东海沉积物中氮循环的关键过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮元素作为海洋环境中的重要生源要素之一,通常被认为是初级生产力的限制因子,加之全球氮循环与碳循环在气候变化中的密切耦合以及人类活动对于氮元素排放的逐渐增加,海洋氮循环也就成为整个海洋生物地球化学循环中最为关键的一环。海洋中化合态氮的收支取决于游离态氮气的固定和化合态氮的丢失(N-loss),前者主要由固氮生物执行,而后者主要由反硝化细菌和厌氧铵氧化细菌所实现。由于海洋氮循环受到多种过程的控制以及在量化各种过程速率方面存在很大的不确定性,全球氮的收支是否处于平衡仍然存在很大的争议。海洋沉积物是化合态氮丢失的一个重要场所,约50~70%的化合态氮在此被移除,而其中50%以上的氮丢失又发生在陆架海沉积物中(Bohlen et al.2012; Gruber2008),尽管该区域只占全球海洋面积的7.5%(Menard&Smith1966)。由此可见陆架海沉积物在全球海洋氮循环中所起的关键性作用。
     反硝化、厌氧铵氧化和异化硝酸盐还原为铵(DNRA)是沉积物厌氧环境中氮循环的三种关键过程。前两个过程控制着沉积物中化合态氮的丢失,而DNRA则将NO_3~-转化为NH_4~+使得化合态氮在沉积物中得以保留并继续参与氮循环过程。反硝化是指在厌氧微生物作用下,从NO_3~-开始,经过一系列的异化还原反应,将NO_3~-,NO_2~-,NO和N_2O最终还原为游离态的N_2的过程,从而实现生态系统中化合态氮的移除。厌氧铵氧化是指在厌氧条件下,无机化能自养细菌以NO_2~-为电子受体,NH_4~+为电子给体的微生物氧化还原过程,此过程的最终产物同样是游离态的N_2。DNRA过程是指NO_3~-在异化硝酸盐还原细菌的作用下,经过一系列的还原过程将NO_3~-直接还原为NH_4~+的转化过程,并未实现氮丢失。三种过程在沉积物中的配比程度决定了沉积物中氮的收支,但同时对这三种过程进行的研究目前报道尚不多见。
     东海作为世界上最大的陆架边缘海之一,有着较高的初级生产力。同时,西面受到世界最大河流之一—长江的输入,东南又有大洋性质的黑潮水入侵,因此使其成为最为典型的陆架海之一。由于长江流域和长江三角洲地区人类活动的加剧,大量工农业废水和生活污水随长江冲淡水输送到东海陆架,使东海近岸海区的化合态氮浓度显著升高,导致赤潮频发,且长江口外底层水体缺氧现象愈发严重。据推测,东海陆架沉积物可能是化合态氮丢失的一个“热点区域”(Seitzingeret al.2006),但是目前对于此方面的实测研究还非常匮乏。
     ~(15)N同位素对技术(~(15)N Isotope Pairing Technique,简记为~(15)N IPT)已经成为研究沉积物氮循环过程的一个有效手段,并得到广泛应用。但现有的~(15)N IPT只考虑到了一种(反硝化)或两种(反硝化和厌氧铵氧化、厌氧铵氧化和DNRA)氮的转化过程(Jensen et al.2011; Nielsen1992; Risgaard-Petersen et al.2003;Thamdrup&Dalsgaard2002),如果同时存在三种过程,且每种过程的贡献均不可忽略,则此种方法在计算每个转化过程的各自贡献量时面临着挑战。因为DNRA所产生的~(15)NH_4~+与~(15)NO_2~-结合同样可以产生30N_2,但传统上认为该产物只能由反硝化产生,这样使得现有的计算方法不能有效区分各自过程的贡献。尽管亦有方法可以解决在DNRA与厌氧铵氧化和反硝化共存条件下区分各自的贡献(Spott&Stange,2007),但需要建立开放的稳态实验体系,在海洋沉积物研究中尚未广泛应用。同时沉积物中细胞内硝酸盐储存生物的存在对于~(15)N IPT也产生一定的影响(Sokoll et al.,2012),多重过程的共同存在无疑增加了研究沉积物氮循环的复杂性。
     有鉴于此,本文首先从理论上量化了DNRA对厌氧铵氧化和反硝化速率计算的影响,同时提出了3种方法来校正或者消除DNRA的影响,并用实测数据对该数学模型进行了验证。其次,本文利用泥浆培养考虑到DNRA的影响后深入研究了东海陆架沉积物中厌氧铵氧化、反硝化和DNRA过程以及各自在东海沉积物氮循环过程的相对贡献。然后,在对东海沉积物氮循环过程有了初步了解的基础上,结合沉积物泥浆和整柱培养技术测定了东海沉积物中的氮丢失速率。此外,因夏季长江口底层水体缺氧已被广泛报道,且底栖氮循环又与氧气水平密切相关,故利用两个航次的对比和受控实验探讨了底层水体缺氧对沉积物氮循环的影响。基于以上研究所获得的主要认识如下:
     (1)基于~(15)N IPT的原理,在考虑到DNRA的影响之后,发展了一个量化的模型用于评估DNRA对于厌氧铵氧化和反硝化的影响。模型结果表明:在DNRA与厌氧铵氧化和反硝化共存的情况下,沉积物泥浆培养使用Thampdrup&Dalsgaard (2002)提出的方法所计算出的厌氧铵氧化速率被低估,且这种低估与体系中~(15)NH_4~+的摩尔分数(FA)成正比;反硝化速率被高估,高估的程度与FA和厌氧铵氧化对总的氮丢失的贡献(ra)有关。在ra相对固定时,对反硝化速率的高估同样与FA成正比;在FA相对固定时,对反硝化速率的高估随着ra的增加而增大。而DNRA对于总的氮丢失速率并没有影响,这主要是因为在泥浆培养中加入了~(15)NO_3~-使得硝酸盐不再是硝酸盐异化还原的限制因子,同时也说明DNRA的存在对于厌氧铵氧化的低估和对于反硝化的高估二者可以抵消,DNRA只是改变了~(15)N在各个过程中的配对形式并未对总的氮丢失产生影响。而对于整柱培养来说,在DNRA存在的情况下,按照Risgaard-Petersen等(2003)的计算方法计算出的氮丢失速率将会被高估,因为DNRA在硝酸盐还原层中与反硝化和厌氧铵氧化存在竞争关系,消耗了一部分硝酸盐从而降低了真实的氮丢失速率。针对泥浆培养过程中DNRA的影响,本文提出了3种方法用于校正或者消除该影响。在第一种方法中,采用分步计算方式将泥浆培养过程每个时间点所获取的FA考虑在内,得到每个时间点由厌氧铵氧化产生的30N_2的量,然后再分步计算每个时间点由厌氧铵氧化和反硝化所产生的实际的N_2量;在第二种方法中,如果FA随时间呈现线性增加,则采用平均的FA来计算由厌氧铵氧化贡献的30N_2产生速率,从而计算厌氧铵氧化和反硝化速率;在第三种方法中,泥浆培养加入~(15)NO_3~-的同时,再加入较高浓度的14NH_4~+以保证FA处于较低的水平(<5%)来消除DNRA的影响。利用黄海和东海的实测数据验证了该模型的合理性,且三种方法均可用来校正或者消除DNRA对厌氧铵氧化和反硝化的影响。同时该模型的结果表明在ra比较低(<10%)的河口与近岸沉积物中,DNRA的影响可以不予考虑,但根据现有的ra分布规律来看,随着水深的增加,ra也逐渐增加,因此在ra比较大的陆架和陆坡沉积物中,DNRA的影响则必须要谨慎对待。此外,该模型不仅仅可以用于沉积物中校正DNRA对厌氧铵氧化和反硝化的影响,也可以在大洋缺氧水体中使用。
     (2)针对东海沉积物中所存在的硝酸盐还原过程的区分与量化,于2010年6月搭乘科学3号调查船在东海进行了5个站位的沉积物泥浆厌氧培养实验。~(15)NH_4~+、~(15)NH_4~++~(14)NO_3~-和~(15)NO_3~-分别作为~(15)N示踪剂加入培养体系中,通过检测不同的N_2同位素产物来判别不同的硝酸盐还原过程。实验结果表明加入~(15)NH_4~+的控制组,在O_2和NO_3~-均消耗殆尽的条件下,既无29N_2的生成亦无30N_2的产生,说明无有效的电子受体对~(15)NH_4~+进行厌氧氧化;而在加入~(15)NH_4~++~(14)NO_3~-的培养体系中,仅检测到了29N_2的产生,并无显著的30N_2产生,说明在所研究的沉积物中存在显著的厌氧铵氧化过程;在加入~(15)NO_3~-的培养体系中,显著的30N_2生成表明反硝化过程的存在,同时~(15)NH_4~+的产生证明DNRA过程也显著存在。通过对比~(15)NH_4~++~(14)NO_3~-和~(15)NO_3~-培养组的厌氧铵氧化速率,表明细胞内硝酸盐储存与释放过程也同时存在。在加入~(15)NO_3~-的培养体系中,在使用目前通用的Thampdrup&Dalsgaard (2002)提出的方法进行计算时,细胞内硝酸盐的释放会稀释~(15)NO_3~-,从而造成反硝化速率被低估,厌氧铵氧化速率被高估;而DNRA会造成反硝化速率被高估,而厌氧铵氧化速率被低估,从而使厌氧铵氧化在氮丢失过程中的贡献被低估。两种影响同时存在且作用相反,增加了计算过程的复杂性。将细胞内硝酸盐释放与DNRA的影响同时进行考虑后,结果表明,按照目前通用的Thampdrup&Dalsgaard (2002)提出的计算方法,在加入~(15)NO_3~-的培养体系中,如果仅仅考虑硝酸盐的释放,东海沉积物中反硝化速率将会被低估6%,而厌氧铵氧化速率将会被高估42%。考虑DNRA的影响之后,反硝化速率的低估将会被抵消,而厌氧铵氧化速率的高估程度可被降低14%。在加入~(15)NH_4~++~(14)NO_3~-的培养体系中,由于高浓度的~(15)NH_4~+加入作为背景,DNRA对厌氧铵氧化速率无显著影响。经过校正计算出的反硝化、厌氧铵氧化和DNRA速率表明,厌氧铵氧化在氮丢失过程中的贡献由较浅近岸的13%上升到较深外海的50%,说明厌氧铵氧化在东海沉积物氮丢失过程中起着重要作用。同时DNRA在硝酸盐还原过程中也起着重要的作用,其所占据的比例高达20~31%。
     (3)在初步了解东海沉积物中反硝化、厌氧铵氧化和DNRA过程的基础上,利用沉积物泥浆和整柱培养相结合的~(15)N同位素对技术分别于2010年6月和10~11月测定了东海沉积物中氮丢失速率。利用Risgaard-Petersen等(2003)所建议的方法计算出的氮丢失速率处于0.13到0.85mmol N m~(-2)d~(-1),平均0.37mmol N m~(-2)d~(-1),其中厌氧铵氧化的贡献处于11~50%,平均24%。DNRA的速率处于0~0.05mmol N m~(-2)d~(-1),平均0.02mmol N m~(-2)d~(-1)。利用Fick第一扩散定律的计算并结合文献数据表明,单纯使用沉积物柱培养形式的~(15)N IPT计算出的氮丢失和DNRA速率均存在一定程度的低估。在柱培养实验中,加入的~(15)NO_3~-受到扩散限制,在通常所进行的培养时间内(小于1天)~(15)NO_3~-最多渗透至表层1cm的沉积物中而不能够充分地与深层次间隙水中的~(14)NO_3~-充分混合,从而使得利用现有~(15)N IPT计算出的氮丢失速率存在低估。利用沉积物分层泥浆培养实验,计算了~(15)NO_3~-渗透深度以下硝酸盐还原层中的氮丢失速率,将其与前面计算出的氮丢失速率加和即为实际的氮丢失速率。该氮丢失速率与利用Risgaard-Petersen等(2003)方法计算出的氮丢失速率相比提高了0.8~2.2倍,平均1.6倍,推广到整个东海陆架则每年增加的氮丢失量大约有1.6TgN。校正后的DNRA平均速率为0.29mmol N m~(-2)d~(-1),提升了1个数量级。(·4)利用2011年5月和8月在长江口及其临近海区的两个航次探讨了底层水体缺氧对于沉积物中氮循环的影响。在该实验中,沉积物间隙水中的溶解氧和硝酸盐剖面、沉积物耗氧速率、NO_3~-和NH_4~+交换通量、厌氧铵氧化速率、反硝化速率、DNRA速率、硝化速率和矿化速率均在不同溶解氧条件下进行了测定,既考虑到了不同季节所造成的底层水体天然氧气含量变化对底栖氮循环的影响,同时又探讨了在受控培养的溶解氧条件下底栖氮循环的变化。结果表明,5月份的底层水体溶解氧含量一般处于~200μmolL~(-1),沉积物溶解氧渗透深度处于4.0~4.3mm,耗氧速率处于11.6~17.6mmol O_2m~(-2)d~(-1)。由于调查前受强台风的影响,8月份底层水体中的溶解氧未出现缺氧现象(DO<62.5μmol L~(-1)),但与5月份相比,底层水体溶解氧降低至~100μmol L~(-1),沉积物耗氧速率降低至6.1~13.6mmol O_2m~(-2)d~(-1),氧气渗透深度则减小到1.6~3.8mm,沉积物耗氧速率和氧气渗透深度分别降低了23%和29%。伴随着氧气浓度的降低,NO_3~-剖面所表现出的硝化层消失,NO_3~-趋向于由水体向沉积物转移,而NH_4~+则趋向于由沉积物向水体释放。厌氧铵氧化速率由0.15mmol N m~(-2)d~(-1)降低至0.06mmol N m~(-2)d~(-1),对总的氮丢失的贡献平均由20%降低至7.4%。反硝化速率表现出轻微的上升使得总的氮丢失速率维持在0.85mmol N m~(-2)d~(-1)左右。DNRA速率则由0.02mmol N m~(-2)d~(-1)上升至0.10mmol N m~(-2)d~(-1),平均升高了5倍。由于在8月份的航次中没有发现天然的缺氧现象,因此通过受控培养研究了在不同氧条件下(氧化状态、原位氧状态和严重缺氧状态)底栖氮循环对于水体缺氧的响应,结果表明,当底层水体溶解氧由氧化状态(DO=~200μmol L~(-1))降低至严重缺氧状态(DO=~16μmol L~(-1))时,沉积物耗氧速率急剧降低,平均降低了91%。NH_4~+由沉积物向水体强烈地释放,而NO_3~-则由氧化条件下的从沉积物向水体释放(0.14mmol N m~(-2)d~(-1))转变为急剧地向沉积物转移(-0.79mmol N m~(-2)d~(-1))。与底层水体氧化状态相比,厌氧铵氧化和反硝化在严重缺氧条件下分别降低了38%和43%,从而使总的氮丢失速率由0.92mmol N m~(-2)d~(-1)降低至0.57mmol N m~(-2)d~(-1)。DNRA速率在严重缺氧状态下增加了3倍。反硝化、厌氧铵氧化和DNRA速率的降低均可归因于严重缺氧条件下沉积物有机氮矿化速率的降低,进而导致硝化速率降低,从而使得与硝化反应相耦合的各种硝酸盐还原过程的速率均表现出不同程度的降低。
Nitrogen plays a vital role in regulating global marine primary productivity andconsequently climate change. Its availability depends on the balance between nitrogenfixation through diazotrophs and fixed nitrogen loss via denitrification and anammox.However, whether marine nitrogen budget is in balance or not is still on debate. Thisis due to the scarcity of direct measurements for each process of marine nitrogen cycleand its complicated composition. Thus accurate rate measurement and nitrogentransformation process confirmation determine marine nitrogen budget to a largeextent. Marine sediment accounts for50~70%of global marine N-loss, and thus playsa dominant role. Among N-loss from sediment, continental shelf accounts for morethan50%of total benthic N-loss although it only comprises7.5%of the total seafloor.The East China Sea (ECS) shelf is one of the widest and most productive shelves. Itwas speculated that the ECS would be a hotspot for benthic N-loss; however, poorlystudies of benthic N-loss were conducted in this area. The aims of this thesis are toidentify the specific nitrogen transformation processes, to distinguish respectivecontribution to benthic nitrogen transformation, and to determine the extent of benthicN-loss on the ECS shelf. In this thesis, we chose the prevalent~(15)N isotope pairingmethod (~(15)N IPT) to investigate the benthic nitrogen cycle in the ECS from both fieldmeasurements and mathematical model. Furthermore, both sediment slurry and intactcore incubations were conducted in the field measurement to give a full understandingof benthic nitrogen cycle. Preliminary results were as follows:
     (1) The application of isotope pairing technique (IPT) in sediments whereanammox, denitrification and DNRA coexist was discussed in detail basedon a mathematical model. The mathematical expression demonstrated thatco-occurrence of DNRA with anammox and denitrification would change~(15)N combination in anammox. Coexistence of DNRA would underestimateanammox and overestimate denitrification if their rates were calculatedaccording to the equations given by Thamdrup and Dalsgaard (2002) forslurry incubation. Therefore, ra was underestimated. The underestimation ofanammox was proportional to~(15)NH_4~+fraction in NH_4~+pools (FA); however,the overestimation of denitrification was related to both FAand ra. For intact core incubation, genuine N_2production was decreased since DNRA wouldcompete with anammox and denitrification under nitrate limiting. Threealternative procedures were proposed to correctly quantify anammox,denitrification and DNRA rates in slurry incubation. The first two methodsbased on estimating30N_2production via anammox. The third one based onconstraining FAto lower than5%in the way of elevating14NH_4~+concentration. The validity and feasibility of the proposed calculationprocedures were verified by field studies in the ECS and Yellow Sea. Ourresults implied that DNRA did not influence anammox and denitrificationsignificantly in estuarine sediment with relative low ra (<10%), however,those sediments with high ra and DNRA rate should be treated verycautiously for future studies and DNRA was strongly recommended to bemeasured.
     (2) Benthic nitrogen transformation pathways were investigated in the sedimentof the East China Sea (ECS) in June of2010using the~(15)N isotope pairingtechnique. Slurry incubations indicated that denitrification, anammox anddissimilatory nitrate reduction to ammonium (DNRA) as well as intracellularnitrate release occurred in the ECS sediments. These four processes did notexist independently, nitrate release therefore diluted the~(15)N labeling fractionof NO_3~-–, and a part of the~(15)NH_4~+derived from DNRA also formed30N_2viaanammox. Hence current methods of rate calculations led to over andunderestimations of anammox and denitrification respectively. Following theprocedure outlined in Thamdrup and Dalsgaard (2002), denitrification rateswere slightly underestimated by an average6%without regard to the effectof nitrate release, while this underestimation could be counteracted by thepresence of DNRA. On the contrary, anammox rates calculated from~(15)NO_3~-–experiment were significantly overestimated by42%without consideringnitrate release. In our study, this overestimation could only be compensated14%by taking DNRA into consideration. In a parallel experiment amendedwith~(15)NH_4~++~(14)NO_3~-–, anammox rates were not significantly influenced byDNRA due to the high background of~(15)NH_4~+addition. The significantcorrelation between potential denitrification rate and sediment organic mattercontent (r=0.68, p<0.001, Pearson) indicated that denitrification wasregulated by organic matter, while, no such correlations were found for anammox and DNRA. The relative contribution of anammox to the totalN-loss increased from13%at the shallowest site near the Changjiang estuaryto50%at the deepest site on the outer shelf, implying the significant role ofanammox in benthic nitrogen cycling in the ECS sediments, especially on theouter shelf. N-loss as N_2was the main pathway, while DNRA was also animportant pathway accounting for20~31%of benthic nitrate reduction in theECS. Our study demonstrates the complicated interactions among differentbenthic nitrogen transformations and the importance of consideringdenitrification, DNRA, anammox and nitrate release together when designingand interpreting future studies.
     (3) Benthic N-loss and DNRA rates on the ECS continental shelf were directlymeasured in two cruises in June and October-November2010usingprevalent~(15)N isotope pairing technique (IPT) through sediment intact coreand slurry incubations. Measured benthic N-loss rate ranged from0.13to0.85mmol N m~(-2)d~(-1)with an average of0.37mmol N m~(-2)d~(-1)using revisedIPT suggested by Risgaard-Petersen (2003), where anammox accounts for11~49%with an average of24%. DNRA ranged from0to0.05mmol N m~(-2)d~(-1)with an average of0.02mmol N m~(-2)d~(-1). According to the Fick’s first law,we speculated that just a pseudo-steady state was established for~(15)NO_3~-when IPT was employed.~(15)NO_3~-could not diffuse more than1cm insediment, which caused a substantial part of benthic N-loss missingcontributed by NO_3~-below~(15)NO_3~-penetration zone. Furthermore, severalevidence from re-examination based on published literature also supportedthat benthic N-loss was underestimated when IPT was applied. After addingthe missing benthic N-loss based on sediment slurry incubation, total benthicN-loss increased by a factor of0.8~2.2with an average of1.6and DNRAincreased by1order of magnitude to an average of0.29mmol N m~(-2)d~(-1)when the missing benthic N-loss based on sediment slurry incubation wasadded. The additional benthic N-loss was calculated with an average of1.6Tg N a-1in the East China Sea. If this additional N-loss could be extrapolatedto the global continental shelves, then an excess of80Tg N a-1can then beadded to the global marine nitrogen loss budget, accounting for52±23%ofthe global marine benthic nitrogen loss, which further aggravates theunbalance between nitrogen fixation and loss in marine environment.
     (4) The response of benthic nitrogen cycle to bottom water hypoxia wassynthetically investigated in the Changjiang estuary and adjacent area in twocruises in May and August2011. In this study benthic oxygen uptake,sediment oxygen profile, net flux of nitrate and ammonium, anammox,denitrification, DNRA, nitrification and mineralization were studied using~(15)N isotope pairing and O_2microelectrode techniques. Sediment oxygenuptake and oxygen penetration depth averagely decreased23%and29%witha natural50%decline of bottom water oxygen from~200μM in May to~100μM in August. NH_4~+inclined to release from sediment to overlyingwater, while NO_3~-was prone to shifting from efflux to influx to sediment. rasignificantly decreased from20%to7.4%, leading to anammox ratedecreased by a factor of2.5from0.15to0.06mmol N m~(-2)d~(-1). However,denitrification showed a slight increase causing total benthic N-loss stablizedat0.85mmol N m~(-2)d~(-1). DNRA showed a significant increase by a factor of5from0.02to0.10mmol N m~(-2)d~(-1). These changes were consistent with theresults derived from artificially bottom water oxygen condition controlledexperiments (oxic, ambient and severe hypoxia): sediment oxygen uptakedecreased by as much as91%when bottom water oxygen dropped92%fromnormal oxic condition (~200μM) to severe hypoxia (~16μM). NH_4~+showedan enhanced release to overlying water from~0to0.60mmol N m~(-2)d~(-1)andNO_3~-shifted from an efflux of0.14mmol N m~(-2)d~(-1)to an influx of0.79mmol N m~(-2)d~(-1). Denitrification and anammox showed an average decreaseof38%and43%under severe hypoxia, leading to total benthic N-lossdecline of38%from0.92to0.57mmol N m~(-2)d~(-1). DNRA showed anelevation by a factor of3although it only accounted for less than10%oftotal nitrate reduction.
     Our work in the ECS provided preliminary understanding of benthic nitrogentransformations, but there is still a long way to go to exhibit a comprehensive andintensive picture of nitrogen cycle due to its inherent complexity. With the boomingdiscoveries in the field of marine nitrogen cycle, studies will surely face numerousopportunities and challenges.
引文
[1] Aller R., Mackin J., Ullman W., et al. Early chemical diagenesis, sediment-water soluteexchange, and storage of reactive organic matter near the mouth of the Changjiang, EastChina Sea. Continental Shelf Research,1985,4(1-2):227~251
    [2] An S., Gardner W. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogenlink, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay,Texas). Marine Ecology Progress Series,2002,237:41~50
    [3] An S., Gardner W., Kana T. Simultaneous measurement of denitrification and nitrogenfixation using isotope pairing with membrane inlet mass spectrometry analysis. Appliedand Environmental Microbiology,2001,67(3):1171~1178
    [4] Beardsley R., Limeburner R., Yu H., et al. Discharge of the Changjiang (Yangtze River)into the East China Sea. Continental Shelf Research,1985,4(1-2):57~76
    [5] Berg H. Random walks in biology. New expanded edition.1993. New Jersey: PrincetonUniv. Press,1993.5~14
    [6] Binnerup S., Jensen K., Revsbech N., et al. Denitrification, dissimilatory reduction ofnitrate to ammonium, and nitrification in a bioturbated estuarine sediment as measuredwith15N and microsensor techniques. Applied and Environmental Microbiology,1992,58(1):303~313
    [7] Boast C., Mulvaney R., Baveye P. Evaluation of nitrogen-15tracer techniques for directmeasurement of denitrification in soil: I. Theory. Soil Science Society of America Journal,1988,52(5):1317~1322
    [8] Bohlen L., Dale A., Sommer S., et al. Benthic nitrogen cycling traversing the Peruvianoxygen minimum zone. Geochimica et Cosmochimica Acta,2011,75(20):6094~6111
    [9] Bohlen L., Dale A., Wallmann K. Simple transfer functions for calculating benthic fixednitrogen losses and C: N: P regeneration ratios in global biogeochemical models. GlobalBiogeochemical Cycles,2012,26(3): GB3029.
    [10] Bonin P. Anaerobic nitrate reduction to ammonium in two strains isolated from coastalmarine sediment: a dissimilatory pathway. FEMS Microbiology Ecology,1996,19(1):27~38
    [11] Bonin P., Omnes P., Chalamet A. Simultaneous occurrence of denitrification and nitrateammonification in sediments of the French Mediterranean Coast. Hydrobiologia,1998,389(1-3):169~182
    [12] Boudreau B. Diagenetic models and their implementation: modelling transport andreactions in aquatic sediments. Berlin: Springer Press,1997.91~164
    [13] Bouldin D. Models for describing the diffusion of oxygen and other mobile constituentsacross the mud-water interface. The Journal of Ecology,1968,56(1):77~87
    [14] Brandes J., Devol A., Deutsch C. New developments in the marine nitrogen cycle.Chemical Reviews,2007,107(2):577~589
    [15] Brandes J., Devol A. A global marine-fixed nitrogen isotopic budget: Implications forHolocene nitrogen cycling. Global Biogeochemical Cycles,2002,16(4):67-61~67-14
    [16] Bronk D., See J., Bradley P., et al. DON as a source of bioavailable nitrogen forphytoplankton. Biogeosciences,2007,4(3):283~296
    [17] Cai W., Sayles F. Oxygen penetration depths and fluxes in marine sediments. MarineChemistry,1996,52(2):123~131
    [18] Canfield D., Kristensen E., Thamdrup B. Aquatic geomicrobiology. San Diego: AcademicPress,2005.205~267
    [19] Chai C., Yu Z., Song X., et al. The status and characteristics of eutrophication in theYangtze River (Changjiang) Estuary and the adjacent East China Sea, China.Hydrobiologia,2006,563(1):313~328
    [20] Chen C., Wang S. Carbon, alkalinity and nutrient budgets on the East China Seacontinental shelf. Journal of Geophysical Research,1999,104(C9):20675~20686
    [21] Childs C., Rabalais N., Turner R., et al. Sediment denitrification in the Gulf of Mexicozone of hypoxia. Marine Ecology Progress Series,2002,240:285~290
    [22] Christensen J., Murray J., Devol A., et al. Denitrification in continental shelf sedimentshas major impact on the oceanic nitrogen budget. Global Biogeochemical Cycles,1987,1(2):97~116
    [23] Christensen P., Rysgaard S., Sloth N., et al. Sediment mineralization, nutrient fluxes,denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord withsea cage trout farms. Aquatic Microbial Ecology,2000,21(1):73~84
    [24] Codispoti L. An oceanic fixed nitrogen sink exceeding400Tg N a-1vs the concept ofhomeostasis in the fixed-nitrogen inventory. Biogeosciences,2007,4(2):233~253
    [25] Codispoti L., Brandes J., Christensen J., et al. The oceanic fixed nitrogen and nitrous oxidebudgets: Moving targets as we enter the anthropocene?. Scientia Marina,2001,65(S2):85~105
    [26] Conley D., Carstensen J., rtebjerg G., et al. Long-term changes and impacts of hypoxiain Danish coastal waters. Ecological Applications,2007,17(5):165~184
    [27] Conley D., Carstensen J., Vaquer-Sunyer R., et al. Ecosystems thresholds with hypoxia.Hydrobiologia,2009,629(1):21~29
    [28] Cook P., Wenzh fer F., Rysgaard S., et al. Quantification of denitrification in permeablesediments: Insights from a two-dimensional simulation analysis and experimental data.Limnology and Oceanography: Methods,2006,4:294~307
    [29] Cooper L. The nitrogen cycle in the sea. Journal of the Marine Biological Association ofthe United Kingdom,1937,22(1):183~204
    [30] Crowe S., Canfield D., Mucci A., et al. Anammox, denitrification and fixed-nitrogenremoval in sediments from the Lower St. Lawrence Estuary. Biogeosciences,2011,9(11):4309~4321
    [31] D hnke K., Moneta A., Veuger B., et al. Balance of assimilative and dissimilative nitrogenprocesses in a diatom-rich tidal flat sediment. Biogeosciences,2012,9(10):4059~4070
    [32] Dale O., Tobias C., Song B. Biogeographical distribution of diverse anaerobic ammoniumoxidizing (anammox) bacteria in Cape Fear River Estuary. Environmental Microbiology,2009,11(5):1194~1207
    [33] Dalsgaard T., Canfield D., Petersen J., et al. N2production by the anammox reaction in theanoxic water column of Golfo Dulce, Costa Rica. Nature,2003,422(6932):606~608
    [34] Dalsgaard T., Thamdrup B. Factors controlling anaerobic ammonium oxidation with nitritein marine sediments. Applied and Environmental Microbiology,2002,68(8):3802~3808
    [35] Dalsgaard T., Thamdrup B., Canfield D. Anaerobic ammonium oxidation (anammox) inthe marine environment. Research in Microbiology,2005,156(4):457~464
    [36] Dalsgaard T., Thamdrup B., Farías L., et al. Anammox and denitrification in the oxygenminimum zone of the eastern South Pacific. Limnology and Oceanography,2012,57(5):1331~1346
    [37] Dauwe B., Middelburg J., Herman P. Effect of oxygen on the degradability of organicmatter in subtidal and intertidal sediments of the North Sea area. Marine Ecology ProgressSeries,2001,215:13~22
    [38] Dekas A., Orphan V. Methane-Stimulated Benthic Marine Nitrogen Fixation at Deep-SeaMethane Seeps, AGU Fall Meeting Abstracts. American Geophysical Union,2011.07
    [39] Deutsch C., Sigman D., Thunell R., et al. Isotopic constraints on glacial/interglacialchanges in the oceanic nitrogen budget. Global Biogeochemical Cycles,2004.18(4):GB4012.
    [40] Devol A. Direct measurement of nitrogen gas fluxes from continental shelf sediments.Nature,1991,349(6307):319~321
    [41] Devol A., Christensen J. Benthic fluxes and nitrogen cycling in sediments of thecontinental margin of the eastern North Pacific. Journal of Marine Research,1993,51(2):345~372
    [42] Devol A., Codispoti L., Christensen J. Summer and winter denitrification rates in westernArctic shelf sediments. Continental Shelf Research,1997,17(9):1029~1033
    [43] DeVries T., Deutsch C., Primeau F., et al. Global rates of water-column denitrificationderived from nitrogen gas measurements. Nature Geoscience,2012,5(8):547~550
    [44] Diaz R., Rosenberg R. Spreading dead zones and consequences for marine ecosystems.Science,2008,321(5891):926~929
    [45] Dong L., Smith C., Papaspyrou S., et al. Changes in Benthic Denitrification, NitrateAmmonification, and Anammox Process Rates and Nitrate and Nitrite Reductase GeneAbundances along an Estuarine Nutrient Gradient (the Colne Estuary, United Kingdom).Applied and Environmental Microbiology,2009,75(10):3171~3179
    [46] Dong L., Sobey M., Smith C., et al. Dissimilatory reduction of nitrate to ammonium, notdenitrification or anammox, dominates benthic nitrate reduction in tropical estuaries.Limnology and Oceanography,2011,56(1):279~291
    [47] Dong L., Thornton D., Nedwell D., et al. Denitrification in sediments of the River Colneestuary, England. Marine Ecology Progress Series,2000,203:109~122
    [48] Dortch Q. The interaction between ammonium and nitrate uptake in phytoplankton.Marine Ecology Progress Series,1990,61:183~201
    [49] Emery K. Relict sediments on continental shelves of world. AAPG Bulletin,1968,52(3):445~464
    [50] Engstr m P., Dalsgaard T., Hulth S., et al. Anaerobic ammonium oxidation by nitrite(anammox): implications for N2production in coastal marine sediments. Geochimica etCosmochimica Acta,2005,69(8):2057~2065
    [51] Engstr m P., Penton C., Devol A. Anaerobic ammonium oxidation in deep-sea sedimentsoff the Washington margin. Limnology and Oceanography,2009,54(5):1643~1652
    [52] Enoksson V., Samuelsson M. Nitrification and dissimilatory ammonium production andtheir effects on nitrogen flux over the sediment-water interface in bioturbated coastalsediments. Marine Ecology Progress Series,1987,36:181~189
    [53] Eugster O., Gruber N. A probabilistic estimate of global marine N-fixation anddenitrification. Global Biogeochemical Cycles,2012,26(4): GB4013
    [54] Evrard V., Glud R., Cook P. The kinetics of denitrification in permeable sediments.Biogeochemistry,2012,113(1-3):1~10
    [55] Eyre B., Rysgaard S., Dalsgaard T., et al. Comparison of isotope pairing and N2: Armethods for measuring sediment denitrification—Assumption, modifications, andimplications. Estuaries and Coasts,2002,25(6A):1077~1087
    [56] Falkowski P. Evolution of the nitrogen cycle and its influence on the biologicalsequestration of CO2in the ocean. Nature,1997,387(6630):272~275
    [57] Ferguson A., Eyre B. Seasonal discrepancies in denitrification measured by isotope pairingand N2: Ar techniques. Marine Ecology Process Series,2007,350:19~27
    [58] Fernandez C., Farías L., Ulloa O. Nitrogen fixation in denitrified marine waters. PLoSOne,2011,6(6), e20539
    [59] Fossing H., Gallardo V., J rgensen B., et al. Concentration and transport of nitrate by themat-forming sulphur bacterium Thioploca. Nature,1995,374(6524):713~715
    [60] Froelich P., Klinkhammer G., Bender M., et al. Early oxidation of organic matter in pelagicsediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica etCosmochimica Acta,1979,43(7):1075~1090
    [61] Fulweiler R., Nixon S., Buckley B., et al. Reversal of the net dinitrogen gas flux in coastalmarine sediments. Nature,2007,448(7150):180~182
    [62] Galloway J., Dentener F., Capone D., et al. Nitrogen cycles: past, present, and future.Biogeochemistry,2004,70(2):153~226
    [63] Gao H., Matyka M., Liu B., et al. Intensive and extensive nitrogen loss from intertidalpermeable sediments of the Wadden Sea. Limnology and Oceanography,2012,57(1):185~198
    [64] Gao H., Schreiber F., Collins G., et al. Aerobic denitrification in permeable Wadden Seasediments. The ISME Journal,2010,4(3):417~426
    [65] Gardner W., McCarthy M., An S., et al. Nitrogen fixation and dissimilatory nitratereduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries.Limnology and Oceanography,2006,51(1):558~568
    [66] Gihring T., Lavik G., Kuypers M., et al. Direct determination of nitrogen cycling rates andpathways in Arctic fjord sediments (Svalbard, Norway). Limnology and Oceanography,2010,55(2):740~752
    [67] Gilbert F., Souchu P., Bianchi M., et al. Influence of shellfish farming activities onnitrification, nitrate reduction to ammonium and denitrification at the water-sedimentinterface of the Thau lagoon, France. Marine Ecology Process Series,1997,151:143~153
    [68] Glud R., Thamdrup B., Stahl H., et al. Nitrogen cycling in a deep ocean margin sediment(Sagami Bay, Japan). Limnology and Oceanography,2009,54(3):723~734
    [69] Glud R. Oxygen dynamics of marine sediments. Marine Biology Research,2008,4(4):243~289
    [70] Goeyens L., De Vries R., Bakker J., et al. An experiment on the relative importance ofdenitrification, nitrate reduction and ammonification in coastal marine sediment.Netherlands Journal of Sea Research,1987,21(3):171~175
    [71] Gong G., Wen Y., Wang B. et al. Seasonal variation of chlorophyll a concentration,primary production and environmental conditions in the subtropical East China Sea. DeepSea Research Part II: Topical Studies in Oceanography,2003,50(6-7):1219~1236
    [72] Grasshoff K., Kremling K., Ehrhardt M. Methods of seawater analysis (Third, CompletelyRevised and Extended Edition). Weinheim: WILEY-VCH,1999.159~228
    [73] Groffman P., Altabet M., B hlke J., et al. Methods for measuring denitrification: diverseapproaches to a difficult problem. Ecological Applications,2006,16(6):2091~2122
    [74] Gro kopf T., Mohr W., Baustian T., et al. Doubling of marine dinitrogen-fixation ratesbased on direct measurements. Nature,2012,488(7411):361~364
    [75] Gruber N. The dynamics of the marine nitrogen cycle and its influence on atmosphericCO2. In: Follows, M.; Oguz T.,(eds). The Ocean Carbon Cycle and Climate, NATO ASISeries. Dordrecht: Kluwer Academic,2004.97~148
    [76] Gruber N. The marine nitrogen cycle: overview and challenges. In: Capone, D.; Bronk, D.;Mulholland, M.; Carpenter, E.,(eds). Nitrogen in the Marine Environment (2nd Edition).San Diego: Academic Press,2008.1~55
    [77] Gruber N., Galloway J. An Earth-system perspective of the global nitrogen cycle. Nature,2008,451(7176):293~296
    [78] Gruber N., Sarmiento J. Global patterns of marine nitrogen fixation and denitrification.Global Biogeochemical Cycles,1997,11(2):235~266
    [79] Gruber N., Sarmiento J. Large-scale biogeochemical-physical interactions in elementalcycles. The Sea,2002,12:337~399
    [80] Gu H., Moore W., Zhang L., et al. Using radium isotopes to estimate the residence timeand the contribution of submarine groundwater discharge (SGD) in the Changjiangeffluent plume, East China Sea. Continental Shelf Research,2012,35:95~107
    [81] Hamersley M., Lavik G., Woebken D., et al. Anaerobic ammonium oxidation in thePeruvian oxygen minimum zone. Limnology and Oceanography,2007,52(3):923~933
    [82] Hansen J., Thamdrup B., J rgensen B. Anoxic incubation of sediment in gas-tight plasticbags: A method for biogeochemical process studies. Marine Ecology Process Series,2000,208:273~282
    [83] Hartwig E., Stanley S. Nitrogen fixation in Atlantic deep-sea and coastal sediments. DeepSea Research,1978,25(4):411~417
    [84] Hauck R., Melsted S., Yankwich P. Use of N-isotope distribution in nitrogen gas in thestudy of denitrification. Soil Science,1958,86(5):287~291
    [85] Holtappels M., Lavik G., Jensen M., et al.15N-labeling experiments to dissect thecontributions of heterotrophic denitrification and anammox to nitrogen removal in theOMZ waters of the ocean. In: Methods in Enzymology: Research on Nitrification andRelated Processes,486, Part A. Klotz, M.,(eds). San Diego: Elsevier Academic Press Inc.,2011.223~251
    [86] Hu L., Shi X., Guo Z., et al. Sources, dispersal and preservation of sedimentary organicmatter in the Yellow Sea: The importance of depositional hydrodynamic forcing. MarineGeology,2013,335(1):52~63
    [87] Hulth S., Aller R., Canfield D., et al. Nitrogen removal in marine environments: recentfindings and future research challenges. Marine Chemistry,2005,94(1-4):125~145
    [88] Ichikawa H., Beardsley R. The current system in the Yellow and East China Seas. Journalof Oceanography,2002,58(1):77~92
    [89] J ntti H., Hietanen S. The Effects of Hypoxia on Sediment Nitrogen Cycling in the BalticSea. AMBIO: A Journal of the Human Environment,2012,41(2):1~9
    [90] Jenkins M., Kemp W. The coupling of nitrification and denitrification in two estuarinesediments. Limnology and Oceanography,1984,29(3):609~619
    [91] Jensen M., Lam P., Revsbech N., et al. Intensive nitrogen loss over the Omani Shelf due toanammox coupled with dissimilatory nitrite reduction to ammonium. The ISME Journal,2011,5(10):1660~1670
    [92] Joye S., Hollibaugh J. Influence of sulfide inhibition of nitrification on nitrogenregeneration in sediments. Science,1995,270(5236):623~625
    [93] Kalvelage T., Jensen M., Contreras S., et al. Oxygen Sensitivity of Anammox and CoupledN-Cycle Processes in Oxygen Minimum Zones. PLoS One,2011,6(12): e29299
    [94] Kamp A., de Beer D., Nitsch J., et al. Diatoms respire nitrate to survive dark and anoxicconditions. Proceedings of the National Academy of Sciences,2011,108(14):5649~5654
    [95] Kana T., Sullivan M., Cornwell J., et al. Denitrification in estuarine sediments determinedby membrane inlet mass spectrometry. Limnology and Oceanography,1998,43(2):334~339
    [96] Kao S., Lin F., Liu K. Organic carbon and nitrogen contents and their isotopiccompositions in surficial sediments from the East China Sea shelf and the southernOkinawa Trough. Deep Sea Research Part II: Topical Studies in Oceanography,2003,50(6-7):1203~1217
    [97] Karlson K., Hulth S., Ringdahl K., et al. Experimental recolonisation of Baltic Seareduced sediments: survival of benthic macrofauna and effects on nutrient cycling. MarineEcology Progress Series,2005,294:35~49
    [98] Kartal B., Kuypers M., Lavik G., et al. Anammox bacteria disguised as denitrifiers: nitratereduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology,2007,9(3):635~642
    [99] Keeling R., K rtzinger A., Gruber N. Ocean deoxygenation in a warming world. AnnualReview of Marine Science,2010,2:199~229
    [100] Kemp W., Sampou P., Caffrey J., et al. Ammonium recycling versus denitrification inChesapeake Bay sediments. Limnology and Oceanography,1990,35(7):1545~1563
    [101] Koho K., Pi a-Ochoa E., Geslin E., et al. Vertical migration, nitrate uptake anddenitrification: survival mechanisms of foraminifers (Globobulimina turgida) under lowoxygen conditions. FEMS Microbiology Ecology,2010,75(2):273~283
    [102] Koike I., Hattori A. Denitrification and ammonia formation in anaerobic coastalsediments. Applied and Environmental Microbiology,1978,35(2):278~282
    [103] K nneke M., Bernhard A., José R., et al. Isolation of an autotrophic ammonia-oxidizingmarine archaeon. Nature,2005,437(7058):543~546
    [104] Koop-Jakobsen K., Giblin A. The effect of increased nitrate loading on nitrate reductionvia denitrification and DNRA in salt marsh sediments. Limnology and Oceanography,2010,55(2):789~802
    [105] Kuypers M., Lavik G., Woebken D., et al. Massive nitrogen loss from the Benguelaupwelling system through anaerobic ammonium oxidation. Proceedings of the NationalAcademy of Sciences,2005,102(18):6478~6483
    [106] Kuypers M., Sliekers A., Lavik G., et al. Anaerobic ammonium oxidation by anammoxbacteria in the Black Sea. Nature,2003,422(6932):608~611
    [107] Lam P., Kuypers M. Microbial Processes in Oxygen Minimum Zones. Annual Review ofMarine Science,2011,3:317~345
    [108] Lam P., Lavik G., Jensen M., et al. Revising the nitrogen cycle in the Peruvian oxygenminimum zone. Proceedings of the National Academy of Sciences,2009,106(12):4752~4757
    [109] Laverman A., Meile C., Van Cappellen P., et al. Vertical distribution of denitrification inan estuarine sediment: integrating sediment flowthrough reactor experiments andmicroprofiling via reactive transport modeling. Applied and Environmental Microbiology,2007,73(1):40~47
    [110] Li D., Zhang J., Huang D., et al. Oxygen depletion off the Changjiang (Yangtze River)estuary. Science in China Series D: Earth Sciences,2002,45(12):1137~1146
    [111] Lin S., Huang K., Chen S. Sulfate reduction and iron sulfide mineral formation in thesouthern East China Sea continental slope sediment. Deep Sea Research Part I:Oceanographic Research Papers,2002,49(10):1837~1852
    [112] Liu J., Xu K., Li A., et al. Flux and fate of Yangtze River sediment delivered to the EastChina Sea. Geomorphology,2007,85(3-4):208~224
    [113] Liu S., Hong G., Zhang J., et al. Nutrient budgets for large Chinese estuaries.Biogeosciences,2009,6(10):2245~2263.
    [114] Liu S., Li L., Zhang Z. Inventory of nutrients in the Bohai. Continental Shelf Research,2011,31(16):1790~1797
    [115] Lohse L., Epping E., Helder W. Oxygen pore water profiles in continental shelfsediments of the North Sea: turbulent versus molecular diffusion. Marine EcologyProgress Series,1996a,145:63~75
    [116] Lohse L., Johannes F., Slomp C., et al. Sediment-water fluxes of inorganic nitrogencompounds along the transport route of organic matter in the North Sea. Ophelia,1995,41(1):173~197
    [117] Lohse L., Kloosterhuis H., Van Raaphorst R., et al. Denitrification rates as measured bythe isotope pairing method and by the acetylene inhibition technique in continental shelfsediments of the North Sea. Marine Ecology Progress Series,1996b,132:169~179
    [118] Lohse L., Malschaert J., Slomp C., et al. Nitrogen cycling in North Sea sediments:interaction of denitrification and nitrification in offshore and coastal areas. MarineEcology Progress Series,1993,101:283~283
    [119] Lomas M., Glibert P. Comparisons of nitrate uptake, storage, and reduction in marinediatoms and flagellates. Journal of Phycology,2000,36(5):903~913
    [120] Lomstein E., Jensen M., S rensen J. Intracellular NH+4and NO-3pools associated withdeposited phytoplankton in a marine sediment (Aarhus Bight, Denmark). Marine EcologyProgress Series,1990,61:97~105
    [121] Luther G., Sundby B., Lewis B., et al. Interactions of manganese with the nitrogen cycle:Alternative pathways to dinitrogen. Geochimica et Cosmochimica Acta,1997,61(19):4043~4052
    [122] Mackin J., Swider K. Organic matter decomposition pathways and oxygen consumptionin coastal marine sediments. Journal of Marine Research,1989,47(3):681~716
    [123] Mahaffey C., Michaels A., Capone D. The conundrum of marine N2fixation. AmericanJournal of Science,2005,305(6-8):546~595
    [124] Martens-Habbena W., Berube P., Urakawa H., et al. Ammonia oxidation kineticsdetermine niche separation of nitrifying Archaea and Bacteria. Nature,2009,461(7266):976~979
    [125] Menard H., Smith S. Hypsometry of ocean basin provinces. Journal of GeophysicalResearch,1966,71(18):4305~4325
    [126] Meyer R., Risgaard-Petersen N., Allen D. Correlation between anammox activity andmicroscale distribution of nitrite in a subtropical mangrove sediment. Applied andEnvironmental Microbiology,2005,71(10):6142~6149
    [127] Middelburg J., Levin L. Coastal hypoxia and sediment biogeochemistry. Biogeosciences,2009,6(7):1273~1293
    [128] Middelburg J., Soetaert K., Herman P., et al. Denitrification in marine sediments: Amodel study. Global Biogeochemical Cycles,1996,10(4):661~674
    [129] Milliman J., Qin Y., Park Y. Sediments and sedimentary processes in the Yellow andEast China Seas. In: Sedimentary Facies in the Active Plate Margin. Taira A., Masuda F.,(eds). Tokyo: Terra Scientific Publishing Company,1989.233~249
    [130] Mohr W., Grosskopf T., Wallace D., et al. Methodological underestimation of oceanicnitrogen fixation rates. PLoS One,2010,5(9): e12583
    [131] Montoya J., Holl C., Zehr J., et al. High rates of N2fixation by unicellular diazotrophs inthe oligotrophic Pacific Ocean. Nature,2004,430(7003):1027~1032
    [132] Mulder A., Graaf A., Robertson L., et al. Anaerobic ammonium oxidation discovered ina denitrifying fluidized bed reactor. FEMS Microbiology Ecology,1995,16(3):177~184
    [133] Mulholland M., Lomas M. Nitrogen Uptake and Assimilation. In: Capone, D.; Bronk, D.;Mulholland, M.; Carpenter, E.,(eds). Nitrogen in the Marine Environment (2nd Edition).San Diego: Academic Press,2008.303~384
    [134] Neubacher E., Parker R., Trimmer M. Short-term hypoxia alters the balance of thenitrogen cycle in coastal sediments. Limnology and Oceanography,2011,56(2):651~665
    [135] Neubacher E., Parker R., Trimmer, M. The potential effect of sustained hypoxia onnitrogen cycling in sediment from the southern North Sea: a mesocosm experiment.Biogeochemistry,2012,113(1-3):69~84
    [136] Nicholls J., Trimmer M. Widespread occurrence of the anammox reaction in estuarinesediments. Aquatic Microbial Ecology,2009,55(2):105~113
    [137] Nielsen L., Glud R. Denitrification in a coastal sediment measured in situ by thenitrogen isotope pairing technique applied to a benthic flux chamber. Marine EcologyProgress Series,1996,137:181~186
    [138] Nielsen L. Denitrification in sediment determined from nitrogen isotope pairing. FEMSMicrobiology Letters,1992,86(4):357~362
    [139] Nielsen L., Christensen P., Revsbech N., et al. Denitrification and photosynthesis instream sediment studied with microsensor and whole-core techniques. Limnology andOceanography,1990,35(5):1135~1144
    [140] Ning X., Liu Z., Shi J. Primary productivity in the Bohai Sea, Yellow Sea and EastChina Sea and evaluation of fisheries yield. Acta Oceanologica Sinica,1995,17(3):72~84(in Chinese)
    [141] Nishio T., Koike I., Hattori A. Denitrification, nitrate reduction, and oxygenconsumption in coastal and estuarine sediments. Applied and Environmental Microbiology,1982,43(3):648~653
    [142] Nishio T., Koike I., Hattori A. Estimates of denitrification and nitrification in coastal andestuarine sediments. Applied and Environmental Microbiology,1983,45(2):444~450
    [143] Nixon S. Coastal marine eutrophication: a definition, social causes, and future concerns.Ophelia,1995,41(1):199~219
    [144] Otte S., Kuenen J., Nielsen L., et al. Nitrogen, Carbon, and Sulfur Metabolism inNatural Thioploca Samples. Applied and Environmental Microbiology,1999,65(7):3148~3157
    [145] Pi a-Ochoa E., H gslund S., Geslin E., et al. Widespread occurrence of nitrate storageand denitrification among Foraminifera and Gromiida. Proceedings of the NationalAcademy of Sciences,2010,107(3):1148~1153
    [146] Preisler A., De Beer D., Lichtschlag A., et al. Biological and chemical sulfide oxidationin a Beggiatoa inhabited marine sediment. The ISME Journal,2007,1(4):341~353
    [147] Prokopenko M., Hammond D., Berelson W., et al. Nitrogen cycling in the sediments ofSanta Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesisand possible chemosymbiosis between two lithotrophs (Thioploca andAnammox)—“riding on a glider”. Earth and Planetary Science Letters,2006,242(1-2):186~204
    [148] Rabalais N., Diaz R., Levin L., et al. Dynamics and distribution of natural andhuman-caused hypoxia. Biogeosciences,2010,7(2):585~619
    [149] Rasmussen H., J gensen B. Microelectrode studies of seasonal oxygen uptake in acoastal sediment: role of molecular diffusion. Marine Ecology Progress Series,1992,81(3):289~303
    [150] Redfield A., Ketchum B., Richards F. The influence of organisms on the composition ofsea-water. In: The Sea, Vol.2: Ideas and observations on progress in the study of the seas.Hill M.(eds). New York: Interscience Publishers,1963.26~77
    [151] Risgaard-Petersen N., Langezaal A., Ingvardsen S., et al. Evidence for completedenitrification in a benthic foraminifer. Nature,2006,443(7107):93~96
    [152] Risgaard-Petersen N., Meyer R., Schmid M., et al. Anaerobic ammonium oxidation inan estuarine sediment. Aquatic Microbial Ecology,2004,36(3):293~304
    [153] Risgaard-Petersen N., Nielsen L., Blackburn T. Simultaneous measurement of benthicdenitrification, with the isotope pairing technique and the N2flux method in a continuousflow-through system. Water Research,1998,32(11):3371~3377
    [154] Risgaard-Petersen N., Nielsen L., Rysgaard S., et al. Application of the isotope pairingtechnique in sediments where anammox and denitrification coexist. Limnology andOceanography: Methods,2003,1:63~73
    [155] Risgaard-Petersen N., Rysgaard S. Nitrate reduction in sediments and waterlogged soilmeasured by15N techniques. In: Methods in Applied Soil Microbiology and Biochemistry.Alef K., Nannipieri P.(eds). New York: Academic,1995.287~295
    [156] Roberts K., Eate V., Eyre B., et al. Hypoxic events stimulate nitrogen recycling in ashallow salt-wedge estuary: The Yarra River estuary, Australia. Limnology andOceanography,2012,57(5):1427~1442
    [157] Rowe G., Kaegi M., Morse J., et al. Sediment community metabolism associated withcontinental shelf hypoxia, northern Gulf of Mexico. Estuaries and Coasts,2002,25(6A):1097~1106
    [158] Rysgaard S., Glud R., Risgaard-Petersen N., et al. Denitrification and anammox activityin Arctic marine sediments. Limnology and Oceanography,2004,49(5):1493~1502
    [159] Rysgaard S., Glud R., Sejr M., et al. Denitrification activity and oxygen dynamics inArctic sea ice. Polar Biology,2008,31(5):527~537
    [160] Rysgaard S., Risgaard-Petersen N., Nielsen L., et al. Nitrification and denitrification inlake and estuarine sediments measured by the15N dilution technique and isotope pairing.Applied and Environmental Microbiology,1993,59(7):2093~2098
    [161] Rysgaard S., Risgaard-Petersen N., Sloth N. Nitrification, denitrification, and nitrateammonification in sediments of two coastal lagoons in Southern France. Hydrobiologia,1996,329(1-3):133~141
    [162] Rysgaard S., Risgaard-Petersen N., Sloth N., et al. Oxygen regulation of nitrification anddenitrification in sediments. Limnology and Oceanography,1994,39(7):1643~1652
    [163] Ryther J., Dunstan W. Nitrogen, Phosphorus, and Eutrophication in the Coastal MarineEnvironment. Science,1971,171(3975):1008~1013
    [164] Schulz H., Brinkhoff T., Ferdelman T., et al. Dense populations of a giant sulfurbacterium in Namibian shelf sediments. Science,1999,284(5413):493~495
    [165] Seitzinger S. Denitrification in freshwater and coastal marine ecosystems: ecologicaland geochemical significance. Limnology and Oceanography,1988,33(4):702~724
    [166] Seitzinger S., Harrison J., B hlke J., et al. Denitrification across landscapes andwaterscapes: a synthesis. Ecological Applications,2006,16(6):2064~2090
    [167] Seitzinger, S.: Denitrification in aquatic sediments. In: Denitrification in Soil andSediment. Revsbech N., S rensen J.(eds). New York: Plenum Press,1990.301~322
    [168] Seitzinger S., Giblin A. Estimating denitrification in North Atlantic continental shelfsediments. Biogeochemistry,1996,35(1):235~260
    [169] Sokoll S., Holtappels M., Lam P., et al. Benthic nitrogen loss in the Arabian Sea offPakistan. Frontiers in microbiology,2012,3:1~17.
    [170] Somes C., Oschlies A., Schmittner A. Isotopic constraints on the pre-industrial oceanicnitrogen budget. Biogeosciences Discussion,2013,10(2):3121~3175
    [171] Song G., Liu S. Advances in Studies of Anaerobic Ammonium Oxidation in the MarineEnvironment. Advances in Earth Science,2012,27(5):529~538(in Chinese with Englishabstract)
    [172] Song G., Liu S., Marchant H., et al. Anaerobic ammonium oxidation, denitrification anddissimilatory nitrate reduction to ammonium in the East China Sea sediment.Biogeosciences Discussion,2013,10(3):4671~4710
    [173] S rensen J. Denitrification rates in a marine sediment as measured by the acetyleneinhibition technique. Applied and Environmental Microbiology,1978,36(1):139~143
    [174] Spott O., Stange C. A new mathematical approach for calculating the contribution ofanammox, denitrification and atmosphere to an N2mixture based on a15N tracer technique.Rapid Communications in Mass Spectrometry,2007,21(14):2398~2406
    [175] Stahl D., de la Torre J. Physiology and Diversity of Ammonia-Oxidizing Archaea.Annual Review of Microbiology,2012,66:83~101
    [176] Steingruber S., Friedrich J., G chter R., et al. Measurement of denitrification insediments with the15N isotope pairing technique. Applied and EnvironmentalMicrobiology,2001,67(9):3771~3778
    [177] Stief P., Behrendt A., Lavik G., et al. Combined gel probe and isotope labeling techniquefor measuring dissimilatory nitrate reduction to ammonium in sediments atmillimeter-level resolution. Applied and Environmental Microbiology,2010,76(18):6239~6247
    [178] Sweerts J., De Beer D., Nielsen L., et al. Denitrification by sulphur oxidizing Beggiatoaspp. mats on freshwater sediments. Nature,1990,344(6268):762~763
    [179] Thamdrup B. Novel Pathways and Organisms in Global Nitrogen Cycling. AnnualReview of Ecology, Evolution, and Systematics,2012,43:407~428
    [180] Thamdrup B., Dalsgaard T. Production of N2through anaerobic ammonium oxidationcoupled to nitrate reduction in marine sediments. Applied and EnvironmentalMicrobiology,2002,68(3):1312~1318
    [181] Thamdrup B., Dalsgaard T., Jensen M., et al. Anaerobic ammonium oxidation in theoxygen-deficient waters off northern Chile. Limnology and Oceanography,2006,51(5):2145~2156
    [182] Thamdrup B., Dalsgaard T. Nitrogen Cycling In Sediments. In: Kirchman D., MitchellR.,(eds). Hoboken: John Wiley&Sons, Inc.,2008.527~568
    [183] Tiedje J. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In:Biology of anaerobic microorganisms. Zehnder A.(eds). New York: John Wiley&Sons,Inc.,1988.179~244
    [184] Tobias C., Anderson I., Canuel E., et al. Nitrogen cycling through a fringingmarsh-aquifer ecotone. Marine Ecology Progress Series,2001,210:25~39
    [185] Trimmer M., Engstr m P. Distribution, Activity, and Ecology of Anammox Bacteria inAquatic Environments. In: Nitrification. Ward B. and Arp, D.(eds). Washington, DC:ASM Press,2011.201~235
    [186] Trimmer M., Nicholls J. Production of nitrogen gas via anammox and denitrification inintact sediment cores along a continental shelf to slope transect in the North Atlantic.Limnology and Oceanography,2009,54(2):577~589
    [187] Trimmer M., Nicholls J., Deflandre B. Anaerobic ammonium oxidation measured insediments along the Thames estuary, United Kingdom. Applied and EnvironmentalMicrobiology,2003,69(11):6447~6454
    [188] Trimmer M., Risgaard-Petersen N., Nicholls J., et al. Direct measurement of anaerobicammonium oxidation (anammox) and denitrification in intact sediment cores. MarineEcology Progress Series,2006,326:37~47
    [189] Tyson R., Pearson T. Modern and ancient continental shelf anoxia: an overview.Geological Society, London, Special Publications,1991,58:1~24
    [190] van Luijn F., Boers P., Lijklema L. Comparison of denitrification rates in lake sedimentsobtained by the N2flux method, the15N isotope pairing technique and the mass balanceapproach. Water Research,1996,30(4):893~900
    [191] Wang B. Cultural eutrophication in the Changjiang (Yangtze River) plume: History andperspective. Estuarine, Coastal and Shelf Science,2006,69(3-4):471~477
    [192] Wang B. Hydromorphological mechanisms leading to hypoxia off the Changjiangestuary. Marine Environmental Research,2009,67(1):53~58
    [193] Wang D., Chen Z., Xu S., et al. Denitrification in Chongming east tidal flat sediment,Yangtze estuary, China. Science in China Series D: Earth Sciences,2006,49(10):1090~1097
    [194] Ward B. Nitrification in marine systems. In: Capone, D.; Bronk, D.; Mulholland, M.;Carpenter, E.,(eds). Nitrogen in the Marine Environment (2nd Edition). San Diego:Academic Press,2008.199~261
    [195] Ward B., Devol A., Rich J., et al. Denitrification as the dominant nitrogen loss process inthe Arabian Sea. Nature,2009,461(7260):78~81
    [196] Warembourg F. Nitrogen fixation in soil and plant systems. In: Nitrogen IsotopeTechniques. Knowles R., Blackburn T.(eds). San Diego: Academic Press,1993.127~156
    [197] Wei H., He Y., Li Q., et al. Summer hypoxia adjacent to the Changjiang Estuary. Journalof Marine Systems,2007,67(3-4):292~303
    [198] Wollast R. Continental margins: Review of geochemical settings. In: Ocean MarginSystems. Hanse conference report. Wefer G., Billett D., Hebbeln D, et al. Berlin: Springer,2002.15~31
    [199] Wong G., Gong G., Liu K., et al.'Excess Nitrate' in the East China Sea. Estuarine,Coastal and Shelf Science,1998,46(3):411~418
    [200] Wulff F., Stigebrandt A., Rahm L. Nutrient dynamics of the Baltic Sea. Ambio,1990,19(3):126~133
    [201] Yang W., Weber K., Silver W. Nitrogen loss from soil through anaerobic ammoniumoxidation coupled to iron reduction. Nature Geoscience,2012,5(8):538~541
    [202] Zehr J., Waterbury J., Turner P., et al. Unicellular cyanobacteria fix N2in the subtropicalNorth Pacific Ocean. Nature,2001,412(6847):635~637
    [203] Zhang G., Zhang J., Liu S., et al. Nitrous oxide in the Changjiang (Yangtze River)Estuary and its adjacent marine area: Riverine input, sediment release and atmosphericfluxes. Biogeosciences,2010a,7(11):3505~3516
    [204] Zhang J., Gilbert D., Gooday A., et al. Natural and human-induced hypoxia andconsequences for coastal areas: synthesis and future development. Biogeosciences,2010b,7(5):1443~1467
    [205] Zhang J., Liu S., Ren J., et al. Nutrient gradients from the eutrophic Changjiang(Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgetsfor the East China Sea Shelf. Progress in Oceanography,2007a,74(4):449~478
    [206] Zhang J., Wu Y., Jennerjahn T., et al. Distribution of organic matter in the Changjiang(Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implicationsfor source discrimination and sedimentary dynamics. Marine Chemistry,2007b,106(1-2):111~126
    [207] Zhou M., Shen Z., Yu R. Responses of a coastal phytoplankton community to increasednutrient input from the Changjiang (Yangtze) River. Continental Shelf Research,2008,28(12):1483~1489
    [208] Zhu Z., Zhang J., Wu Y., et al. Hypoxia off the Changjiang (Yangtze River) Estuary:Oxygen depletion and organic matter decomposition. Marine Chemistry,2011,125(1-4):108~116
    [209] Zumft W. Cell biology and molecular basis of denitrification. Microbiology andMolecular Biology Reviews,1997,61(4):533~616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700