HIV-1 Tat蛋白对HSV-2激活KSHV裂解性周期复制的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卡波济肉瘤(Kaposi's sarcoma,KS)是获得性免疫缺陷综合征(acquired immunodeficiency syndrome,AIDS)患者晚期发生率最高的恶性肿瘤。既往研究证实,其病原卡波济肉瘤相关疱疹病毒(Kaposi's sarcoma-associated herpesvirus,KSHV)不能独立引发KS,还需要协同因子的参与。然而促使KSHV引发KS的因素目前还未完全清楚。已经证明,人类单纯疱疹病毒1型(herpes simplex virus 1,HSV-1)、人巨细胞病毒(human cytomegalovirus,HCMV)、人类疱疹病毒6型(human herpesvirus 6,HHV-6)和人类免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)反式激活蛋白(transactivative transcription protein,Tat)是激活KSHV裂解性周期复制的重要协同因子。鉴于HIV-1血清阳性人群中人类单纯疱疹病毒2型(human herpes simplex virus-2,HSV-2)阳性率远高于HIV-1阴性人群,HSV-2与HIV-1之间密切相关,本研究我们进一步探讨了HSV-2影响KSHV复制的潜能以及HIV-1 Tat对该过程的影响。
     实验首先将HSV-2标准株333感染原发性渗出性淋巴瘤【primary effusion lymphoma,PEL,又称体腔渗出性淋巴瘤(bodycavity-based lymphoma,BCBL)】来源的BCBL-1细胞,Western blot结果显示,HSV-2感染BCBL-1细胞72 h后HSV-2型特异性糖蛋白G-2(glycoprotein G-2,gG-2)开始稳定表达。实时荧光定量聚合酶链式反应(Real-time quantitative polymerase chain reaction,Real-timePCR)检测结果表明,HSV-2感染可以诱导KSHV ORF50(KSHV周期复制的开关基因)、ORF26(编码KSHV次要衣壳蛋白)和ORF29(编码KSHV包装相关蛋白)mRNA转录水平升高。与对照组比较,HSV-2感染组3、6、12、24、48、72和96 h ORF50 mRNA水平分别升高了9.92、2.55、227、31.6、6.6、75和3.02倍(P<0.05)。类似地,ORF26 mRNA表达水平在3~96 h也呈现不同程度的升高,而ORF29 mRNA表达水平的升高集中在48~96 h。免疫荧光测定(immunofluorescence assay,IFA)结果显示,HSV-2感染BCBL-1同时还可诱导KSHV裂解周期蛋白的表达。虫荧光素酶报告实验验证了HSV-2对ORF50启动子的直接激活作用。
     进一步将HIV-1 Tat质粒转染HSV-2感染的BCBL-1细胞,采用Real-time PCR和Western blot分别检测KSHV ORF26 mRNA转录和病毒白细胞介素6(Viral Interleukin-6,vIL-6)的表达。与单纯HSV-2感染比较,KSHV ORF26 mRNA转录水平在6、24、48和72 h分别升高了3.92、1.67、2.74和1.82倍(P<0.05),vIL-6表达水平在6~72 h同样有不同程度的升高。虫荧光素酶报告实验显示,Tat可以增强HSV-2激活KSHV ORF 50启动子活性。
     以上结果提示,HSV-2可能通过诱导KSHV复制来提高病毒载量从而参与KS的致病过程;HIV-1 Tat能够增强HSV-2对KSHV的激活作用。
Patients with acquired immunodeficiency syndrome (AIDS) commonly suffer from opportunistic infections associated with members of the herpes virus family. Kaposi's sarcoma-associated herpesvirus (KSHV) infection appears to be necessary but not enough for Kaposi's sarcoma (KS) development without other cofactors. Previously, we identified that both human herpesvirus 6 and human immunodeficiency virus type 1 Tat were important cofactors that activated lytic cycle replication of KSHV. To investigate whether herpes simplex virus type 2 (HSV-2) influence replication of KSHV and what the role of HIV-1 Tat is in this procedure, HSV-2 strain 333 was used to infect BCBL-1 cell. Production of lytic phase mRNA transcripts, viral proteins and infectious viral particles in BCBL-1 cells were determined with reverse transcription polymerase chain reaction (RT-PCR), real-time quantitative PCR (Real-time PCR) and Western blot. As expected, we showed that HSV-2 was a potentially important factor in the pathogenesis of KS. Compared with control, the mRNA transcription level of ORF50 (switch gene of KSHV cycle replication) was increased 9.92, 2.55, 227, 31.6, 6.6, 75 and 3.02-fold, respectively (P < 0.05) in HSV-2 infected BCBL-1 cells at 3, 6, 12, 24, 48 and 96 h. Similarly, ORF26 (encoding KSHV minor capsid protein) mRNA transcription level was increased from 3 to 96 h, and ORF29 (encoding KSHV package associated protein) mRNA transcription level was increased from 48 to 96 h. The results were further confirmed by a luciferase reporter assay testing ORF50 promoter-driven luciferase activity.
     Furthermore, we showed that HIV-1 Tat significantly increased the lytic replication of KSHV induced by HSV-2. Compared with corresponding control, ORF26 mRNA level in Tat-transfected BCBL-1 cells infected by HSV-2 was increased 3.92, 1.67, 2.74 and 1.82-fold (P < 0.05) at 6, 24, 48 and 72 h, respectively. The expression level of KSHV vIL-6 was also increased from 6 to 72 h. These findings suggest that HSV-2 may participate in KS pathogenesis by inducing KSHV replication and increasing KSHV viral load. These data also suggest that HSV-2 collaborates with HIV-1 Tat in the pathogenesis of AIDS-related KS patients.
引文
1. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science. 1994;266:1865-1869.
    2. Hengge UR, Ruzicka T, Tyring SK, et al. Update on Kaposi's sarcoma and other HHV8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. Lancet Infect Dis. 2002;2:281-292.
    3. Cesarman E, Chang Y, Moore PS, et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186-1191.
    4. Soulier J, Grollet L, Oksenhendler E, et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood. 1995;86:1276-1280.
    5. Knowles DM, Cesarman E. The Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) in Kaposi's sarcoma, malignant lymphoma, and other diseases. Ann Oncol. 1997;8 Suppl 2:123-129.
    6. Kedes DH, Lagunoff M, Renne R, et al. Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J Clin Invest. 1997;100:2606-2610.
    7. Teruya-Feldstein J, Zauber P, Setsuda JE, et al. Expression of human herpesvirus-8 oncogene and cytokine homologues in an HIV-seronegative patient with multicentric Castleman's disease and primary effusion lymphoma. Lab Invest. 1998;78:1637-1642.
    8. Sarid R, Flore O, Bohenzky RA, et al. Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol. 1998;72:1005-1012.
    9. Sun R, Lin SF, Staskus K, et al. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol. 1999;73:2232-2242.
    10. Deng H, Liang Y, Sun R. Regulation of KSHV lytic gene expression. Curr Top Microbiol Immunol. 2007;312:157-183.
    11. Zhong W, Wang H, Herndier B, et al. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci U S A. 1996;93:6641-6646.
    12. Aoki Y, Tosato G. Interactions between HIV-1 Tat and KSHV. Curr Top Microbiol Immunol. 2007;312:309-326.
    13. Zeng Y, Zhang X, Huang Z, et al. Intracellular Tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol. 2007;81:2401-2417.
    14. Sarmati L, Babudieri S, Longo B, et al. Human herpesvirus 8 and human herpesvirus 2 infections in prison population. J Med Virol. 2007;79:167-173.
    15. Suligoi B, Danaya RT, Sarmati L, et al. Infection with human immunodeficiency virus, herpes simplex virus type 2, and human herpes virus 8 in remote villages of southwestern Papua New Guinea. Am J Trop Med Hyg. 2005;72:33-36.
    16. Volpi A, Sarmati L, Suligoi B, et al. Correlates of human herpes virus-8 and herpes simplex virus type 2 infections in Northern Cameroon. J Med Virol. 2004;74:467-472.
    17. Lu C, Gordon GM, Chandran B, et al. Human herpesvirus 8 reactivation and human immunodeficiency virus type 1 gp120. Arch Pathol Lab Med. 2002; 126:941-946.
    18. McAllister SC, Hansen SG, Messaoudi I, et al. Increased efficiency of phorbol ester-induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus during S phase. J Virol. 2005;79:2626-2630.
    19. Foreman KE, Friborg J, Jr., Kong WP, et al. Propagation of a human herpesvirus from AIDS-associated Kaposi's sarcoma. N Engl J Med. 1997;336:163-171.
    20. Malope BI, MacPhail P, Mbisa G, et al. No evidence of sexual transmission of Kaposi's sarcoma herpes virus in a heterosexual South African population. AIDS. 2008;22:519-526.
    21. Qin D, Zeng Y, Qian C, et al. Induction of lytic cycle replication of Kaposi's sarcoma-associated herpesvirus by herpes simplex virus type 1: involvement of IL-10 and IL-4. Cell Microbiol. 2007;10:713-728.
    22. Vieira J, O'Hearn P, Kimball L, et al. Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol. 2001;75:1378-1386.
    23. Huang LM, Chao MF, Chen MY, et al. Reciprocal regulatory interaction between human herpesvirus 8 and human immunodeficiency virus type 1. J Biol Chem. 2001;276:13427-13432.
    24. Jiang Y, Xu D, Zhao Y, et al. Mutual Inhibition between Kaposi's Sarcoma-Associated Herpesvirus and Epstein-Barr Virus Lytic Replication Initiators in Dually-Infected Primary Effusion Lymphoma. PLoS ONE. 2008;3:e1569.
    25. Lu C, Zeng Y, Huang Z, et al. Human herpesvirus 6 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus. Am J Pathol.2005;166:173-183.
    26. Sun R, Lin SF, Gradoville L, et al. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A. 1998;95:10866-10871.
    27. Deng H, Young A, Sun R. Auto-activation of the rta gene of human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus. J Gen Virol. 2000;81:3043-3048.
    28. Ao TT, Sam NE, Masenga EJ, et al. Human immunodeficiency virus type 1 among bar and hotel workers in northern Tanzania: the role of alcohol, sexual behavior, and herpes simplex virus type 2. Sex Transm Dis. 2006;33:163-169.
    29. McClelland RS, Wang CC, Overbaugh J, et al. Association between cervical shedding of herpes simplex virus and HIV-1. AIDS. 2002;16:2425-2430.
    30.Gwanzura L,McFarland W,Alexander D,et al.Association between human immunodeficiency virus and herpes simplex virus type 2seropositivity among male factory workers in Zimbabwe.J Infect Dis.1998;177:481-484.
    31.Augenbraun M,Feldman J,Chirgwin K,et al.Increased genital shedding of herpes simplex virus type 2 in HIV-seropositive women.Ann Intern Med.1995;123:845-847.
    32.Kucera LS,Leake E,Iyer N,et al.Human immunodeficiency virus type 1(HIV-1)and herpes simplex virus type 2(HSV-2)can coinfect and simultaneously replicate in the same human CD4+ cell:effect of coinfection on infectious HSV-2 and HIV-1 replication.AIDS Res Hum Retroviruses.1990;6:641-647.
    33.卢春,黄丽,曾怡,等.HHV-8 ORF50启动子区序列分离、鉴定及在293细胞中启动活性分析.南京医科大学学报(自然科学版).2003;23:523-526.
    34.Wu Y,Marsh JW.Gene transcription in HIV infection.Microbes Infect.2003;5:1023-1027.
    35.Fanales-Belasio E,Cafaro A,Cara A,et al.HIV-1 Tat-based vaccines:from basic science to clinical trials.DNA Cell Biol.2002;21:599-610.
    36. Devadas K, Boykins RA, Hardegen NJ, et al. Selective side-chain modification of cysteine and arginine residues blocks pathogenic activity of HIV-1-Tat functional peptides. Peptides. 2006;27:611-621.
    37. Tremblay M, Gornitsky M, Wainberg MA. Active replication of human immunodeficiency virus type 1 by peripheral blood mononuclear cells following coincubation with herpes viruses. J Med Virol. 1989;29:109-114.
    38. Gendelman HE, Phelps W, Feigenbaum L, et al. Trans-activation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses. Proc Natl Acad Sci U S A. 1986;83:9759-9763.
    39. Moriuchi M, Moriuchi H, Williams R, et al. Herpes simplex virus infection induces replication of human immunodeficiency virus type 1. Virology. 2000;278:534-540.
    40. Ostrove JM, Leonard J, Weck KE, et al. Activation of the human immunodeficiency virus by herpes simplex virus type 1. J Virol. 1987;61:3726-3732.
    41. Schafer SL, Vlach J, Pitha PM. Cooperation between herpes simplex virus type 1-encoded ICPO and Tat to support transcription of human immunodeficiency virus type 1 long terminal repeat in vivo can occur in the absence of the TAR binding site. J Virol. 1996;70:6937-6946.
    42. Zhao J, Punj V, Matta H, et al. K13 Blocks KSHV Lytic Replication and Deregulates vIL6 and hIL6 Expression: A Model of Lytic Replication Induced Clonal Selection in Viral Oncogenesis. PLoS ONE.2007;2:e1067.
    43. Thirunarayanan N, Cifire F, Fichtner I, et al. Enhanced tumorigenicity of fibroblasts transformed with human herpesvirus 8 chemokine receptor vGPCR by successive passage in nude and immunocompetent mice. Oncogene. 2007;26:5702-5712.
    44. Burger M, Hartmann T, Burger JA, et al. KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway. Oncogene. 2005;24:2067-2075.
    1.Chang Y,Cesarman E,Pessin MS,et al.Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.Science.1994;266:1865-1869.
    2.Knowles DM,Cesarman E.The Kaposi's sarcoma-associated herpesvirus(human herpesvirus-8)in Kaposi's sarcoma,malignant lymphoma, and other diseases. Ann Oncol. 1997;8 Suppl 2:123-129.
    3. Sun R, Lin SF, Staskus K, et al. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol. 1999;73:2232-2242.
    4. Sarid R, Flore O, Bohenzky RA, et al. Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol. 1998;72:1005-1012.
    5. Sun R, Lin SF, Gradoville L, et al. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A. 1998;95:10866-10871.
    6. Lukac DM, Kirshner JR, Ganem D. Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol. 1999;73:9348-9361.
    7. Gradoville L, Gerlach J, Grogan E, et al. Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol. 2000;74:6207-6212.
    8. Saveliev A, Zhu F, Yuan Y. Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus. Virology. 2002;299:301-314.
    9. Wang SE, Wu FY, Yu Y, et al. CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol. 2003;77:9590-9612.
    10. Deng H, Young A, Sun R. Auto-activation of the rta gene of human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus. J Gen Virol. 2000;81:3043-3048.
    11. Lan K, Murakami M, Choudhuri T, et al. Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency. Virology. 2006;351:393-403.
    12. Chang PJ, Shedd D, Miller G. Two subclasses of Kaposi's sarcoma-associated herpesvirus lytic cycle promoters distinguished by open reading frame 50 mutant proteins that are deficient in binding to DNA. J Virol. 2005;79:8750-8763.
    13. Cannon M, Cesarman E, Boshoff C. KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood. 2006;107:277-284.
    14. Matsumura S, Fujita Y, Gomez E, et al. Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol. 2005;79:8493-8505.
    15. Cesarman E, Moore PS, Rao PH, et al. In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood. 1995;86:2708-2714.
    16. Chen J, Ueda K, Sakakibara S, et al. Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci U S A. 2001;98:4119-4124.
    17. Curreli F, Friedman-Kien AE, Flore O. Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J Clin Invest. 2005;115:642-652.
    18. Deutsch E, Cohen A, Kazimirsky G, et al. Role of protein kinase C delta in reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol. 2004;78:10187-10192.
    19. Ye FC, Blackbourn DJ, Mengel M, et al Kaposi's sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via AP-1 and Etsl. J Virol. 2007;81:3980-3991.
    20. Wang J, Zhang J, Zhang L, et al. Modulation of human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J Virol. 2005;79:2420-2431.
    21. Chang M, Brown HJ, Collado-Hidalgo A, et al. beta-Adrenoreceptors reactivate Kaposi's sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol. 2005;79:13538-13547.
    22. Ye FC, Zhou FC, Xie JP, et al. Kaposi's Sarcoma-Associated Herpesvirus Latent Gene vFLIP Inhibits Viral Lytic Replication through NF-{kappa}B-Mediated Suppression of the AP-1 Pathway: A Novel Mechanism of Virus Control of Latency. J Virol. 2008.
    23. Jacobs SA, Vidnovic N, Patel H, et al. Durable remission of HIV-negative, Kaposi's sarcoma herpes virus-associated multicentric Castleman disease in patient with rheumatoid arthritis treated with methotrexate. Clin Rheumatol. 2007;26:1148-1150.
    24. Wong EL, Damania B. Transcriptional regulation of the Kaposi's sarcoma-associated herpesvirus K15 gene. J Virol. 2006;80:1385-1392.
    25. Song MJ, Li X, Brown HJ, et al. Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol. 2002;76:5000-5013.
    26. Kliche S, Nagel W, Kremmer E, et al. Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol Cell. 2001;7:833-843.
    27. McCormick C, Ganem D. The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science. 2005;307:739-741.
    28. Song MJ, Deng H, Sun R. Comparative study of regulation of RTA-responsive genes in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol. 2003;77:9451-9462.
    29. Chang PJ, Shedd D, Gradoville L, et al. Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol. 2002;76:3168-3178.
    30. Lukac DM, Garibyan L, Kirshner JR, et al. DNA binding by Kaposi's sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. J Virol. 2001;75:6786-6799.
    31. Liang Y, Chang J, Lynch SJ, et al. The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev. 2002;16:1977-1989.
    32. Nicholas J, Ruvolo VR, Burns WH, et al Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med. 1997;3:287-292.
    33. Deng H, Song MJ, Chu JT, et al. Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J Virol. 2002;76:8252-8264.
    34. Staskus KA, Sun R, Miller G, et al. Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. J Virol. 1999;73:4181-4187.
    35. Chiou CJ, Poole LJ, Kim PS, et al. Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J Virol. 2002;76:3421-3439.
    36. Liang Y, Ganem D. RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi's sarcoma-associated herpesvirus by the lytic switch protein RTA. J Virol. 2004;78:6818-6826.
    37. Zhang J, Wang J, Wood C, et al. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 replication and transcription activator regulates viral and cellular genes via interferon-stimulated response elements. J Virol. 2005;79:5640-5652.
    38. Lin CL, Li H, Wang Y, et al. Kaposi's sarcoma-associated herpesvirus lytic origin (ori-Lyt)-dependent DNA replication: identification of the ori-Lyt and association of K8 bZip protein with the origin. J Virol. 2003;77:5578-5588.
    39. Wang Y, Chong OT, Yuan Y. Differential regulation of K8 gene expression in immediate-early and delayed-early stages of Kaposi's sarcoma-associated herpesvirus. Virology. 2004;325:149-163.
    40. Seaman WT, Quinlivan EB. Lytic switch protein (ORF50) response element in the Kaposi's sarcoma-associated herpesvirus K8 promoter is located within but does not require a palindromic structure. Virology. 2003;310:72-84.
    41. Chen J, Ueda K, Sakakibara S, et al. Transcriptional regulation of the Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor gene. J Virol. 2000;74:8623-8634.
    42. Ueda K, Ishikawa K, Nishimura K, et al. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gene through two distinct cis elements by a non-DNA-binding mechanism. J Virol. 2002;76:12044-12054.
    43. Lan K, Kuppers DA, Robertson ES. Kaposi's sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jkappa, the major downstream effector of the Notch signaling pathway. J Virol. 2005;79:3468-3478.
    44. Chang H, Dittmer DP, Shin YC, et al Role of Notch signal transduction in Kaposi's sarcoma-associated herpesvirus gene expression. J Virol. 2005;79:14371-14382.
    45. Liang Y, Ganem D. Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci U S A. 2003;100:8490-8495.
    46. Gwack Y, Hwang S, Lim C, et al. Kaposi's Sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem. 2002;277:6438-6442.
    47. Gwack Y, Baek HJ, Nakamura H, et al. Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol. 2003;23:2055-2067.
    48. Gwack Y, Nakamura H, Lee SH, et al. Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol. 2003;23:8282-8294.
    49. Izumiya Y, Ellison TJ, Yeh ET, et al. Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol. 2005;79:9912-9925.
    50. Malik P, Blackbourn DJ, Cheng MF, et al. Functional co-operation between the Kaposi's sarcoma-associated herpesvirus ORF57 and ORF50 regulatory proteins. J Gen Virol. 2004;85:2155-2166.
    51. Yu Y, Wang SE, Hayward GS. The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity. 2005;22:59-70.
    52. Song MJ, Hwang S, Wong W, et al. The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses. J Virol. 2004;78:12940-12950.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700