image (underwater topography detection with the single SAR image) was used in the underwater topography of Taiwan Shoal detection, and the influences of initial water depth of the inversion calculation on the inversion results were studied. Furthermore, the imaging capabilities of SAR on the underwater topography in the Chinese coastal areas were analyzed.
     As for the application of the existing underwater topography detection technology with SAR image in the Taiwan Shoal, underwater topography of Taiwan Shoal was detected by seven scenes of SAR images, and the detection results showed that the same underwater topography detection results with the SAR images acquired in the different times can't reflect the whole features of the underwater topography.
     Concerning the study on the influence of the initial water depth of the inversion calculation on the inversion results, the results showed that the initial water depth should obtained by associating with some real water depth.
     With regard to the study on the assimilation model of underwater topography with SAR images acquired in the different times by the different satellites, the assimilation model and algorithm of underwater topography detection with SAR images acquired in the different times and by the different satellites were presented, and the underwater topography of Taiwan Shoal were detected by SAR images acquired in the different times by the different satellites of five different cases. The results show that this model and algorithm is feasible. The selection principle of SAR images used in the underwater topography detection with SAR images acquired in the different times by the different satellites was given.
     Finally, the SAR imaging capability of underwater topography in the Chinese coastal areas was analyzed under the analyses of the status of the tide and tidal current, the features of underwater topography and the information of underwater topography in the SAR images of the Chinese coastal areas. It is concluded that the areas where underwater topography can be detected by SAR in the Chinese coastal areas are Bohai Sea, the coastal areas of Subei, Taiwan Strait and the areas of the Nansha islands.
引文
[1] Alpers W., G. Campbell, H. Wensink, Q. Zheng. Underwater topography, in Synthetic Aperture Radar User's Manual, Natl. Environ. Satell., Data, and Inf. Serv., Natl. Oceanic and Atmos. Admin., Silver Spring, Md. 2004, 245-262.
    [2] Alpers, W., Hennings, I.. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar, Journal of Geophysical Research, 1984, 89:10529-10546.
    [3] Carl A. Wiley. Synthetic aperture radars.lEEE Trans. on AES, 1985, 21 (3): 440-443.
    [4] Chubb S. R., Valenzuela G. R. and Greenberg D. A., Radar surface signatures based on the two-dimensional tidal circulation of Phelps Band, IEEE Trans Geosci.Remote SENS, 1991, 29(1):129-134.
    [5] Cooper, A. L., Chubb, S. R., Askari, E, and Valenzuela, G R., Radar surface signatures for the two-dimensional tidal circulation over Phelps Bank, Nantucket shoals: A comparison between theory and experiment, Journal of Geophysical Research, 1994, 99:7865~7883.
    [6] De Loor, G. P., Brunsveld van Hultan H. W.. Microwave measurements over the North Sea. Boundary-Layer Meterology, 1978, 13:113-131.
    [7] De Loor, G. P.. The observation of tidal patterns, currents and bathymetry with SLAR imagery of the sea. IEEE. Journal of Oceanic Engineering, 1981, 4, 124~129.
    [8] Gordon C. D.. Surface wave expression of bathymetry. 1983, NRL Memo. Rep., 5027.
    [9] Harris, P. T., Ashley, G. M., Collins, M. B., and James, E. E., Topographic features of the Bristol Channel sea-bed: A comparison of SEASAT (synthetic aperture radar) and side-scan sonar images. International Journal of Remote Sensing, 1986, 7, 119~136.
    [10] Holliday D., St-Cyr G. and Woods N. E., A radar ocean imaging model for small to moderate incidence angles, International Journal of Remote Sensing, 1986, 7, 1809~1834.
    [11] Hunghes B. A.. The effect of internal waves on surface wind waves. 2. theoretical analysis. Journal of Geophysical Research, 1978, 83: 455-465.
    [12] Jordi Inglada, Rene Garello. On rewriting the imaging mechanism of underwater bottom topography by synthetic aperture radar as a Volterra series expansion. IEEE Journal of oceanic engineering. 2002, 27(3):665-674.
    [13] Kasischke, E. S., Shuchman, R. A., and Lyzenga, D. R. et al., Detection of bottom features on Seasat synthetic aperture radar imagery. Photogrammetric Engineering and Remote Sensing, 1983, 49, 1341-1353.
    [14] Kenyon N. H. Tide current bedforms investigated by Seasat. Satellite Microwave Remote Sensing, 1983, EllisHorwood Limited, Chichester, England.
    [15] Li Y., J. Hu, J. Li and B. Fu et al.. Optical image modulation above the submrine bottom topography: A case study on the Taiwan Banks, China, in Ocean Remote Sensing and Applications, Proc. SPIE Int. Soc. Opt. Eng., 2003, 4892, 382-390.
    [16] Li Y., L. Ma and J. Yang et al.. Study on stability of sand waves by satellite sensing, in The Proceedings of the First Asian and Pacific Coastal Engineering Conference, APACE 2001, Dalian Univeristy of Technology Press, Dalian, China, 2001, 850-856.
    [17] Lodge D. W. S. Surface expressions of bathymetry on SEASAT synthetic aperture radar images. International journal of Remote Sensing, 1983, 4(3): 639-953.
    [18] Lyzenga D. R., J. R. Bennett, Full-spectrum modeling of synthetic aperture radar internal wave signatures. Journal of Geophysical Research, 1988, 93:12345~12354.
    [19] Lyzenga D. R., R.A. Shchman and E. S. Kansischke et al. Modeling of bottom-related surface patterns imaged by synthetic aperture radar, 1983, lnternatinaol Geoscience and Remote Sensing Symposium (IGASS'83), San Francisco.
    [20] Mcleish W., D. J. Swift and R. B. Long et al.. Ocean surface patterns above sea-floor bedformsas recorded by radar, Southern Bight of North Sea. Mar. Geol., 1981, 43,M1-M2.
    [21] Meadows G. A., R. A. Shuchman and Y. C. Tseng et al.. SEASAT synthetic aperture radar observations of wave-current and wave-topographic interactions. Journal of Geophysical Research, 1983, 88(7): 4393-4406.
    [22] Quanan Zheng, Li Li and Xiaogang Guo et al.. SAR imaging and hydrodynamic analysis of ocean bottom topographic waves. Journal of Geophysical Research, 2006, 111 (9), C0928.
    [23] Roland Romeiser, Werner Alpers and Volkmar Wismann. An improved composite surface model for the radar backscattering cross section of the ocean surface. 1. Theory of the model and optimization/validation by scatterometer data. Journal of Geophysical Research, 1997, 102(11):25, 230-25, 250.
    [24] Roland Romeiser, Werner Alpers. An improved composite surface model for the radar backscattering cross section of the ocean surface. 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. Journal of Geophysical Research, 1997, 102(11): 25, 251-25, 267.
    [25] Shuchman R. A., Lyzenga D.R. and Meadows G. A.. Synthetic aperture radar imaging of ocean bottom topography via tidal-current interactions: theory and observation. International Journal of Remote Sensing, 1985, 6:1179-1120.
    [26] Shuchman, R.A. and E. S. Kasischke. The detection of oceanic bottom features using Seasat synthetic aperture radar imagery, 13th International Symposiumon Remote Sensing of Enviroment, ERIM, Ann Arbor, Mich, 1979.
    [27] Valenzuela G. R., D. T. Chen and W. D. Garrett et al.. Shallow water bottom topography from radar imagery. Nature, 1983, 303(5919): 687-689.
    [28] Valenzuela G. R., W. J. Plant and D. L. Schuler et al.. Microwave probing of shallow bottom topography in the Nantucket shoals. Journal of Geophysical Research, 1985, 90:4931-4942.
    [29] Valenzuela G. R.. A remote sensing experiment in the Nantucket Shoals(SEBEX). Rep.5082, 1983a, Naval Research Lab, Washington D.C..
    [30] Valenzuela G. R.. Theories for the interaction of electromagnetic and oceanic waves-A review. Boundary-Layer Meterology, 1978, 13: 61-85.
    [31] Van der Kooij M.W.A., Vogelzang J. And Calkoen C.J.. A simple analytical model for brightness modulation caused by submarine and waves in radar imagery. Journal of Geophysical Research, 1995, 100(4):7069-7082.
    [32] Van Gastel K., Imaging by X-band radar of subsurface features: a nonlinear phenomenon. Journal of Geophysical Research, 1987, 92:11857~11865.
    [33] Vogelzang J., Wensink G.J. and Loor G.P. de. Sea bottom topography with X-band SLAR: The relation between radar imagery and bathymetry. International Journal of Remote Sensing. 1992, 13(10): 1943-1958.
    [34] Vogelzang J.. Mapping submarine sand waves with multiband imaging radar. 2. Experimental results and model comparison. Journal of Geophysical Research, 1997, 102(1): 1183-1192.
    [35] Vogelzang J.. The mapping of bottom topography with imaging radar: A comparison of the hydrodynamic modulation in some existing model. International Journal of Remote Sensing, 1989,10:1503-1518.
    [36] Vogelzang, J., Mapping submarine sandwaves with multi-band imaging radar. 1. Model development and sensitivity analysis, Journal of Geophysical Research, 1997, 102:1163~1181.
    [37] Wensink, G. J., Alpers, W., and Calkoen, C. J., Advanced mapping of sea bottom topography in a multi-sensor approach for morphodynamic studies (AMS)**3, prepared for European Commission, Final Report, MAS2-CT94-0104, 1997, pp. 188, Brussels, Belgium.
    [38] Xiaofeng Li, Chunayna Li and William G. Pichel. SAR imaging of shallow water sand ridges aligned with tidal current. Proceedings OceanSAR 2006 --Third Workshop on Coastal and Marine Applications of SAR, St. John's, NL, Canada, October 2006.
    [39] Yang Jungang, Zhang Jie and Meng Junmin.Underwater topography detection of Shuangzi Reefs with SAR images acquired in different time.Acta Oceanologica Sinica, 2007, 26(1): 48-54.
    [40] Zhou Changbao, G.Creswell, Tildesley et al., Satellite SAR observation of shallow bottom topography of the east Australia Sea, Acta Oceanologica Sinica, 1999, 18(2), 215~223.
    [41] 陈达熙主编.渤、黄、东海海洋图集——水文分册.1992,北京,海洋出版社.
    [42] 陈新忠.台湾海峡及其两岸沿海的潮流.海洋通报.1983,2(2):16-24.
    [43] 崔经汉,陈国庆,张杰,SAR影像仿真与水下地形反演的阻尼牛顿—行作用法,海洋科学进展,2003,21(1),68~77.
    [44] 丁文兰.台湾海峡潮汐和潮流的分布特征.台湾海峡,1983,2(1):1-8.
    [45] 董庆,郭华东,王长林,多波段多极化合成孔径雷达的海洋学应用,地球科学科展,2001,16(1),93~97.
    [46] 董庆,唐军武,冯林新,水下地形在雷达图像上的可视模型及数值模拟,海洋通报,1997,16(1),29~34.
    [47] 杜凌,军成,张建立,沈春.台湾海峡潮汐潮流的有限元模拟.海洋湖沼通报.2005,(4):1-9.
    [48] 方国洪,杨景飞,赵绪才.台湾海峡潮汐和潮流的一个数值模型.海洋学报,1985,7(1):12-19.
    [49] 傅斌,黄韦艮,周长宝等,星载SAR水下地形和水深测量模拟仿真——水下地形高度、坡度和方向与可测水深分析,海洋学报,2001,23(1),35~42.
    [50] 国家海洋信息中心.2005潮汐表.山东省地图出版社,济南,2004,12-13.
    [51] 黄韦艮,傅斌,周长宝等,星载SAR水下地形和水深遥感的最佳雷达系统参数模拟,遥感学报,2000,4(3),172~177.
    [52] 黄韦艮,傅斌,周长宝等,星载SAR遥感浅海水下地形的最佳海况模拟仿真,自然科学进展,2000,10(7),642~649.
    [53] 黄韦艮,高曼娜,周长宝等,蓬莱附近海区水下地形的星载合成孔径雷达遥感,东海海洋,1996,14(1),53~57.
    [54] 黄韦艮,高曼娜,周长宝等,我国近海海洋现象的星载SAR观测,遥感技术与应用,1996,11(2),9~14.
    [55] 金梅兵,海底地形的SAR影像仿真与反演[博士学位论文],青岛,中国科学院海洋研究所,1998
    [56] 金梅兵,袁业立,SAR影像对海底地形变化可视度的仿真模拟与分析,海洋与湖沼,1997a,28(增刊),21~26.
    [57] 金梅兵,袁业立,利用SAR影像反演海底地形的数学物理反问题的提法与解法,海洋与湖沼,1997b,28(增刊),27~31.
    [58] 李立,王寿景.对台湾海峡潮流的一点认识.海洋与湖沼,1990,21(6):578-580.
    [59] 吕新刚,沙文钰.台湾海峡M2分潮的三维数值模拟.黄渤海海洋,1999,17(3):16-25.
    [60] 马毅,数学方法及其在SAR反演浅海水深中的应用(硕士学位论文),内蒙古大学,呼和浩特,1999
    [61] 丘仲锋、胡建宇、陈照章.台湾浅滩南部二测站多周日海流观测资料的调和分析.海洋科学,2002,26(7):50-53.
    [62] 沙文钰,吕新刚,陈希等.环台湾岛海域半日潮波特征的三维模拟.海洋学报,2001,23(4):31-40.
    [63] 沙文钰,吕新刚,蒋国荣.环台湾岛海域M2分潮特征的数值模拟.解放军理工大学学报,2000,1(1):80-87.
    [64] 沙文钰,吕新刚,张文静,陈希.环台湾岛海域全日潮的特征和潮汐、潮流的综合性质.海洋科学,2002,26(10):62-69.
    [65] 沙文钰.中国海潮波研究的进展.海洋预报,2000,17(2):73-77.
    [66] 邵洁波,马毅,刘宝银等,SAR对南沙岛礁暗礁的成像能力,黄渤海海洋,1999,17(4),66~70.
    [67] 孙湘平.中国近海区域海洋.海洋出版社,北京,2006.
    [68] 王超、张红、刘智.星载合成孔径雷达干涉测量(第一版).北京:科学出版社,2002,2-14.
    [69] 王志豪.台湾海峡的潮汐.台湾海峡,1985,4(2):120-128.
    [70] 魏钟铨等.合成孔径雷达卫星(第一版).北京:科学出版社,2001,1-8.
    [71] 夏长水,袁业立,塘沽海区海底地形的SAR影像仿真与反演研究,海洋科学进展,2003,21(4),437~445.
    [72] 颜廷壮,李鸿雁,俞光耀.福建沿岸上升流数值研究Ⅱ.台湾海峡上升流的三维数值模拟.海洋学报,1997,19(5):12-19.
    [73] 颜廷壮,吴永成.福建沿岸上升流数值研究Ⅰ.台湾海峡潮汐、潮流的数值模拟.海洋科学集刊,1995,36:47-53.
    [74] 杨俊钢.基于SAR影像的风向反演与水下地形SAR探测实用性算法.内蒙古大学,呼和浩特,2004.
    [75] 叶安乐,陈宗镛,于宜法.台湾海峡及其附近海域三维半日潮波的数值研究.海洋与湖沼,1985,16(1):439-450.
    [76] 袁孝康,合成孔径雷达的发展现状与未来,上海航天,2002,5,42~47.
    [77] 袁业立,海洋高频谱形式及SAR影像分析基础,海洋与湖沼,1997,28(增刊),1~5.
    [78] 曾淦宁,齐义泉,胡建宇,洪华生.台湾海峡M2分潮潮波研究进展.海洋科学进展,2004.22(4):508-518.
    [79] 曾琪明、焦健.合成孔径雷达遥感原理与应用(四).遥感信息,1998,4:42~46.
    [80] 张宁川,梁开龙,星载SAR图像在海底地形反演中的应用,海洋测绘,2002,22(6):3~7.
    [81] 张庆华,杭可,水下运动物体及海底地形的SAR反演的初步研究 (二) 海底地形的SAR影像分析,黄渤海海洋,1998,16(4):1~8.
    [82] 张巍,金亚秋,沈一帆,用合成孔径雷达图像反演浅海水下地形的一种方法,海洋学报,2000,22(6),40~46.
    [83] 赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟.海洋学报,1994,16(5):1~10.
    [84] 郑文振,陈福年,陈新忠.台湾海峡的潮汐和潮流.台湾海峡,1982,1(2):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700