光干涉图像的滤波和骨架化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光技术和计算机技术的快速发展,现代光学测量技术已经广泛应用于微位移测量、波面复原及物体表面形貌重构等科研和和工程领域。与传统的光学测量技术相比,现代光学测量技术有很多优点,比如高精度、高灵敏度、数据处理灵活。因此,吸引了大量的实验和理论研究,实验研究主要体现在测试方法多种多样,诸如激光全息干涉法、电子散斑干涉法、云纹干涉法等,虽然各种测量技术的具体方法有所差别,但现代光学测量技术总是通过光干涉图像的形式表征测量场的物理属性,对光干涉图像的数据处理模型和算法理论进行研究是现代光学测量技术中的必备环节。在本论文中,作者主要开展光测条纹的数据处理模型和算法研究,在图像建模的基础上,提出了几种光干涉图像的滤波算法和骨架化算法,并通过对具体干涉图分析说明了算法的性能,主要研究工作概述如下:
     提出了基于离散拓扑分析的干涉图滤波算法。作者通过分析基于拓扑梯度滤波模型的原理和特性,发现该模型的滤波算法计算时间长、后续处理复杂。基于此,作者基于拓扑渐进展开理论,将传统拓扑梯度滤波模型中按照像素扰动的思想转换为根据像素边界进行扰动的思想,将拓扑分析滤波的方法应用在干涉图去噪问题上。数值实验和实际干涉图分析表明:该模型和算法可以应用于快速的干涉图像滤波处理和噪声不太大的干涉图滤波处理。
     提出了基于贝叶斯估计和复值马尔科夫随机场(Complex-valued Markov Random Field, CMRF)模型的包裹相位图滤波算法。作者通过分析传统的基于贝叶斯估计和CMRF滤波模型的特点,发现其各向同性模型对条纹密集分布的包裹相位图滤波时,在条纹密集分布处会出现模糊的现象。考虑到这一点,作者结合包裹相位图的自身特征,基于贝叶斯估计滤波的原理和修改的CMRF模型,利用干涉数据中处理像素与其邻域像素间的局部交互信息实现包裹相位图的滤波,并通过数值实验和实际干涉图处理结果对算法的性能进行了分析。该算法既可以应用于噪声污染严重和条纹密集分布的包裹相位图滤波处理,也可以应用于条纹稀疏分布的包裹相位图滤波处理。
     提出了两种基于灰度图像的干涉图骨架化算法。首先,作者通过研究传统峰值追踪法(Peaking Tracking Method, PTM)的特点,提出了改进的PTM,该算法初衷是以圆形干涉条纹的初始骨架点探测为分析目标,但也可以用于条纹复杂分布的干涉图骨架点探测。其次,提出了基于定位梯度矢量流场(Gradient Vector Flow Fields, GVF)模型的干涉图骨架化算法,干涉条纹的方位角作为了一个有力的援助工具辅助骨架线的探测,实验表明:该模型和算法可以应用于密集条纹分布的干涉图骨架线探测。
     研究了骨架化算法在包裹相位图骨架线探测中的应用,并设计和搭建了一套干涉图数据采集装置。作者应用上述两种骨架化算法对采集的干涉图进行了骨架化分析应用,利用具体实验说明了两种干涉图骨架线提取算法的可行性和性能比较,并将定位GVF的骨架化算法与圆拟合方法相结合实现了圆形条纹分布的干涉图的实时跟踪。
During the rapid development of laser technique and computer technique, Modern optical measurement techniques have been becoming widely application on scientific researches and projects, such as Micro-displacement measurement, wavefront retrive and surface tomography reconstruction, etc. Compared with conventional optical measurement techniques, modern optical measurement techniques offer a number of advantages, such as high sensitivity, high precision and convenient data processing. So they have attracted great experiment and theory research, it emerges in experiments that various measurement methods have been produced, such as laser holographic interferometry method, electronic speckle pattern interferometry method and moire interferometry method, etc. Although various details have been used in these measurement methods, it is necessary to research the data processing models and algorithms of optical interferemety image because physical properties of the measurd are charactered by means of optical interferometry fringe patterns in modern optical measurements. This work mainly focuses on the data processing model and algorithm theory research of optical measurement fringe patterns. Based on the image models, the author has presented several filtering algorithms and skeletonization algoritms for the optical fringe patterns, and the performance of algorithms have been explained based on the detailed fringe pattern analysis. Main achievements are summarized as follows.
     An interferogram filtering algorithm was presented based on discrete topological analysis. The author found that long computing time and complex post processing techniques were required for the model based on the topological gradient. Based on this, the author presented an improved algorithm in which the topological expansion theory was considered. The author converted the disturbing idea according to the pixel in the traditional topological gradient model to the distrubing idea accoring to the edge of the pixel, and applied it to the interferogram filtering problem. Numerical experiments and real interferogram analysis indicate that the filtering model and algorithm can be used in fast interferogram filtering processing and the interferogram with low noise filtering processing.
     An wrapped phase pattern filtering algorithm was presented based on Bayesian evaluation and Complex-valued Markov Random Field (CMRF). The author found that obscure phenomenon was likely to occur for the wrapped phase patterns with dense fringe distribution in traditional isotropic model based on Bayesian evaluation and CMRF. Considering this, the author presented an improved filtering model and algorithm based on Bayesian evaluation and CMRF, in which the denoising image can can be obtained by means of local elicitation information and combined with the characterization of the wrapped phase patterns, and analyzed the performance of the algorithm by numerical experiments and real interferogram processing. The algorithm can be used to the wrapped phase patterns with high noise and dense fringe distribution, as well as applied to the wrapped phase patterns with sparse fringe distribution.
     Two skeletonization algrithms of the optical interferogram were presented based on the gray-level data processing technique. Firstly, the author studied the feature of the traditional peaking tracking method (PTM) and proposed an improved PTM based on the goal that detected initial skeleton points of the interferogram with circle fringe distribution, but, it can be used to detect initial skeleton points of the interferogram with complex fringe distribution. Secondly, the author proposed another skeletonization algorithm base on oriented Gradient Vector Flow Fields (GVF), in which the fringe orientation angle can be acted as a powerful aid to perfect the process. Experiments indicate that the algorithm can be used to detect skeletons of the interferogram with dense fringe distribution.
     The author studied application of skeletonization algorithms for detecting skeletons of wrapped phase patterns, and an experimental apparatus for data acquisition of interferogram was desighed and established. Above-proposed two skeletonization methods were applied to the real interferogram processing, detailed experiments showed the feasibility and performance comparison of the algorithms, and a real-time tracking method of the interferogram with circle fringe distribution was proposed by combining oriented GVF method and circle fitting method.
引文
[1] Salbut L, Patorski K. Polarization phase-shifting method for moire interferometry and flatness measurement [J]. Applied Optics, 1990, 29(10): 1471-1473.
    [2] Toledo C R, Yang P C, Chen Y, vaez-Iravani M. Near-field differential scanning optical microscope with atomic force regulation [J]. Applied Physics Letters, 1992, 60(24): 2957-2959.
    [3] Ochoa N A, Santoyo F M, Lopez C P, Barrientos B. Multiplicative electronic speckle-pattern interferometry fringes [J]. Applied Optics, 2000, 39(28): 5138-5141.
    [4] Rhee H G, Kim S W. Absolute distance measurement by two-point-diffraction interferometry [J]. Applied Optics, 2002, 41(28): 5921-5928.
    [5] Iemmi C, Moreno A, Campos J. Digital holography with a point diffraction interferometer [J]. Optics Express, 2005, 13(6): 1885-1891.
    [6] Luo Z Y, Yang L F, Chen Y C. A presision measuring system for the diameter of single crystal silicon sphere [J]. ACTA Metrologica Sinica, 2005, 26(4): 289-294.
    [7] Luo Z Y, Dai J L. Study on improved five-interferogram phase-shifting algorithm [J]. Chinese Physics Letters, 2008, 6(5): 342-345.
    [8] Kimachi A. Real-time heterodyne speckle pattern interferometry using the correlation image sensor [J]. Applied Optics, 2010, 49(35): 6808-6815.
    [9] Ayubi G A, Di Martino J M, Alonso J R, Fernandez A, Perciante C D, Ferrari J A. Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms [J]. Applied Optics, 2011, 50(2): 147-154.
    [10] Bernini M B, Federico A, Karfmann G H. Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition [J]. Applied Optics, 2011, 50(5): 641-647.
    [11] Qian F, Wang X Z, Wang X F, Bu Y. Adaptive filter for unwrapping noisy phase image in phase-stepping interferometry [J]. Optics & Lasers Technology, 2001, 33: 479-486.
    [12] Qian K M, Soon S H, Asundi A. Smoothing filter in phase-shifting interferometry [J]. Optics & Lasers Technology, 2003, 35: 649-654.
    [13] Qian K M, Soon S H, Asundi A. Filtering the complex field in phase shifting interferometry [J]. Optical Engineering, 2003, 42(10): 2792-2793.
    [14] Qian K M, Soon S H, Asundi A. Phase-shifting windowed Fourier ridges for determination of phase derivatives [J]. Optics Letters, 2003, 28(18): 1657-1659.
    [15] Langoju R, Paril A, Rastogi P. Phase-shifting interferometry in the presence ofnonlinear phase steps, harmonics, and noise [J]. Optics Letters, 2006, 31(8): 1058-1060.
    [16] Gao P, Harder I, Nercissian V, Mantel K, Yao B L. Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy [J]. Optics Letters, 2010, 35(5), 712-714.
    [17] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. Journal of the Optical Society of America, 1982, 72(1): 156-160.
    [18] Cheng Y Y, Wyant J C. Phase shifter calibration in phase-shifting interferometry [J]. Applied Optics, 1985, 24(18): 3049-3052.
    [19] Hibino K, Oreb B F, Farant D I. Phase shifting for nonsinusoidal waveforms with phase-shift errors [J]. Journal of the Optical Society of America A, 1995, 12(4): 761-768.
    [20] Surrel Y. Design of algorithms for phase measurements by the use of phase stepping [J]. Appl. Opt. 1996, 35(1): 51-60.
    [21] Huntley J M. Suppression of phase errors from vibration in phase-shifting interferomety [J]. Journal of the Optical Society of America A, 1998, 15(8): 2233-2241.
    [22] Páez G, Strojnik M. Phase-shifted interferometry without phase unwrapping: reconstruction of a decentered wave front [J]. Journal of the Optical Society of America A, 1999, 16(3): 475-480.
    [23] Cai L Z, Liu Q, Yang X L. Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps [J]. Optics Letters, 2003, 28(19): 1808-1810.
    [24] Zhong X H. Phase-step calibration technique based on a two-run-times-two- frame phase-shift method [J]. Applied Optics, 2006, 45(35): 8863-8869.
    [25] Langoju R, Patil A, Rastogi P. Predicting phase steps in phase-shifting interferometry in the presence of noise and harmonics [J]. Applied Optics, 2006, 45(24): 6106-6112.
    [26] Yang F J, He X Y. Two-step phase-shifting fringe projection profilometry: intensity derivative approach [J]. Applied Optics, 2007, 46(29): 7172-7178.
    [27] Xu X F, Cai L Z, Wang Y R, Meng X F, Zhang H, Dong G Y, Shen X X. Blind phase shift extraction and wavefront retrieval by two-frame phase-shifting interferometry with an unknown phase shift [J]. Optics Cummunication, 2007, 273: 54-59.
    [28] Zhong J G, Zeng H P. Multiscale windowed Fourier transform for phase extraction of fringe patterns [J]. Applied Optics, 2007, 46(14): 2670-2675.
    [29] Gao P, Yao B L, Han J H, Chen L J, Wang Y L, Lei M. Phase reconstruction from three interferograms based on integral of phase gradient [J]. Jounal of Modern Optics, 2008, 55(14): 2233-2242.
    [30] Meng X F, Cai L Z, Wang Y R, Yang X L, Xu X F, Dong G Y, Shen X X, Cheng X C. Wavefront reconstruction by two-step generalized phase-shifting interferometry [J]. Optics Communications, 2008, 281: 5701-5705.
    [31] Shaked N T, Zhu Y Z, Rinehart MT, Wax A. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells [J]. Optics Express, 2009, 17(18): 15585-15591.
    [32] Liu J P, Poon T C. Two-step-only quadrature phase-shifting digital holography [J]. Optics Letters, 2009, 34(3): 250-252.
    [33] Zhong J G, Weng J W. Generalized Fourier analysis for phase retrieval of fringe pattern [J]. Optics Express, 2010, 18(26): 26806-26820.
    [34] Tay C J, Quan C G, Yang F J, He X Y. A new method for phase extraction from a single fringe pattern [J]. Optics Communications, 2004, 239: 251-258.
    [35] Quan C G, Tay C J, Yang F J, He X Y. Phase extraction from a single fringe pattern based on guidance of an extreme map [J]. Applied Optics, 2005, 44(23): 4814-4821.
    [36] Tang C, Zhang F. Li B T, Yan H Q. Performance evaluation of partial differential equation models in electronic speckle pattern interferometry and theδ-mollification phase map method [J]. Applied Optics, 2006, 45(28): 7392-7400.
    [37] Tang C. Lu W J, Chen S, Zhang Z, Li B T, Wang W P, Han L. Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry [J]. Applied Optics, 2007, 46(30): 7475-7484.
    [38] Yang X, Yu Q F, Fu S H. Determination skeleton and sign map for phase obtaining from a single ESPI image [J]. Optics Communication, 2009, 282: 2301-2306.
    [39] Yu X L, Yao Y, Shi W J, Sun Y X, Chen D Y. Study on an automatic processing technique of the circle interference fringe for fine interferometry [J]. Optik, 2010, 121: 826-830.
    [40] Zhong P, Wang S L, Jin Y, Tu X X, Luo N. A method of image preprocessing based on nonlinear diffusion and information extraction [J]. Computers and Mathematics with Applications, 2011, 61(8): 2132-2137.
    [41] Robinson D W. Automatic fringe analysis with a computer image processing system [J]. Applied Optics, 1983, 22(14): 2169-2176.
    [42] Joo W, Cha S S. Automated interferogram analysis based on an integrated expert system [J]. Applied Optics, 1995, 34(32): 7486-7496.
    [43] Bone D J, Bachor H A, Sandeman R J. Fringe-pattern analysis using a 2-D Fourier transform [J]. Applied Optics, 1986, 25(10): 1653-1660.
    [44] Roddier C, Roddier F. Interferogram analysis using Fourier transform techniques [J]. Applied Optics, 1987, 26(9): 1668-1673.
    [45] Mallat S, Hwang W L. Singularity detectionand processing with wavelets [J]. IEEE Transaction on Information Theory, 1992, 38(2): 617-643.
    [46] Mallat S, Zhong S F. Characterization of signal from multiscale edges [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710-732.
    [47] Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81(3): 425-455.
    [48] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224.
    [49] Donoho D L. De-noising by soft-thresholding [J]. IEEE Transaction on Information Theory, 1995, 41(3): 613-627.
    [50] Xu Y S, Weaver J B, Healy D M Jr, Lu J. Wavelet Transform Domain Filters: A Spatially Selective Noise Filtration Technique [J]. IEEE Transaction on Image Processing, 1994, 3(6): 747-758.
    [51] Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Transaction on Image Processing, 2000, 9(9): 1532–1546.
    [52] Liu J, Moulin P. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients [J]. IEEE Transaction on image Processing, 2001, 10(11): 1647-1658.
    [53] Federico A, Kaufmann G H. Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes [J]. Optical Engineering, 2002, 41(12): 3209-3216.
    [54] Federico A, Kaufmann G H. Phase retrieval in digital speckle pattern interferometry by use of a smoothed space–frequency distribution [J]. Applied Optics, 2003, 42(35): 7066-7071.
    [55] Federico A, Kaufmann G H. Local denoising of digital speckle pattern interferometry fringes by multiplicative correlation and weighted smoothing splines [J]. Applied Optics, 2005, 44(14): 2728-2735.
    [56] Bahich M, Afifi M, Barj E. Optical phase extraction algorithm based on the continuous wavelet and the Hilbert transforms [J]. Journal of Computing, 2010, 2(5): 1-5.
    [57] Yu W B, Wang Y, Pang B M, Xu Z J. An improved threshold de-noising algorithmbased on inter-scale dependency of wavelet [C]. IEEE International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010, 231-233.
    [58] Qian K M. Windowed Fourier transform for fringe pattern analysis [J]. Applied Optics, 2004, 43(13): 2695-2702.
    [59] Qian K M. Windowed Fourier transform for fringe pattern analysis: addemdum [J]. Applied Optics, 2004, 43(17): 3472-3473.
    [60] Qian K M, Soon S H. Two-dimensional windowed Fourier frames for noise reduction in fringe pattern analysis [J]. Optical Engineering, 2005, 44(7): 1-9.
    [61] Qian K M. Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations [J]. Optics and Lasers in Engineering, 2007, 45: 304-317.
    [62] Qian K M, Soon S H. Sequential demodulation of a single fringe pattern guided by local frequencie s[J]. Optics Letters, 2007, 32(2): 127-129.
    [63] Qian K M, Gao W J, Wang H X. Windowed Fourier filtered and quality guided phase unwrapping algorithm: on locally high-order polynomial phase [J]. Applied Optics, 2010, 49(7): 1075-1079.
    [64] Gao W J, Qian K M, Wang H X, Soon S H. Parallel computing for fringe pattern processing: Amulticore CPU approach in MATLAB environment [J]. Optics and Lasers in Engineering, 2009, 47: 1286-1292.
    [65] Witkin A. Scale-space filtering [C]. In the 8th International Joint Conference on Artificial Intelligence, 1983, 2: 1019-1022.
    [66] Koenderink J J. The structure of images [J]. Biological Cybernetics, 1984, 50: 363-370.
    [67] Jain A. Partial differential equations and finite-difference methods in image processing. Part 1: Image representation [J]. Journal of Optimization Theory and Applications, 1977, 23(1): 65-91.
    [68] Perona P, Malik J. Scale-pace and edge detection using anisotropic diffusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
    [69] Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM Journal on Numerical Analysis, 1992, 29(3): 845-866.
    [70] Weichert J, Bart M. ter Haar Romeny, Viergever M A. Efficient and reliable schemes for nonlinear diffusion filtering [J]. IEEE Transaction on Image Processing, 1998, 7(3): 398-410.
    [71] Weickert J. Coherence-enhancing diffusion filtering [J]. International Journal of Computer Vision, 1999, 31(2-3): 111-127.
    [72] You Y L, Kaveh M. Fourth-order partial differential equation for noise removal [J]. IEEE Transaction on Image Processing, 2000, 9(10): 1723-1730.
    [73] Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time [J]. IEEE Transaction on Image Processing, 2003, 12(12): 1579-1590.
    [74] Gilboa G, Sochen N, Zeavi Y Y. Image enhacement and denoising by complex diffusion processes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1020-1036.
    [75] Tang C, Han L, Ren H W, Zhou D J, Chang Y M, Wang X H, Cui X L. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes [J]. Optics Letters, 2008, 33(19): 2179-2180.
    [76] Villa J, Quiroga J A, Ismael De la Rosa1. Regularized quadratic cost function for oriented fringe-pattern filtering [J]. Optics Letters, 2009, 34(11): 1741-1743.
    [77] Austutz S, Masmoudi M, Samet B. Crack detection by the topological gradient method [J]. Control and Cybernetics, 2005, 34(1), 81-101.
    [78] Friedman A, Vogelius M S. Determining cracks by boundary measurements [J]. Indiana University Mathematics Journal, 1989, 38 (3): 527-556.
    [79] Friedman A, Vogelius M S. Identification of small inhomogeneities of extreme conductivity by boundary measurements: A theorem of continuous dependence [J]. Archive for Rational Mechanics and Analysis, 1989, 105 (4): 299-326.
    [80] Abda A B, Ameur H B, Jaoua M. Identification of 2D cracks by elastic boundary measurements [J]. Inverse Problems. 1999, 15(1): 67-77.
    [81] Burczynski T, Beluch W. The identification of cracks using boundary elements and evolutionary algorithms [J]. Engineering Analysis with Boundary Elements, 2001, 25: 313-322.
    [82] Abda A B, Kallel M, Leblond J, Marmorat J P. Line segment cracks recovery from incomplete boundary data [J]. Inverse Problems. 2002, 18(4): 1057-1077.
    [83] Samet B. The topological asymptotic with respect to a singular boundary perturbation [J]. Comptes Rendus de l' Académie des Sciences Series I, 2003, 336:1033-1038.
    [84] Auroux D, Masmoudi M. A one-short inpainting algorithm based on the ropological asymptogical analysis [J]. Computational & Applied Mathematics, 2006, 25(2-3): 251-267.
    [85] Auroux D. Belaid L J, Masmoudi M. A topological asymptotic analysis for the regularized grey-levele image classification problem [J]. ESAIM. MathematicalModelling and Numerical Analysis, 2007, 41(3): 607-625.
    [86] Belaid L J, Jaoua M, Masmoudi M, Siala L. Image restoration and edge detection by topological asymptotic expansion [J]. Comptes Rendus de l' Académie des Sciences. Série I, 2006, 342(5): 313-318.
    [87] Belaid L J, Jaoua M, Masmoudi M, Siala L. Application of the topological gradient to image restoration and edge detection [J]. Engineering Analysis with Boundary Elements, 2008, 32(11): 891-899.
    [88] Larrabide I, Feijóo R A, Novotny A A, Taroco E A. Topological derivative: A tool for image processing [J]. Computers and Structures, 2008, 86: 1386-1403.
    [89] Auroux D, Masmoudi M. Image processing by topological asymptotic expansion [J]. Journal of Mathematical Imaging and Vision, 2009, 33: 122-134.
    [90] Auroux D. From restoration by topological gradient to medical image segmentation via an asymptotic expansion [J]. Mathematical and Computer Modelling, 2009, 49: 2191-2205.
    [91] Oreb B F, Farrant D I, Walsh C J, Forbes G, Fairman P S. Calibration of a 300-mm-aperture phase-shifting Fizeau interferometer [J]. Applied Optics, 2000, 39(28): 5161-5171.
    [92] Servin M, Estrada J C, Quiroga J A. The general theory of phase shifting algorithms [J]. Optics Express, 2009, 17(24): 21867-21881.
    [93] Peter de Groot. Design of error-compensating algorithms for sinusoidal phase shifting interferometry [J]. Applied Optics, 2009, 48(35): 6788-6796.
    [94] Burke J. Suppression of fundamental-frequency phase errors in phase-shifting interferometry [J]. Optics Letters, 2010, 35(12): 2079-2081.
    [95] Huntley J M. Noise-immune phase unwrapping algorithm [J]. Applied Optics, 1989, 28(15): 3268-3270.
    [96] Ghiglia D C, Pritt M D. Two-dimensional phase-unwrapping. New York, A wiley interscience publication, John Wiley & Sons, 1993.
    [97] Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods [J]. Journal of the Optical Society of America A, 1994, 11(1): 107-117.
    [98] Cusack R, Huntley J M, Goldrein H T. Improved noise-immune phase-unwrapping algorithm [J]. Applied Optics, 1995, 34(5): 781-789.
    [99] Dias J M B, Leit?o J M N. The ZπM algorithm: a method for interferometric image reconstruction in SAR/SAS [J]. IEEE Transactions on Image Processing, 2002, 11(4): 408-422.
    [100] Witoszynsky S, Rauscher A, Reichenbach J R, M. Barth. Phase unwrapping of MR images usingΦUN– A fast and robust region growing algorithm [J]. MedicalImage Analysis, 2009, 13: 257-268.
    [101] Herráez M A, Gdeisat M A, Burton D R. Hybrid robust and fast algorithm for three-dimensional phase unwrapping[J]. Applied Optics, 2009, 48(32): 6313-6323.
    [102] Khmaladze A, Epstein T, Chen Z. Phase unwrapping by varying the reconstruction distance in digital holographic microscopy [J]. Optics Letters, 2010, 35(7): 1040-1042.
    [103] Herráez M A, Burton D R, Lalor M J. Clustering-based robust three-dimensional phase unwrapping algorithm [J]. Applied Optics, 2010, 49(10): 1780-1788.
    [104] Langley J A, Brice R G, Zhao Q. Recursive approach to the moment-based phase unwrapping method [J]. Applied Optics, 2010, 49(16): 3096-3101.
    [105] Aebischer H A, Waldner S. A simple and effective method for filtering speckle-interferometric phase fringe patterns [J]. Optics Communications, 1999, 162: 205-210.
    [106] Palacios F, Goncalves E, Ricardo J, Valin J L. Adaptive filter to improve the performance of phase-unwrapping in digital holography [J]. Optics Communications, 2004, 238: 245-251.
    [107] Tang C, Wang W P, Yan H Q, Gu X H. Tangent least-squares fitting filtering method for electrical speckle pattern interferometry phase fringe patterns [J]. Applied Optics, 2007, 46(15): 2907-2913.
    [108] Tang C, T Gao, Yan S, Wang L L, Wu J. The oriented spatial filter masks for electronic speckle pattern interferometry phase patterns [J]. Optics Express, 2010, 18(9): 8942-8497.
    [109] Yu Q F, Andresen K. Fringe-orientation maps and fringe skeleton extraction by the two-dimensional derivative-sign binary-fringe method [J]. Applied Optics, 1994, 33(29): 6873-6878.
    [110] Quiroga J A, Servin M, Cuevas F. Modulo 2πfringe orientation angle estimation by phase unwrapping with aregularized phase tracking algorithm [J]. Jounal of the Optical Society of America A, 2002, 19(8): 1524-1531.
    [111] Crespo D, Quiroga J A, Gomez-Pedrero J A. Fast algorithm for estimation of the orientation term of a general quadrature transform with application to demodulation of an n-dimensional fringe pattern [J]. Applied Optics, 2004, 43(33): 6139-6146.
    [112] Quiroga J A, Servin M, Marroquin J L, Crespo D. Estimation of the orientation term of the general quadrature transform from a single n-dimensional fringe pattern [J]. The Jounal of the Optical Society of American A, 2005, 22(3): 439-444.
    [113] Fu S H, Lin H, Chen J S, Yu Q F. Influence of window size on the fringeorientation estimation [J]. Optics Communications, 2007, 272: 73–80.
    [114] Yang X, Yu Q F, Fu S H. A combined method for obtaining fringe orientations of ESPI [J]. Optics Communications, 2007, 273: 60–66.
    [115] Yang X, Yu Q F, Fu S H. An algorithm for estimating both fringe orientation and fringe density [J]. Optics Communications, 2007, 274: 286–292.
    [116] Tang C, Wang Z F, Wang L L, Wu J, Gao T, Yan S. Estimation of fringe orientation for optical fringe patterns with poor quality based on Fourier transform[J]. Applied Optics, 2010, 49(4): 554-561.
    [117] Jiang J, Cheng J, Luong B. Unsupervised-clustering-driven noise-residue filter for phase images [J]. Applied Optics, 2010, 49(11): 2143-2150.
    [118] Lee J S, Papathanassiou K P, Ainsworth T L, Reigber A. A new technique for noise filtering of SAR interferometric phase images [J]. IEEE Tractions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465.
    [119] Goldstein R M, Werner C L. Radar interferogram filtering for geophysical applications [J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.
    [120] Martínez C L, Fàbregas X. Modeling and reduction of SAR interferometric phase noise in the wavelet domain [J]. IEEE Transaction on Geoscience and Remote Sensing, 2002, 40(12): 2553-2566.
    [121] Qian K M, Le Tran Hoai Nam, Lin F, Soon S H. Comparative analysis on some filters for wrapped phase maps [J]. Applied Optics, 2007, 46(30): 7412–7418.
    [122] Wang P, Wang Y F, Zhang B C, Tang Y, Ma L X. InSAR interferogram filtering based on Bayesian threshold in stationary Wavelet domain [J]. Journal of Electronics & Information Technology, 2007, 29(11): 2706-2710.
    [123] Villa J, Vera R R, Quiroga J A, Ismael de la Rosa, González E. Anisotropic phase-map denoising using a regularized cost-function with complex-valued Markov-random-fields [J]. Optics and lasers in Engineering, 2010, 48: 650-656.
    [124] Hilditch C J. Linear skeletons from square cupboards [J]. Machine Intelligence, New York: 1969, 4: 403-420.
    [125] Deutsch E S. Thinning Algorithms on Rectangular, Hexagonal, and Triangular Arrays [J]. Communications of the Association for Computing Machinery, 1972, 15(9): 827-837.
    [126] Zhang T Y, Suen CY. A Fast Parallel Algorithm for Thinning Digital Patterns [J]. Communications of the Association for Computing Machinery, 1984, 27(3): 236-239.
    [127] Vliet L J V, Verwera B J H. A contour processing method for fast binary neighbourhood operations [J]. Pattern Recognition Letters, 1988, 7(1): 27-36.
    [128] Lam L, Suen C Y. An Evaluation of Parallel Thinning Algorithms for CharacterRecognition [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1995, 17(9): 914-919.
    [129] Nakadate S, Yatagai T, Saito H. Computer-aided speckle pattern interferometry [J]. Applied Optics, 1983, 22(2): 237-243.
    [130] Nunome K, Tsukamoto M, Yatagai T, Saito H. Interferometer for measuring the surface shape of a ball bearing raceway [J]. Applied Optics, 1985, 24(22): 3791-3796.
    [131] Wu D L, Ye L H, Bian B M, He A Z. Research on the interferogram processing [J]. ACTA Optica Sinica, 1999, 19(1): 45-49.
    [132] Fan Z G, Li R S, Cui Z H. The study of interferogram processing [J]. Optical Technique, 2000, 26(3): 258-262.
    [133] Liu C, Li Y Z, Dai Y P, Li L Y, Cheng X T, Zhu J Q. A simple method for the extraction of fringe skeletons [J]. ACTA Photonica Sinica, 2001, 30(7): 861-863.
    [134] Zhong P, Song C J, Luo N. Method of extracting high-resolution digital moire fringe in warpage measurement [C]. IEEE Proceedings of 16th International Symposium on the Physical and Failure Analysis of Integrated Circuits, China, 2009, 527-530.
    [135] Yu Q F. Spin filtering processes and automatic extraction of fringe centerlines in digital interferometric patterns [J]. Applied Optics, 1988, 27(18): 3782-3784.
    [136] Yu Q F, Liu X L, Sun X Y. Generalized spin filtering and an improved derivative-sign binary image method for the extraction of fringe skeletons [J]. Applied Optics, 1998, 37(20): 4504-4509.
    [137] Yu Q F, Yang X, Fu S H, Sun X Y. Two improved algorithms with which to obtain contoured windows for fringe patterns generated by electronic speckle-pattern interferometry [J]. Applied Optics, 2005, 44(33): 7050-7054.
    [138] Zhang D S, Ma M, Arola D D. Fringe skeletonizing using an improved derivative sign binary method [J]. Optics and Lasers in Engineering, 2002, 37: 51–62.
    [139] Jiang X J, Zeng A J, Huang H J, Wang X Z. Research on identifying the order of fringe pattern traces using angular scan and zone search method [J]. Chinese Optics Letters, 2008, 6(4): 264-267.
    [140] Medennikov P A. Discriminating the skeleton of objects on digital images by combining the techniques of global and local choice of the tracing direction [J]. Journal of Optical Technology, 2003, 70(4): 293-296.
    [141] Krishnaswamy S. Algorithm for computer tracing of interference fringes [J]. Applied Optics, 1991, 30(13): 1624-2628.
    [142] Anand A. Tracing of interference fringes using average gray value and simultaneous row and column scan [J]. Optics Lasers in Technology, 2003, 35:73-79.
    [143] Wang Y, Meng H, Fu J H. Method for extracting Bessel-structured light fringes’center lines in a triangulation measurement system [J]. Optics & Technology, 2009, 41: 809-814.
    [144] Cai L Z, Liu Q, Yang X L. A simple method of contrast enhancement and extremum extraction [J]. Optics &Laser Technology, 2003, 35, 295-302.
    [145] Xu C Y, Prince J L. Gradient Vector Flow: A new external forces for snakes [C]. Processings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, 6: 66-71.
    [146] Xu C Y, Prince J L. Snakes, shapes, and gradient vector flow [J]. IEEE Transactions on Image Processing, 1998, 7(3): 359–369.
    [147] Yu Z Y, Bajaj C. A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2004, 1: 415–420.
    [148] Tang J S, Acton S T. Vessel Boundary Tracking for Intravital Microscopy Via Multiscale Gradient Vector Flow Snakes [J]. IEEE Transaction on Biomedical Engineering, 2004, 51(2): 316-324.
    [149] Tang J S, Millington S, Acton S T, Crandall J, Hurwitz S. Surface Extraction and Thickness Measurement of the Articular Cartilage From MR Images Using Directional Gradient Vector Flow Snakes [J]. IEEE Transaction on Biomedical Engineering, 2006, 53(5): 896-907.
    [150] Tang C, Lu W J, Cai Y X, Han L, Wang G. Nearly preprocessing-free method for skeletonization of gray-scale electronic speckle pattern interferometry fringe patterns via partial differential equations [J]. Optics Letters, 2008, 33(2): 183-185.
    [151] Tang C, Ren H W, Wang L L, Wang Z F, Han L, Gao T. Oriented couple gradient vector fields for skeletonization of gray-scale optical fringe patterns with high density [J]. Applied Optics, 2010, 49(16): 2979-2984.
    [152] Eskiciogln A M. Image quality measure and their performance [J]. IEEE Transactions on Communications, 1995, 43(12): 2959-2965.
    [153] Wang Z, Bovik C B, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [154] Fienup J R. Invariant error metrics for image reconstruction [J]. Applied Optics, 1997, 36(32): 8352-8357.
    [155] Zhang W J, Zhang W B. A new image restoration algorithm based on variational derivative [C]. IEEE Fifth International Conference on Information Assurance and Security, 2009, 241-244.
    [156] Bhatt M R, Desai U B. Robust image restoration algorithm using Markov random field model [C]. Proceedings of IEEE International Symposium on Circuits and Systems, 1992, 5: 2473-2476.
    [157] Ferraiuolo G, Pascazio V. A Bayesian approach based on modified Markov random fields for microwave tomography [J]. IEEE Geoscience and Remote Sensing Symposium, 2002, 6: 3393-3395.
    [158] Poggi G, Ragozini A R P, Servadei D. A Bayesian Approach for SAR Interferometric Phase Restoration [C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium, 2000, 7: 3202-3207.
    [159] Suksmono A B, Hirose A. Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application to phase unwrapping problem [J]. IEEE Transactions on Geosceence and Remote Sensing, 2002, 40(3): 699-709.
    [160] Ferraiuolo G, Poggi G. A Bayesian filtering technique for SAR interferometric phase fields [J]. IEEE Transactions on Image Processing, 2004, 13(10): 1368-1378.
    [161] Kass M, Witkin A, Terzopoulos D. Snake: Active Contour Models [J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
    [162] Rudin L I, Osher S. Total variation based image restoration with free local constraints [C]. Proceedings of IEEE International Conference on Image Processing. 1994, 1: 31-35.
    [163] Aubert G, Vese L. A variational method in image recovery [J]. SIAM. Journal on Numerical Analysis, 1997, 34(5): 1948-1979.
    [164] Helman J L, Hesselink L. Visualizing vector field topology in fluid flows [J]. IEEE Computer Graphics and Applications, 1991, 11(3): 36-46.
    [165] Hong L, Wan Y F, Jain A. Fringeprint inage enhancement: algorithm and performance evaluation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20(8): 777-789.
    [166] Taubin G. Estimation of planar curves, surfaces and non-planar space curves defined by implicit equations with applications to edge and range image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(11): 1115-1138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700