液体可变焦折衍混合光学系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文详细介绍了衍射光学、混合光学以及液体变焦透镜的发展状况,根据折衍混合系统的成像特点和焦距与系统结构的关系,提出两种新的液体可变焦折衍透镜模型。
     传统的液体变焦透镜仍然为折射光学系统,不可避免的存在色差问题。如果用传统的方法来消除色差,仍然会导致系统结构复杂,这在微型变焦器件上很难实现。如果将传统的液体变焦透镜的其中一面设计成二元面,这在变焦的同时能很好地解决色差问题。
     通过对二元透镜和液体透镜特性的分析,本文设计了两种液体可变焦折衍混合光学系统模型,运用标量衍射模型和几何光学模型分别对模型A和模型B的面形结构,成像特点进行理论推导和运算,并对其系统焦距与折射部分基底面的曲率变化关系进行研究。从仿真计算得出模型A和模型B的面形结构,并且从结果可以看出,当液体折射透镜曲率半径变化时,系统焦距变化曲线在三条波长下重合地较好,达到消除色差的目的。这两种可变焦折衍混合系统模型结构简单、成像质量好,而且在变焦的同时很好地解决了消除色差的问题,可以广泛应用于民用和军事领域。
The hybrid diffractive-refractive variable-focus liquid lenses composed of a liquid refractor and a binary optical lens are demonstrated in this letter. Most of the conventional variable-focus liquid lenses play an important role in modern photonic devices and they are used in a wide range of applications such as all kinds of photonic packages. However, the conventional variable-focus liquid lenses have the characteristic of chromatic aberration. With the rapid development of binary optics, we know the color separation properties of binary optic lenses are opposite in sign to those of traditional lenses. Here we demonstrate two types of hybrid diffractive-refractive variable-focus liquid lenses which contain two components, the liquid refractor and the binary optical lens. Unlike other conventional liquid lens, one surface of these lenses is binary optical surface. The lenses being constructed using combined diffractive /refractive elements are propitious to solve the problem of chromatic aberration.
     In this paper, the function of the surface of the hybrid diffractive-refractive variable-focus liquid lens and the relationship between the changing of focal length and the adjustment of the radius of curvature of the refractive lens are proposed. The simulations show the structure of the hybrid diffractive-refractive variable-focus liquid lens and indicate that the quality performances are better than conventional refractor. From the evaluation of the results, the hybrid diffractive-refractive variable-focus liquid lens presents the simplest and the highest-quality performances. The color aberration is solved well when the focal length of the optical system is changed. In conclusion, the lens we demonstrated is desirable for both civilian and military applications.
引文
[1] 康明,吴建刚,曾雪锋,岳瑞锋,刘理天.基于介质上电润湿的微流体变焦透镜的研究进展.光学技术,2006,32(5):702-704.
    [2] 金国藩,严瑛白,邬敏贤.二元光学.北京:国防工业出版社,1998.
    [3] 微小光学发展战略专辑.光子学报,1994,23(z2)
    [4] 杨国光等.混合光学及其在空间技术上的应用,《微光学及其在航天技术中的应用技术交流与战略研讨会》论文集.北京,1995,10,(28-40)
    [5] T. J. Mchugh and D. A. Zweig. Recent advances in binary optics. SPIE, 1989, 1052: 85-89.
    [6] W. B. Weldkamp and C. J. Kastner. Beam profile shaping for laser ladars that use detector arrays. Applied Optics, Vol.21, p345(1982)
    [7] J. A. Cox. Overview of Diffractive Optics at Honeywell. SPIE, 1988, 884:127-132.
    [8] J. Lounge, et al. Binary Optics at Hughes Danbury optical Systems. SPIED, 1993, 2105:256271.
    [9] J. S. Anderson. Thermal Weapon Sight(TWS) AN/PAS-13 Diffractive optics Designed for Producibility. Applied Optics, 1995, 34(3):242246.
    [10] M. D. Missig, et al. Diffractive Optics Applied to Eyepiece Design. Applied Optics, 1995, 34(14):24522461.
    [11] P. Behrmann, J. P. Bowen. Influence of Temperature on Diffractive Lens Performance. Applied Optics, 1993, 32(14):24832489.
    [12] Sandre. O, et al. Moving droplets on asymmetrically structured surfaces. Physical Review E, 1999, 60(3): 2964-2972
    [13] Jun. T. K, Kim. C. J. Valveless pumping using traversing vapor bubbles in microchannels. Journal of Applied Physics, 1998, 83(11): 5658-5664
    [14] Togo. H, Sato. M, Shimokawa. F. Multi-element thermo-capillary optical switch and sub-nanoliter oil injection for its fabrication. Proceedings of IEEE International Conference on Micro Electro Mechanical Systems(MEMS 1999). 1999.418-423
    [15] Gallardo. B. S, etal. Electrochemical principlesfor active control of liquids on sbmillimeter scales. Science, 1999,283: 57-60
    
    [16]Jones. T. B. On the relationship of dielectrophoresis and electrowet-ting.Langmuir, 2002,18:4437-4443
    
    [17]Pollack. M. G, et al. Eletrowetting-based actuation of liquid droplets for microfluidic application. Applied Physics Letters, 2000, 77(11): 1725-1726
    [18]Krupenldn. T, Yang. S, Mach. P. Tunable liquid micmlells. Applied Physics Letters, 2003, 82(3): 316-318
    
    [19]Berge. B, Peseux. J. Variable focal 1 arts controlled by an external voltage: An application of eletro wetting. European Physical Journal E, 2000, 3(2): 159-163
    [20]Gabay. C, Berge. B, Dovillaire. G, et al. Dynamic study of fl varioptic variable focal lens. SPIE, 2002,4767: 159-165
    
    [21 Berge. B. Liquid lens technology: Principle of eletrowetting based lenses and applications to imaging. 18th IEEE International Conference on Micro Electro Mech-anical Systems. MEMS 2005,2005.227-230
    
    [22]Kuiper. S, et al. Variable-focus liquid lens for miniature cameras.Applied Physics Letters, 2004, 85(7): 1128-1130
    
    [23]Hendriks. B, Kuiper. S. Through a lens sharply. IEEE Spectrum, 2004, 41(12):12-24
    
    [24]Hong. Wen. Ren and Shin. Tson. Wu. Variable-focus liquid lens by changing aperture. Applied Physics Letters, 2005, 86:211107
    
    [25]Drew. A. Pommet, M. G Moharam, and Eric. B. Grann. Limits of scalar diffraction theory for diffractive phase elements. Opt. Soc. Am. 1994, 11(6):1827-1834
    
    [26]Li. B. Chtenberg and Gallagher. M. C. Numerical modeling of diffractive device using the finite element method. Optical Engineering, 1994, 33:3518-3526
    [27]D. W. Prather, M. S. Mirotznik, and J. N. Mait. Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method. SPIE, 1996,2689:14-23
    
    [28]D. W. Prather, M. S. Mirotznik, and J. N. Mait. Boundary integral methods applied to the analysis of diffractive optical elements[J]. J. Opt. Soc. Am. A, 1997, 14(1): 34-43
    
    [29]Dennis W. Prather, Joseph N. Mait, Mark S. Mirotznik. Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements. J. Opt. Soc. Am. A, 1998,15(6): 1599-1607
    
    [30]Jon M. Bendickson, Elias N. Glytsis, Thomas K. Gaylord, et al. considerations for rigorous boundary element method analysis of diiJ'ractive optical elements. J. Opt.Soc.Am. 2001,18(7): 1495-1506
    
    [31]Gene Campbell, Raymond K. Kostuk. Effective-medium theory of sinusoidally modulated volume holograms. J. Opt. Soc. Am, 1995,12(5):1113-1117
    
    [32]Philinne Lalanne, Dominique Lemercier-Lalanne. On the effective medium theory of subwavelength periodic structures. Journal of Modern Optics, 1996, 43(10):2063-2085
    
    [33]M. E. Motamedi, W. H. Southwell, and W J. Gunning. Antireflection surfaces in silicon using binary optics technology. Applied Optics, 1992, 31(22): 4371-4376
    
    [34]Daniel. H. Raguin and Michael. Morris. Antireflection surfaces for the infrared spectral region. Applied Optics, 1993, 32(7): 1154-1167
    
    [35]Fredrik. Nikolajeff, Bjorn. Lofving, Mathias. Johansson, et al. Fabrication and simulation of diffractive optical elements with superimposed antireflection subwavelength gratings. Applied Optics, 2000, 39(26): 4842-4846
    
    [36]Hong. Bo. Wei and Li. Feng. Li. All-dielectric reflection gratings: a study of the physical mechanism for achieving high efficiency. Applied Optics, 2003,42(31): 6255-6260
    
    [37]A. G Lopez and H. G Craighead. Wave-plate polarizing beam splitter based on a form-birefringent multiplayer grating. Optics Letters, 1998, 23(20): 1627-1629
    
    [38]Lara. Pajewski, Riccardo. Borghi, Giuseppe. Schettini, et al. Design of a binary grating with subwavelength features that acts as a polarizing beam splitter. Applied Optics, 2001,40(32): 5898-5905
    
    [39]R. M. A. Azzam and A. De. Circular polarization beam splitter that uses frustrated total internal reflection by an embedded symmetric achiral multiplayer coating. Optics Letters, 2003, 28(S): 355-357
    [40] Deer. Yi, Ying. Bai. Yan, Hai. Tao. Liu, et al. Broadband polarizing beam sputter based on the form birefringence of a subwavelength grating in the quasi-static domain. Optics Letters, 2004, 29(7): 754-756
    [41] Joseph N. Mait, Dennis W. Prather, and Mark S. Mirotznik. Binary subwavelength diffractive-lens design. Optics Letters, 1998, 23(17): 1343-1345
    [42] Joseph. N. Mait, Dennis. W. Prather, and Mark. S. Mirotznik. Design of binary subwavelength diffractive lenses by use of wroth-order effective-medium theory. J. Opt. Soc. Am. A, 1999, 16(5): 1157-1167
    [43] Joseph. N. Mait, Axel Scherer, Oliver. Dial, et al. Diffractive lens fabricated with binary features less than 60nm. Optics Letters, 2000, 25(6): 381-383
    [44] W. C. Sweatt. Describing holographic optical elements as lenses. J. O. S. A. 1977, Vol. 67:803-808
    [45] C. Sweatt. Mathematical equivalence between a holographic optical element and ultra-high idex lens. J. O. S. A. 1979, Vol. 69:486-487
    [46] 王沫然.MATLAB与科学计算.北京:电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700