基于序列Monte Carlo方法的非线性滤波技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实世界中的随机动态系统大都是非线性非高斯的,因此非线性滤波问题是极为普遍的,许多领域都涉及到,目标跟踪是其重要应用之一。目标跟踪是基于具有不确定性测量的传感器数据,对来自未知目标的运动学特征做出估计。近年来粒子滤波,也称序列Monte Carlo方法,在目标跟踪方面得到广泛关注,其原因可以理解为这种方法的简洁性、处理复杂情况的鲁棒性及易操作性,更重要的是它对非线性非高斯估计问题的强大处理能力。这种非线性滤波技术是一种基于仿真的数值方法,其利用离散隐马尔可夫链建模,通过系统模型描述目标未知状态随时间的演化规律,通过测量模型把可利用的目标观测值与状态联系起来,并鉴于过去和目前的测量值,在先验信息已知的基础上,进行预测和更新,提供一个目标状态的近似分布。
     本文对基于贝叶斯框架下的序列Monte Carlo方法及目标跟踪原理进行了综述,对粒子滤波的改进方法进行了全面的概括,分析了粒子滤波方法的收敛性,其收敛特性保证了收敛率独立于状态空间的维数,而且是Lp收敛的。通过仿真实验,表明了对于线性高斯系统,精确的估计方法比粒子滤波的跟踪效果要好;但对于非线性非高斯模型,粒子滤波具有较大的优势,可以显著提高滤波的效果,并应用语音增强的实例进行了比较说明。
     针对多传感器目标跟踪问题,本文论述了数据融合技术,提出了一种交叉传感器交叉特征(CSCM)数据融合算法,可以对种类不同、模型不同的多个传感器数据进行融合,并应用粒子滤波来进行非线性估计,完成一移动机器人目标跟踪任务,为准确地定义目标位置的状态,我们分别采用最佳粒子、加权均值和鲁棒均值三种估计方法,并对三种基本的重采样策略进行了比较,实验结果证明了这种数据融合算法的可行性和有效性。
     在视觉跟踪方面,本文论述了视觉跟踪技术、摄像机系统以及颜色分布的相关内容,提出一种基于颜色直方图的粒子滤波算法用来跟踪运动目标,所提出的方法可以处理旋转、尺寸变换和光照条件的变化以及目标的部分遮挡等问题,从而可以鲁棒地跟踪目标。这种方法是把颜色直方图结合到粒子滤波的观测模型中,应用二阶自回归模型作为系统模型,跟踪的目标既可以是刚性目标,也可以是非刚性目标,并且跟踪算法可以实时实现。
     针对复杂背景环境下的多目标跟踪问题,本文论述了主要的数据关联技术,将目标检测算法和粒子滤波结合起来,利用颜色直方图作为观测模型,利用GNN算法进行数据关联,提出了一种基于粒子滤波的多目标跟踪算法,实现了视频场景中的多个目标跟踪。该算法对目标在场景中的频繁出现和消失、相似外表、交叉运动和短暂遮挡等有较好的处理效果。
     关于粒子滤波目标跟踪的性能评价方面,本文提出了定量化的解决方案,以度量跟踪算法的品质。这种方案以精度和召回率为理论基础,相互补充,可以对视频目标跟踪的性能作出较合理的判断,通过设计实验,我们可以选择出最佳的参数,虽然所有的实验是在单目标跟踪的环境下完成的,但可以推广到多目标跟踪的场合。
In reality, stochastic dynamic systems are mostly nonlinear and non-Gaussian.So the nonlinear filtering problem is very popular and many applications are concerned with it. Target tracking is one important field among its applications. Target tracking is the estimation of unknown target kinematics state based on uncertain measurements from sensors. Recently, particle filter, also known as Sequential Monte Carlo Methods, has become popular tools to solve tracking problems. The popularity stems from their simplicity, flexibility, and ease of implementation, especially their powerful ability to deal with general nonlinear and non-Gaussian estimation problems. This nonlinear filtering technique is a numerical method based on simulation and to use discrete hidden Markov chain for modeling, the system model describes the evolvement of the unknown target state over time and the measurement model associates the available measurements to the target state. Using the past and present measurements, based on prior information, the prediction and update step are performed, an approximate distribution for the target state is attained.
     In this dissertation, Sequential Monte Carlo methods and the principle of target tracking under the Bayesian framework are studied. The methods for improving the particle filter are discussed in detail. Also the convergence properties of particle filter are analysed. The simulation experiments are conducted to verify, for linear and Gaussian system, the exact estimation methods have better results than particle filter. However, for nonlinear and non-Gaussian dynamic system, particle filter has obvious dominance and it could improve the effect of filtering evidently. Also we demonstrate Rao-Blackwellized particle filter has good results for voice enhancement.
     For the multi-sensor target tracking problems, the data fusion techniques are discussed and the Cross-Sensor and Cross-Modality (CSCM) data fusion algorithm is presented, which can deal with multiple sensors with different types and modalities. And particle filter is applied for nonlinear estimation to track a moving mobile robot. In order to find the state which describes the target position accurately, 3 different methods are used for estimation: the best particle, the weighted mean and the robust mean. Also 3 basic resampling schemes are compared. The experimental results show the feasibility and the effectiveness of the data fusion algorithm.
     On visual tracking, the visual tracking techniques, including camera systems, color distribution and the other correlated knowledge are discussed. And a particle filter algorithm is presented based on color histogram to track a moving target which can deal with rotation, scale changes, variations in the light source and partial occlusions. So it can track the target with robustness. The proposed method is based on particle filter, integrated with color histogram in the measurement model, and the system model is a second-order autoregressive process. The tracked target can be rigid or non-rigid. Also the method can run in real-time.
     For the multi-target tracking problems with complex background, the data association techniques are discussed, we combine the target detection algorithm with particle filter, use color histogram as observation model, and the global nearest neighbor (GNN) performs data association. A multi-target tracking algorithm is presented based on particle filter. The proposed algorithm is robust to the problems of the appearance and disappearance of targets, the similar appearance of targets, the cross movement of targets and short-time occlusion.
     For the performance evaluation of target tracking based on particle filter, a quantity approach is developed which can evaluate the quality of tracking algorithm. The strategy is theoretically based on precision and recall, complementary to the logical assessment of a visual tracking system’s performance. Via designing the experiments, the optimal parameters are chosen. All experiments have solely used single-target tracking. However, the change from single-target tracking to multi-target tracking is also evident.
引文
[1] Bar-Shalom Y. and Li X. R.. Estimation and Tracking: Principle, Techniques, and Software. Boston: Artech House, 1993
    [2] Bar-Shalom Y. and Li X. R.. Multitarget-Multisensor Tracking: Principles and Techniques. Storrs: YBS Publishing, 1995
    [3] Bar-Shalom Y. and Fortmann T. E.. Tracking and Data Association. New York: Academic Press, 1988
    [4] Bar-Shalom Y.. editor Multitarget-Multisensor Tracking: Advance Applications. Norwood: Artech House, 1990
    [5] Mazor E.. Averbuch A.. Bar-Shalom Y. and Dayan J.. Interacting multiple model methods in target tracking: a survey. IEEE Trans. Aerospace and Electronic Systems, 1998, 34(1): 103-122
    [6] Thrun S.. Fox D.. and Burgard W.. Probabilistic Robotics. Cambridge, MA: MIT Press, 2005
    [7] Wax N.. Signal-to-Noise improvement and the Statistics of Tracking Populations. Journal of Applied Physics, 1955, 26(5): 586-595
    [8] Kalman R. E.. A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, 1960, 82(D): 35-45
    [9] Sittler R. W.. An optimal Data Association Problems in Surveillance Theory. IEEE Transaction on Military Electronics, 1964, 8(2): 125-139
    [10] Jaffer A. J. and Bar-Shalom Y.. On Optimal Tracking in Multiple Target Environments. Proceedings of the Third Symposium on Non-Linear Estimation Theory and Its Application, 1972: 112-117
    [11] Bar-Shalom Y. and Tse E.. Tracking in a Cluttered Environment with Probabilistic Data Association. Automation, 1975, 11(11): 451-460
    [12] Singer R. A. and Stein J. J.. An Optimal Tracking Filter for Processing Sensor Data of Imprecisely Determined Origin in Surveillance System. Proceedings of the 1971 IEEE Conference on Decision and Control, 1971, 10: 171-175
    [13] Singer R. A.. Sea R. G. and Housewright K. B.. Derivation and Evaluation of Improved Tracking Filters for use in Multi-Target Environments. IEEE Transactions in Information Theory, 1974, IT-20: 423-432
    [14] Bar-Shalom Y. and Blair W. D.. Multitarget-Multisensor Tracking: Applicationand Advances. Norwood: Artech House, 2000, III
    [15] Reid D. B.. A multiple hypothesis filter for tracking multiple targets in a cluttered environment. Lockheed Missiles and Space Company Report, 1977, LMSC-D560254
    [16] Reid D. B, An algorithm for tracking multiple targets. IEEE Transaction on Automatic Control, 1979, AC-24: 843-854
    [17] Fortmann T. E, Bar-Shalom Y. and Scheffe M.. Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, 1983, OE-8: 173-184
    [18] Kuo-Chu Chang and Bar-Shalom Y.. Joint probabilistic data association for multitarget tracking with possibly unresolved measurements and maneuvers. IEEE Transaction on Automatic Control, 1984, 29(7): 585-594
    [19] Avitzour D.. Stochastic simulation Bayesian approach to multitarget tracking. IEE Proc. On Radar, Sonar and Navigation, 1995, 142(2): 41-44
    [20] Salmond D.. Fisher D. and Gordon N.. Tracking in the presence of intermittent spurious objects and clutter. In SPIE Conference on Signal and Data Processing of Small Targets, 1998, 3373: 460-474
    [21] Gordon N.. A hybrid bootstrap filter for target tracking in clutter. In IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 353-358
    [22] Hue C.. Le Cadre J. -P.. and P. Perez, Tracking multiple objects with particle filtering. IEEE Transactions On Aerospace and Electronic Systems, 2002, 38(3): 791-812
    [23] Hue C.. Le Cadre J. -P, and Perez P.. Sequential Monte Carlo methods for multiple target tracking and data fusion. IEEE Transactions on Signal Processing, 2002, 50(2): 309-325
    [24] Karlsson R. and Gustafsson F.. Monte Carlo data association for multiple target tracking. In Proceedings of the IEE International Seminar on Target Tracking: Algorithms and Applications, 2001, 1(13): 1-5
    [25] Schulz D.. Burgard W.. Fox D.. and Cremers A. B.. Tracking multiple moving targets with a mobile robot using particle filter and statistical data association. In Proceedings of the IEEE International Conference on Robotics and Automation, 2001: 1665-1670
    [26] S?rkk? S.. Vehtari A.. and Lampinen J.. Rao-Blackwellized Monte Carlo data association for multiple target tracking. In Proceedings of the SeventhInternational Conference on Information Fusion, 2004: 583-590
    [27] S?rkk? S.. Vehtari A.. and Lampinen, J. Rao-Blackwellized particle filter for multiple target tracking. Information Fusion, 2007, 8(1): 2-15
    [28] Anderson B. D. O. and Moore J. B.. Optimal filtering. New York: Dover Publications, 2005
    [29] Bar-Shalom Y.. Li X. R. and Kirubarajan T.. Estimation with Application to Tracking and Navigation, New York: John Wiley & Sons, 2001
    [30] Tugnait J. K.. Detection and estimation for abruptly changing systems. Automatica, 1982, 18: 606-615
    [31] Blom H. A. P.. An efficient filter for abruptly changing systems, Proceedings of the 23rd IEEE Conf. on Decision and Control, 1984: 656-658
    [32] Blom H. A. P and Bar-Shalom Y.. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Transaction on Automatic Control, 1988, 33(8): 780-783
    [33] Bar-Shalom Y.. Chang K. C. and Blom H. A. P.. Tracking a maneuvering target using input estimation versus the interaction multiple model algorithm. IEEE Transaction on Aerospace and Electronic Systems, 1989, AES-25(2): 296-300
    [34] Handschin J. E. and Mayne D. Q.. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. International Journal of Control, 1969, 9(5): 547-559
    [35] Gordon N.. Salmond D. J. and Smith A. F. M.. A novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113
    [36] Isard M. and Blake A.. CONDENSATION—conditional density propagation for visual tracking. International Journal Computer Vision, 1998, 29(1): 5-28
    [37] Kitagawa G.. Monte Carlo filtering and smoothing method for non-Gaussian nonlinear state-space models. Journal of Computational and Graphical Statistics, 1996, 5(1): 1-25
    [38] Kitagawa G.. Monte Carlo filter and smoother for non-Gaussian nonlinear state-space models. Journal of Computational and Graphical Statistics, 1996, 5(1): 1-25
    [39] Gordon N.. Salmond D. J.. and Ewing C.. Bayesian state estimation for tracking and guidance using the bootstrap filter. Journal Guidanc Cont. Dynamics, 1995, 18(6): 1434-1443
    [40] Crisan D.. Del Moral P.. T. Lyons, Discrete filtering using branching and interacting particle systems. Markov Processes and Related Fields, 1999, 5(3): 293-318
    [41] Rubin D. B.. Bayesian Statistics, Using the SIR algorithm to simulation posterior distribution. Oxford: Oxford University Press, 1988
    [42] Olivier Cappé, Simon J. Godsill, and Eric Moulines, An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 2007, 95(5): 899-924
    [43]姚剑敏.粒子滤波跟踪方法研究.中国科学院: [博士学位论文], 2005
    [44]陈坚.单目视频人体运动跟踪与获取技术研究.中国科学院: [博士学位论文], 2005
    [45]陈睿.基于概率模型的三维人体运动跟踪研究.中国科学院: [博士学位论文], 2005
    [46]李安平.复杂环境下的视频目标跟踪算法研究.上海交通大学: [博士学位论文], 2006
    [47]姜雪原.卫星姿态确定及敏感器误差修正的滤波算法研究.哈尔滨工业大学: [博士学位论文], 2006
    [48]杨小军.基于粒子滤波的混合估计理论与应用.西北工业大学: [博士学位论文], 2006
    [49]吴盘龙.防区外空面导弹制导系统关键技术研究.西北工业大学: [博士学位论文], 2005
    [50]朱胜利. Mean Shift及相关算法在视频跟踪中的研究.浙江大学: [博士学位论文], 2006
    [51]李良群.信息融合系统中的目标跟踪与数据关联技术研究.西安电子科技大学: [博士学位论文], 2007
    [52]刘洋.运动视觉中目标的精确提取与跟踪技术.西安电子科技大学: [博士学位论文], 2007
    [53]李涛.非线性滤波方法在导航系统中的应用研究.国防科技大学: [博士学位论文], 2003
    [54]刘凯.在单通道信号分离中的应用研究.中国科学技术大学: [博士学位论文], 2007
    [55]杨敬佩.基于GPS的无源雷达技术研究.南京理工大学: [博士学位论文], 2006
    [56]殷波.移动机器人同时定位与地图创建方法研究.中国海洋大学: [博士学位论文], 2006
    [57]胡士强,敬忠良.粒子滤波算法综述.控制与决策, 2005, 20(4): 361-365, 371
    [58]杨小军,潘泉等.粒子滤波进展与展望.控制理论与应用, 2006, 23(2): 261-267
    [59]袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器.电子学报, 2003, 31(7): 970-973
    [60]莫以为,萧德云.定性信号在混合状态与参数估计中的应用.清华大学学报(自然科学版), 2004, 44(10): 1356-1359
    [61]徐茂格,宋耀良,刘力维.基于修正扩展卡尔曼滤波和粒子滤波的混沌信号检测与跟踪.南京理工大学学报, 2007, 31(4): 514-517
    [62]徐乐,钟雄虎,裴承鸣.混合系统二维离散与连续状态同步估计研究.计算机仿真, 2007, 24(9): 72-75
    [63]唐和生等.结构损伤识别的序贯辅助粒子滤波方法.同济大学学报(自然科学版), 2007, 35(3): 309-314
    [64]陈养平,王来雄,黄士坦.基于粒子滤波的神经网络学习算法.武汉大学学报(工学版), 2006, 39(6): 86-88
    [65]杜正聪,唐斌,李可.混合退火粒子滤波器.物理学报, 2006, 55(3): 999-1004
    [66]方正,佟国峰,徐心和.粒子群优化粒子滤波方法.控制与决策, 2007, 22(3): 273-277
    [67]王来雄,陈养平,黄士坦.粒子滤波高效硬件实现的预采样策略.武汉大学学报(工学版), 2007, 40(2): 125-128
    [68]胡洪涛等.非高斯条件下基于粒子滤波的目标跟踪.上海交通大学学报, 2004, 38(12): 1996-1999
    [69]李少军,王宏,柴天佑.基于t-分布粒子滤波器的目标跟踪.机器人, 2006, 28(6): 598-604
    [70]程建等.基于粒子滤波的红外目标跟踪.红外与毫米波学报, 2006, 25(2): 113-117
    [71]谢恺等.天基红外低轨星座对目标的跟踪算法研究.宇航学报, 2007, 28(3):694-701
    [72]周寿军,陈武凡,王涌天.医学图像轮廓跟踪的广义模糊粒子滤波方法.计算机学报, 2005, 28(1): 88-96
    [73]庄严等.基于加权颜色直方图和粒子滤波的彩色物体跟踪.控制与决策, 2006, 21(8): 868-872
    [74]高建坡,王煜坚,杨浩等.以颜色和形状直方图为线索的粒子滤波人脸跟踪.中国图象图形学报, 2007, 12(3): 466-473
    [75]李静,陈兆乾,秦小麟.基于粒子滤波算法的非刚性目标实时跟踪.南京航空航天大学学报, 2006, 38(6): 775-779
    [76]马加庆,韩崇昭.一类基于信息融合的粒子滤波跟踪算法.光电工程, 2007, 34(4): 22-25
    [77]常发亮等.复杂环境下基于自适应粒子滤波器的目标跟踪.电子学报, 2006, 34(12): 2150-2153
    [78]周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法.电子学报, 2007, 35(2): 350-353
    [79]马丽,常发亮,乔谊正.基于遗传算法和粒子滤波器的非刚性目标跟踪.山东大学学报, 2006, 36(3): 26-29
    [80]雷云,丁晓青,王生进.嵌入粒子滤波中的AdaBoost跟踪器.清华大学学报(自然科学版), 2007, 47(7): 1141-1143
    [81]许廷发,姚剑敏,韦岗.约束的B-Snake模型的非线性粒子滤波算法研究.计算机仿真, 2007, 24(3): 207-209
    [82]邓宇,李振波,李华.基于视频的三维人体运动跟踪系统的设计与实现.计算机辅助设计与图形学学报, 2007, 19(6): 769-774
    [83]程光,罗予频,王宏宝.联合轮廓法在低分辨率视频下的多目标跟踪.计算机工程与应用, 2007, 43(2): 64-66
    [84]李青等.基于主元神经网络的非结构化道路跟踪.机器人, 2005, 27(3): 247-251
    [85]方正,佟国锋,徐心和.一种鲁棒高效的移动机器人定位方法.自动化学报, 2007, 33(1): 48-53
    [86]许士芳,谢立,刘济林.基于MCMC粒子滤波的机器人定位.浙江大学学报(工学版), 2007, 41(7): 1083-1087
    [87]厉茂海,洪炳熔,罗荣华.用改进的Rao-Blackwellised粒子滤波器实现移动机器人同时定位和地图创建.吉林大学学报(工学版), 2007, 37(2): 401-406
    [88]宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法.宇航学报, 2006, 27(4): 648-653
    [89]杨旭等.粒子滤波在卫星轨道确定中的应用.控制理论与应用, 2005, 22(4): 573-577
    [90]耿建中,肖业伦.自适应粒子滤波在卫星紫外导航中的应用.计算机仿真, 2007, 24(7): 27-30
    [91]李鹏等.探测器交会小天体的UPF自主导航方案.吉林大学学报(工学版), 2007, 37(3): 691-695
    [92]田世君,陈俊,皮亦鸣.粒子滤波在高动态GPS定位中的应用.测绘学报, 2007, 36(3): 274-278
    [93]丁杨斌,申功勋. Unscented粒子滤波在静基座捷联惯导系统大方位失准角初始对准中的应用研究.航空学报, 2007, 28(2): 397-401
    [94]萧德云,莫以为.基于混合系统状态估计的故障诊断.自动化学报, 2004, 30(6): 980-985
    [95]张柏,陈敏泽,周东华.一种非线性非高斯随机系统的故障诊断方法.控制工程, 2005, 12: 163-166
    [96]杨小军,潘泉,张洪才.基于Monte Carlo方法的自适应多模型诊断.控制理论与应用, 2005, 22(5): 723-727
    [97]邹冈,石章松,刘忠.传感器网络中的分布式粒子滤波被动跟踪比较研究.传感技术学报, 2007, 20(6): 1344-1348
    [98]李善仓等.无线传感器网络下的粒子滤波分布式目标跟踪算法.西安交通大学学报, 2007, 41(8): 912-917
    [99]颜振亚,郑宝玉,李世唐.能量有效的分布式粒子滤波.电子与信息学报, 2007, 29(7): 1638-1641
    [100]杨涛,郭心悦,胡波.频率选择性MIMO衰落信道中基于导频的软均衡算法.电子学报, 2007, 35(7): 1279-1284
    [101]王磊,刘郁林.基于粒子滤波器的盲辨识和盲均衡新算法.通信学报, 2006, 27(10): 132-135
    [102]田红波等.基于辅助粒子滤波的盲多用户检测快速算法.西安交通大学学报,2007, 41(6): 636-639
    [103] Miguez J.. Analysis of selection methods for cost-reference particle filtering with application to maneuvering target tracking and dynamic optimization. Digital Signal Processing, 2007, 17: 787-807
    [104] Bugallo M. F.. Xu S.. Djuric P. M.. Performance comparison of EKF and particle filtering methods for maneuvering targets. in Digital Signal Proceeding, 2007, 17(4): 774-786
    [105] Morelande M. R.. Challa S. S.. Manoeuvring target tracking in clutter using particle filters. IEEE Trans. Aerospace Electron. Syst, 2005, 41 (1): 252-270
    [106] Gatica-Perez D.. Lathoud G.. Jean-Marc Odobez, and Iain McCowan, Audiovisual Probabilistic Tracking of Multiple Speakers in Meetings.. IEEE Transaction on audio, speech, and language processing, 2007, 15(2): 602-616
    [107] Clark D. E.. Multiple Target tracking with the probability hypothesis density filter. [Doctor of Philosophy thesis], Heriot-Watt University, 2006
    [108] Vermaak J.. Godsill S. J.. and Perez P.. Monte Carlo filtering for multi-target tracking and data association. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (1): 309-332
    [109] Morelande M. R.. Kreucher C. M.. and Kastella K.. A Bayesian Approach to Multiple Taret Detection and Tracking. IEEE Transactions on Signal processing, 2007, 55(5): 1589-1604
    [110] Ng W.. Li J.. Godsill S.. and J. Vermaak, Tracking variable number of targets using sequential Monte Carlo methods. in Proceedings of the IEEE/SP 13th workshop on Statistical Signal Processing, 2005: 1286-1291
    [111] Ng W.. Li J.. Godsill S.. Online Multisensor-Multitarget detection and tracking. in Proceedings of the IEEE Aerospace Conference, 2006: 1-16
    [112] Kasturi R.. Goldgof D.. Soundararajan P.. Manohar V.. Boonstra M.. and Korzhova V.. Performance Evaluation Protocol for Face, Person and Vehicle Detection & Tracking in Video Analysis and Content Extraction (VACE-II), CLEAR - Classification of Events, Activities and Relationships. University of South Florida, 2006
    [113] Brown L. M.. Senior A. W.. Tian Y. L.. Connell J.. Hampapur A.. Shu C. F.. Merkl H. and Lu M.. Performance evaluation of surveillance systems under varying conditions. In Proceedings of the 6th International Workshop on Performance Evaluation of Tracking and Surveillance, Colorado, USA, 2005
    [114] Black J.. Ellis T. and Rosin P.. A novel method for video tracking performance analysis. In Proceedings of the 5th Workshop on Performance Evaluation of Tracking and Surveillance, 2003: 125-132
    [115] Balan A. O.. Sigal L.. and Black M. J.. A quantitative evaluation of video-based 3D person tracking. in IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005: 349-356
    [116] Wu H.. Sankaranarayanan A. C. and Chellappa R.. In Situ Evaluation of Tracking Algorithms Using Time Reversed Chains. IEEE Computer Society Conference on Computer Vision Pattern Recognition, 2007: 1-8
    [117] Smith K.. Gatica-Perez D.. Odobez J. -M.. and Ba S.. Evaluating multiobject tracking. in Proc. IEEE CVPR Workshop on Empirical Evaluation Methods on Computer Vision (CVPR-EEMCV), San Diego, CA, 2005, 3: 36-43
    [118] Li X. and Bar-Shalom Y.. Multisensor target tracking performance with bias compensation. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1139-1149
    [119] Xu X.. Li B.. Adaptive Rao-Blackwellised Particle filter and its evaluation for tracking in surveillance. IEEE Transactions on Image Processing, 2007, 16(3): 838-849
    [120] Bayes T.. An essay towards solving a problem in the doctrine of chances. The Philosophical Transactions, 1763, 53: 370-418
    [121] Robert C. P.. The Bayesian Choice. New York: Springer-Verlag, 2001
    [122] Doucet A.. de Freitas N. and Gordon N.. Sequential Monte Carlo Methods in Practice. New York: Springer-Verlag, 2001
    [123] Schon T. B.. Estimation of nonlinear dynamic systems: Theory and Applications, [Doctor of Philosophy thesis]. Linkopings universitet, Sweden, 2006
    [124] Fisher R.. On the absolute criterion for fitting frequency curves. Messenger of Mathematics, 1912, 41: 155-160
    [125] Liu J. S.. Monte Carlo Strategies in Science Computing. New York: Springer-Verlag, 2001
    [126] Bar-Shalom Y.. Li X. R.. and Kirubarajan T.. Estimation with Application to Tracking and Navigation. New York: Wiley, 2001
    [127] Arulampalam M. S.. Maskell S.. Gordon N.. and Clapp T.. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188
    [128] Ristic B.. Arulampalam M. S.. and Gordon N.. Beyond the Kalman Filter: Particle Filters for Tracking Application. Boston: Artech House Publishers, 2004
    [129] Murphy K. P.. Dynamic Bayesian Network: Representation, Inference and Learning. [Doctor of Philosophy thesis]. University of California, Berkeley, 2002
    [130] Bergman N.. Recursive Bayesian Estimation: Navigation and Tracking Application. [Doctor of Philosophy thesis]. Linkoping University, 1999
    [131] Crian D. and Doucet A.. A survey of convergence results on particle filtering methods for practitioners. IEEE Transactions on Signal Processing, 2002, 50(3): 736-746
    [132] Charniak A. R.. Bayesian Networks without tears. AI magazine. 1991, 12(4): 50-63
    [133] Jordan M. I.. Learning in Graphical Models. London: MIT Press, 1999
    [134] Carpenter J.. Clifford P.. and Fearnhead P.. Improved Particle Filter for Non-linear Problems. IEE Proceedings on Radar, Sonar, and Navigation, 1999, 146(1): 2-7
    [135] Metropolis N. and Ulm S.. The Monte Carlo Method. Journal American Statistical Association, 1949, 44: 335-341
    [136] Casella G. and Robert C. P.. Monte Carlo Statistical Methods. New York: Springer, 2005
    [137] Hammersley J. and Handscomb D.. Monte Carlo Methods. Monographs on Applied Probability and Statistics, Chapman and Hall, 1964
    [138] Rubinstein R. Y.. Simulation and the Monte Carlo Method, Wiley series in probability and mathematical statistics. New York: Wiley, 1981
    [139] Kalos M. H. and Whitlock P. A.. Monte Carlo methods, Volume I: Basics of Wiley-intersience publications. New York: Wiley, 1986
    [140] Iba Y.. Population Monte Carlo algorithms. Transaction of the Japanese Society for AI, 2001, 16(2): 279-286
    [141] Devroye L.. Non-Uniform Random Variate Generation. New York: Spring-Verlag, 1985
    [142] Dong Guo and Xiaodong Wang. Quasi-Monte Carlo Filtering in Nonlinear Dynamic Systems. IEEE Transactions on signal Proceesing, 2006, 54(6): 2087-2098
    [143] Casell G. and Robert C. P.. Rao-Blackwellization of sampling schemes. Biometrika, 1996, 83(1): 81-84
    [144] Schon T.. Gustafsson F.. and Nordlund P.. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 2005, 53(7): 2279-2289
    [145] Schon T.. Gustafsson F.. and Nordlund P. -J.. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans. Signal Process, 2005, 53(7): 2279-2289
    [146] Bernardo J. M. and Smith A. F. M.. Bayesian theory. Chicester: Wiley, 1994
    [147] Robert C. P. and Casella G.. Monte Carlo Statistical Methods. New York: Springer-Verlag, 1999
    [148] Metropolis N. C.. Rosenbluth A. W.. Rosenbluth M. N.. Teller A. H.. and Teller E.. Equations of state calculations by fast computing machine. Journal of Chemical Physics, 1953, 21: 1087-1091
    [149] Doucet A.. On Sequential Simulation-based Methods for Bayesian Filtering. Technical Report CUED/F-INFENG/TR. 310, Signal Processing Group, Department of Engineering, University of Cambridge, 1998
    [150] Ripley B. D.. Stochastic Simulation. New York: John Wiley, 1987
    [151] Geweke J.. Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econometrica, 1989, 57(6): 1317-1339
    [152] Liu J. S.. Metropolized Independent Sampling with Comparisons to Rejection Sampling and Importance Sampling. Statistics and Computing, 1996, 6: 113-119
    [153] Neal R. M.. Annealed Importance Sampling. Technical Report 9805, Department of Statistics and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 1998
    [154] Fearnhead P.. Sequential Monte Carlo methods in filter theory. [Doctor of Philosophy thesis]. Merton College, University of Oxford, 1998
    [155] Carpenter J.. Clifford P.. and Fearnhead P.. An Improved Particle Filter for Non-linear Problems. Radar, Sonar and Navigation, IEE Proceedings, 1999, 146(1): 2-7
    [156] Kullback S. and Leibler R.. On information and sufficiency. Annals of mathematical Statistics, 1951, 22(1): 79-86
    [157] Doucet A.. Godsill S. J.. and Andrieu C.. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197-208
    [158] Del Moral P.. Doucet A.. and Jasra A.. Sequential Monte Carlo samplers. J. Roy. Stat. Soc. Ser. B, 2006, 68(3): 411-436
    [159] Doucet A.. Briers M.. and Sénécal S.. Efficient block sampling strategies for sequential Monte Carlo methods. J. Comput. Graph. Statist., 2006, 15: 1-19
    [160] Kong A.. Liu J. S.. and Wong W. H.. Sequential imputations and Bayesian missing data problems. Journal of the American Statistical Association, 1994, 89(425): 278-288
    [161] Liu J. S.. and Chen R.. Sequential Monte Carlo Methods for Dynamic Systems. Journal of the American Statistical Association, 1998, 93(443): 1032-1044
    [162] Efron B.. The Bootstrap, Jackknife and Other Resampling Plans. Philadephia: SIAM, 1982
    [163] Quenouille M. H.. Notes on bias in estimate. Biometrika, 1956, 61: 353-360
    [164] Yang M. C. K.. and Robinson David H.. Understanding and Learning Statistics by Computer. Singapore: World Scientific, 1986
    [165] Rubin D. B.. Multiple Imputation for Nonresponse in Surveys. New York: Wiley, 1987
    [166] Douc R.. CappéO.. Moulines E.. Comparison of resampling schemes for particle filtering. in: Proceedings of the Fourth International Symposium on Image and Signal Processing and Analysis, 2005
    [167] Carpenter J.. Clifford P.. and Fearnhead P.. Building Robust Simulation-based Filters for Evolving Data Sets. Technological Report, Department of Statistics, Oxford University, 1998
    [168] Bolic M.. Djuric P. M.. Hong S.. Resampling algorithms and architectures for distributed particle filters. IEEE Trans. Signal Process, 2005, 53 (7): 2442-2450
    [169] Mussio C.. Oudjane N.. and LeGland F.. Improving Regularized Particle Filters. in Sequential Monte Carlo Methods in Practice, edited by A. Doucet, N. de Freitas, and N. Gordon, New York: Springer, 2001
    [170] Khan Z.. Balch T.. and Dellaert F.. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819
    [171] Khan Zia, Balch Tucker, and Dellaert Frank, MCMC Data Association and Sparse Factorization updating for real time multitarget tracking with merged and multiple measurements. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2006, 28(12): 1960-1972
    [172] Murphy K.. and Russell S.. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. in Sequential Monte Carlo Methods in Practice, edited by A.Doucet, N. de Freitas, and N. Gordon, New York: Springer, 2001
    [173] Pitt M. K. and Shephard N.. Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 1999, 94(446): 590-599
    [174] Arulampalam S.. Maskell S.. Gordon N.. and Clapp T.. A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing, 2002, 50(20): 174-188
    [175] Liu J. S.. and Chen R.. Sequential Monte Carlo methods for dynamic systems. Journal of American Statistical Association, 1998, 93(5): 1032-1044
    [176] Papavasiliou A.. A uniformly convergent adaptive particle filter. J. Appl. Probab., 2005, 42(4): 1053-1068
    [177] Clark D. E. and Bell J.. Convergence Results for the Particle PHD Filter. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2661
    [178] LeGland F.. Oudjane N.. Stability and Uniform Approximation of Nonlinear Filters using the Hilbert Metric, and Application to Particle Filters. The Annals of Applied Probability, 2004, 14(1): 144-187
    [179] Andrieu C.. de Freitas N.. and Doucet A.. Sequential MCMC for Bayesian model selection. In IEEE Higher Order Statistics Workshop, Ceasarea, Israel, 1999
    [180] Gannot S.. Burshtein D.. and Weinstein E.. Iterative and sequential Kalman filter-based speech enhancement algorithm. IEEE Transactions on Speech and Audio Processing, 1998, 6(4): 373-385
    [181] Scalart P. and Filho J. V.. Speech enhancement based on a priori signal to noise estimation. in 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, GA, USA, 1996: 629-632
    [182] Klein L. A.. Sensors and Data Fusion Concepts and Applications. SPIE Optical Engineering Press, 1993
    [183] Waltz E. L.. Llinas J.. Multisensor Data Fusion. Norwood: Artech House, 1990
    [184] Hall D. L.. Mathematical Techniques in Multisensor Data Fusion. Norwood: Artech House, 1992
    [185]王亮,胡卫明,谭铁牛.人运动的视觉分析综述.计算机学报, 2002, 25(3): 225-237
    [186] Buxton H.. Learning and understanding dynamic scene activity: A review. Image and Vision Computing, 2003, 21(1): 125-136
    [187] Sun Z.. Bebis G.. and Miller R.. On-road vehicle detection: A review. IEEE Trans. Pattern Analysis and Machine Intelligence, 2006, 28(5): 694-711
    [188] Kastrinaki V.. Zervakis M.. and Kalaitzakis K.. A survey of video processing techniques for traffic applications. Image Vision and Computing, 2003, 21(4): 359-381
    [189] Liao L.. Patterson D. J.. Fox D.. and Kautz H.. Learning and inferring transportation routines. Artificial Intelligence, 2007, 171(5-6): 311-331
    [190] Rabie T.. Auda G.. El-Rabbany A.. Shalaby A.. and Abdulhai B.. Active-vision- based traffic surveillance and control. In Proceedings of the International Conference on Vision Interface, 2001, VI 2001: 87-93
    [191] Paragios N.. A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Transactions on Medical Imaging, 2003, 22(6): 773-776
    [192] Sminchisescu C. and Triggs B.. Kinematics jump processes for monocular 3D human tracking. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2003, 1: 69-76
    [193] Pupilli M. and Calway A. Real-time camera tracking using a particle filter. In Proceedings of the British Machine Vision Conference, 2005: 519-528
    [194] Coen M.. Design principle for intelligent environments. In Proceedings of the American Association Conference on Artificial Intelligence, 1998: 547-554
    [195] Kang J.. Cohen I.. and Medioni G.. Soccer player tracking across uncalibrated camera streams. IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2003, Nice, France
    [196] Orwell J.. Remagnino P.. and Jones G.. Multi-camera color tracking. In Proceedings of the International Workshop on Visual Surveillance, 1999
    [197] R. Kalman, A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 1960, 82(D): 35-45
    [198] Welch G. and Bishop G.. An introduction to Kalman filter. In UNC-Chapter Hill, Technical Report, 2002, TR 95-041: 1-16
    [199] Isard M. and Blake A.. CONDENSATION-conditional density propagation for visual tracking. International Journal on Computer Vision, 1998, 1(29): 5-28
    [200] Isard M.. and Blake A.. ICONDENSATION: Unifying low-level and high-level tracking in a stochastic framework. In Proceedings of the European Conference on Computer Vision, 1998, 1(1): 893-908
    [201] Isard M.. Visual Motion Analysis by Probabilistic Propagation of Conditional Density. Oxford: Oxford University, 1998
    [202] Nummiaro K. and Koller-Meier E.. Gool L. V.. An adaptive color-based particle filter. Image and Vision Computing, 2003, 1(21): 99-110
    [203] Zhou S.. Chellappa R. and Moghaddam B.. Adaptive visual tracking and recognition using particle filters. In Proceedings of the International Conference on Multimedia and EXPO, 2003
    [204] Pérez P.. Hue C.. Vermaak J.. and Gangnet M.. Color-based probabilistic tracking. In Proceedings of the European Conference on Computer Vision, 2002, 2350: 661-675
    [205] Chang C. and Ansari R.. Kernel particle filter for visual tracking. IEEE Signal Processing Letters., 2005, 12(3): 242–245
    [206] Zhai Y.. Yeary M. et. al.. Visual Tracking Using Sequential Importance Sampling with a State Partition Technique. Proc. of IEEE ICIP, 2005, 3: 876 - 879
    [207] Shan C.. Tan T.. and Wei Y.. Real-time hand tracking using a mean shift embedded particle filter. pattern recognition, 2007, 40(7): 1958-1970
    [208] Maggio E. and Cavallaro A.. Hybrid particle filter and mean shift tracker with adaptive transition model. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2005, 2: 221-224
    [209] Wang J.. Chen X.. and Gao W.. Online selecting discriminative tracking features using particle filter. In Int. Conf. on Computer Vision and Pattern Recognition, 2005: 1037-1042
    [210] Blake A.. Yuille A.. Active Vision. The MIT Process, 1992
    [211] Rathi Y.. Vaswani N.. Tannenbaum A.. and Yezzi A.. Particle filtering for geometric active contours and application to tracking deforming objects. in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2005
    [212] Rathi Y.. Vaswani N.. Tannenbaum A.. and Yezzi A.. Tracking Deforming objects usng particle filtering for Geometric Active Contours. IEEE Transactions on Pattern analysis and machine intelligence, 2007, 29(8): 1470-1475
    [213] Pérez P.. Hue C.. Vermaak J.. Gangnet M.. Color-based probabilistic tracking. In Proceedings of the European Conference on Computer Vision, 2002, 1: 661-675
    [214] Grove T.. Baker K.. Tan T.. Color based object tracking. In Proceedings of the International Conference on Pattern Recognition, 1998, 2: 1442-1444
    [215] Comaniciu D.. Ramesh V.. Meer P.. Real-time tracking of non-rigid objects using mean shift. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2000, 2: 142-149
    [216] Nummiaro K.. Koller-Meier E.. Gool L. V.. A color-based particle filter. In Proceedings of the International Conference on Computer Vision, 1998: 1006-1011
    [217] Vermaak J.. Pérez P.. Gangnet M.. Blake A.. Towards improved observation models for visual tracking, Selective adaptation. In Proceedings of the European Conference on Computer Vision, 2002, 2350: 645-660
    [218] Pupilli M. and Calway A.. Real-time camera tracking using known 3D models and a particle filter. In Intl. Conference on Pattern Recognition, 2006: 199-203
    [219] Schweiger R.. Neumann H.. Ritter W.. Multiple-cue data fusion with particle filters for vehicle detection in night view automative applications. in: Proc. of IEEE Intelligent Vehicles Symposium, 2005: 753-758
    [220] Greiffenhagen M.. Ramesh V.. Comaniciu D.. Niemann H.. Statistical modeling and performance characterization of a real-time dual camera surveillance system. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2000, 2: 335-342
    [221] Kettnakeer V.. Zabih R.. Bayesian multi-camera surveillance. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, 1999: 253-259
    [222] Anup S. and Huber M.. Particle filter based object tracking in a stereo vision system. Proceedings of the 2006 IEEE International Conference on Robotics amd Automation, 2006: 2409-2415
    [223] Doubek P.. Svoboda T.. Gool L. V.. Monkeys-a software architecture for ViRoom-low-cost multicamera system. In Proceedings of the International Conference on Vision Systems, 2003: 386-395
    [224] Everingham M.. Thomas B.. Supervised segmentation and tracking of non-rigid objects using a“mixture of histogram”model. In Proceedings of the International Conference on Image Proceeding, 2001: 62-65
    [225] Gevers T.. Smeulders A.. Color based object recognition. Pattern Recognition 32, 1999: 453-464
    [226] Mindru F.. Tuytelaars T.. Gool L. V.. Moons T.. Moment invariants for recognition under changing viewpoint and illumination. Computer Vision and Image Understanding, 2004, 94(1-3): 3-27
    [227] Nummiaro K.. Koller-Meier E.. Gool L. V.. An adaptive color-based particle filter. Image and Vision Coputing, 2003, 21(1): 99-110
    [228] Li J.. Shua C.. Transductive inference for color-based particle filter object tracking. In Proceedings of the International Workshop on Performance Evaluation and Tracking Surveillance, 2003, 3: 945-952
    [229] Rubner Y.. Tomasi C.. Guidas L.. A metric for distributions with applications toimage databases. In Proceedings of the International Conference on Computer Vision, 1998: 59-66
    [230] Rao A.. Srihari R. K.. Zhang Z.. Spatial color histograms for content-based image retrieval. In Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, 1999: 183-186
    [231] Huang J.. Color-Spatial Image Indexing and Applications. [Doctor of Philosophy thesis]. Cornell University, 1998
    [232] Vasconcelos N.. Lippman A.. A unifying view of image similarity. In Proceedings of the International Conference on Pattern Recognition, 2000, 1: 38-41
    [233] Stricker M.. Orengo M.. Similarity of color images. In Proceedings of the Strong and Retrieval for Image and Video Databases, 1995: 381-392
    [234] Degroot M.. Probability and Statistics. the 3rd edition, MA: Addison-Wesley, 1991
    [235] Aherne F.. Thacker N.. Rockett P.. The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika, 1997, 32(4): 1-7
    [236] Comaniciu D.. Ramesh V.. Meer P.. Real-time tracking of non-rigid objects using mean shift. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2000, 2: 142-149
    [237] Nummiaro K.. Koller-Meier E.. Gool L. V.. A color-based particle filter. In Proceeding of the 1st International Workshop on Generative-Model-Based Vision, in conjunction with ECCV’02, 2002: 53-60
    [238] Bhattacharyya A.. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Mathematical Society 35, 1943: 99-110
    [239] Kailath T.. The divergence and Bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology COM15, 1967, 1: 52-60
    [240] Fukunaga K.. Introduction to Statistical Pattern Recognition. Academic Press, 1990
    [241] Kreucher C.. Kastella K.. and Hero A. O. III, Particle filtering for multitarget detection and tracking. in Proceedings of The Twenty Sixth Annual IEEE Aerospace Conference, 2005
    [242] Yang C.. Duraiswami R.. and Davis L. S.. Fast multiple object tracking via a hierarchical particle filter. In Int. Conf. on Computer Vision, 2005, I: 212-219
    [243] Vo B. -N.. Singh S. S.. and Doucet A.. Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Aerosp. Electron. Syst. Mag.,2007
    [244] Vihola M.. Rao-Blackwellised Particle Filtering in Random Set Multitarget Tracking. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 689-705
    [245] Godsill S. and Vermaak J.. Variable rate particle filters for tracking application. in Proceedings of the IEEE/SP 13th workshop on Statistical Signal Processing, 2005, 1280-1285
    [246] Ng W.. Li J.. and Godsill S.. Online multisensor-multitarget detection and tracking using variable rate particle filters. Aerospace Conference, 2007: 1-16
    [247] Blackman S.. and Popoli R.. Design and analysis of modern tracking systems. Norwood: Artech House, 1999
    [248] Hall D.. Mathematical techniques in multi-sensor data fusion. Norwood: Artech House, 1992
    [249] Li X.. Tracking in clutter with strongest neighbor measurements. IEEE Trans. on Automatic Control, 1998, 43(11): 1560-1578
    [250] Blackman S.. Multiple-target tracking with radar applications. Norwood: Artech House, 1986
    [251] North B.. Blake A.. Isard M.. and Rittscher J.. Learning and Classification of Complex Dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(9): 1016-1034
    [252] Vermaak J.. Doucet A.. and Pèrez P.. Maintaining Multi-modality through Mixture Tracking. In International Conference on Computer Vision, 2003, (II): 1110-1116
    [253] Okuma K.. Taleghani A.. de Freitas J. F. G.. Little J. J.. and Lowe D. G.. A Boosted Particle Filter: Multitarget Detection and Tracking. In European Conference on Computer Vision, 2004, I: 28-39
    [254] Viola P. and Jones M. J.. Robust Real-Time Face Detection. International Journal on Computer Vision, 2004, 57(2): 137-154
    [255] Ellis Tim. Performance metrics and methods for tracking in surveillance. In Proceedings 3rd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance(PETS’02), 2002: 26-31
    [256] Cigdem Eroglu Erdem, Murat Tekalp A.. and Bulent Sankur. Metrics for performance evaluation of video object segmentation and tracking without ground-truth. In International Conference on Image Processing(ICIP’01), 2001, 2: 69-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700