凹凸棒土吸附和助凝强化处理低温低浊高色度水的试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐殖酸是天然水体中机污染物的主要成分,我国大部分地区的水源水在寒冷季节供给不足,并且水面冰封导致水体缺氧,水中动、植物残骸得不到及时降解从而导致腐殖酸污染加剧。腐殖酸的存在不仅导致水中色度升高,并且在胶体颗粒表面形成保护作用使水中杂质难以脱稳去除,进一步加大了低温低浊高色度水的处理难度。
     本文主要探讨如何利用廉价、安全、卫生的天然粘土—凹凸棒土作为吸附剂和助凝剂,联合常用混凝剂聚合氯化铝(PAC)处理低温低浊高色度水。
     处理低温低浊高色度水的关键问题之一是腐殖酸的去除,因此,首先做了凹凸棒土吸附水中腐殖酸的试验研究,并系统讨论其吸附动力学和热力学过程。试验结果表明,吸附平衡时间为70 min;15g/L凹凸棒土对5mg/L腐殖酸的去除率达到90%以上,并且随着腐殖酸初始浓度的增大,凹凸棒土吸附容量也随之增加;低温条件下,凹凸棒土吸附腐殖酸吸附等温线拟合相关系数由高度依次为,Redlich-Peterson>Freundlich>Langmuir>Temkin;凹凸棒土吸附不同初始浓度腐殖酸的动力学过程说明,Lagergre一级、Lagergre三级和Elovich吸附动力学模型均能较好的描述吸附过程。
     采用自来水配制水样Ⅰ模拟实际低温低浊高色度水,进行混凝静态试验结果表明,单独投加聚合氯化铝处理水样的最佳投量为35mg/L,此时出水水质不理想,投加助凝剂15mg/L凹凸棒土后,PAC的投量降低到9mg/L,最佳pH值为6~8,对色度、UV254、CODMn的去除率分别为81.25%、73.19%、44%,出水残余铝浓度和余浊分别为0.05mg/L和1.3NTU。
     为了更接近实际,采用松花江原水配制水样Ⅱ模拟低温低浊高色度原水。实验结果表面,凹凸棒土作为吸附剂和助凝剂投加到高密度沉淀池动态反应器中处理低温低浊高色度水,试验结果表明,高密度沉淀池的泥渣回流增加了低浊水的颗粒浓度,提高颗粒有效碰撞几率,加强反应器处理效果,更重要的是利用了沉淀池浓缩污泥剩余吸附能力。投加凹凸棒土后,高密度沉淀池的优势进一步得到体现,因为回流污泥中的凹凸棒土重新返回到混合池中,多次被循环利用,充分利用了有效资源;13.5mg/L聚合氯化铝+10mg/L凹凸棒土联合投加并回流污泥比为4.5%时,对水样Ⅱ处理效果较好,色度、UV254、CODMn的去除率分别为93.62%、76.83%、66.15%,出水浊度为1.5NTU以下,残余铝浓度0.061mg/L。
Humic acid is the main components of natural organic pollutants in the natural water. Source water undersupplies in most of Chinese areas during cold season, and icebound season can lead to water body hypoxia, resulting in degradation of animals and plants wreck in time, thus make humic acid pollution intensifies. The existing of humic acid not only results in chroma increases but also forms protective effect on the surface of colloidal particle, which makes impurities in water sedimentate difficultly, and increases the difficulty of the treatment of low temperature, low turbidity and high chroma water.
     This paper mainly discusses how to use attapulgite as adsorbent and coagulant aid, and the objective is to treat low temperature, low turbidity and high chroma water combined with PAC.
     The removal of humic acid is one of key problems in the treatment of low temperature, low turbidity and high chroma water. Therefore, this paper first experimental study on adsorbing humic acid by using attapulgite as adsorbent, then it gives a systematic discussion about the adsorption kinetics and Thermodynamics behavior of attapulgite adsorb humic acid. The results show that the adsorption equilibrium time is about 70 min.The removal rate of humic acid can reach above 90% on the optimal conditions of 15g/L attapulgite adsorb 5mg/L humic acid. And the adsorption capacity of attapulgite increased with increasing the initial concentration of humic acid. The fitting correlation coefficient of adsorption isotherm of humic acid on attapulgite from high to low are respectively: Redlich-Peterson>Freundlich>Langmuir>Temkin. The data of adsorption kinetics experiments of different initial concentration of humic acid on attapulgite showed that Lagergre first order, Lagergre second order and Elovich dynamic adsorption model describe very well the adsorption process for humic acid on attapulgite.
     Overnight water was used to prepare water sampleⅠwhich simulate practical low temperature, low turbidity and high chroma water. The coagulation and sedimentation experiment results are as follows: the optium coagulant dosage is 35mg/L by auto-adding PAC alone, however, the effluent quality is non-ideal. The dosage of PAC decrease 9mg/L after auto-adding 15mg/L attapulgite, the removal rate of chroma, UV254 and CODMn is 81.25%, 73.19% and 44% respectively, the residual turbidity and residual aluminum content in the effluent is 0.05mg/L and 1.3NTU respectively.
     Songhua River Water was used to prepare water sampleⅡwhich simulate low temperature, low turbidity and high chroma water for the sake of closer to actual. Study on Experimental investigation of treating low temperature, low turbidity and high chroma by using attapulgite as adsorbent and coagulant aid to high dense settling pond reactor, The results are as follows: the return of sludge to high dense settling pond reactor not only increase the degree of low turbidity and the frequency of effective collision, strengthen the treatment effect of the high dense settling pond reactor, but also more importantly to make full use of thickened sludge in the sedimentation tank. Further strengthening the superiority of high dense settling pond reactor after auto-adding attapulgite, it is believed that the cause is mainly due to multiple cyclic utilization of attapulgite by returning mud waste to mixing pool, thus make full use of efficient resources. The removal rate of chroma, UV254 and CODMn is 93.62%, 76.83% and 66.15% respectively, the residual turbidity and residual aluminum content in the effluent is below 1.5NTU and 0.061mg/L respectively, and the effluent quality is ideal on condition of 10mg/L attapulgite, 12.5mg/L PAC and sludge return ratio 4.5%.
引文
[1]李杨,段小睿,员建,等.低温低浊微污染水处理技术研究进展[J].技术与应用. 2010(5): 51-55.
    [2]张建军,王桂荣.低温低浊水处理工艺研究[J].山西建筑. 2010, 36(23): 198-199.
    [3]肖辉煌.强化混凝去除水中的腐殖酸[D].湖南大学, 2007.
    [4] Deluca S J, Idle C N, Chao A C. Quality improvement of biosolids by ferrate(VI) oxidation of offensive odour compounds[J]. WATER SCIENCE AND TECHNOLOGY. 1996, 33(3): 119-130.
    [5]晗桢.矿物复配PAC混凝去除给水中腐殖酸研究[D].青岛科技大学, 2009.
    [6]李芙蓉.天然饮用水源中腐殖质的去除[J].工业安全与环保. 2002(7): 8-10.
    [7] Bob M M, Walker H W. Effect of natural organic coatings on the polymer-induced coagulation of colloidal particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000, 177(2-3): 215-222.
    [8] Bob M M, Walker H W. Effect of natural organic coatings on the polymer-induced coagulation of colloidal particles[Z]. 2001215-222.
    [9]张俊山,严爱东.寒冷地区水库水净化技术研究与探讨[J].北方环境. 2000(1): 39-40.
    [10]蒋展鹏,廖孟钧.腐殖质及其在环境污染控制中的作用[J].环境污染与防治. 1990(3): 24-28.
    [11]刘振中,宋刚福.水源水中腐殖酸的危害及去除方法[J].江西科学. 2006(4): 247-252.
    [12]李杨,段小睿,员建,等.低温低浊微污染水处理技术研究进展[J].中国建设信息(水工业市场). 2010(5): 51-55.
    [13]霍明昕,刘馨远.低温低浊水质特性的分析[J].中国给水排水. 1998(6).
    [14]王永,杨硕,温欣.低温低浊水处理技术影响因素及分析[J].山西建筑. 2009(22): 181-182.
    [15]王静.低温低浊水处理技术研究应用现状[J].低温建筑技术. 2003(4): 49-50.
    [16]罗九鹏,孙力平,陈旭,等.低温低浊水处理技术[J].中国建设信息(水工业市场). 2010(9): 73-76.
    [17]王桂荣,张建军.低温低浊水处理工艺研究[J].山西建筑. 2010(23): 198-199.
    [18]刘晖.低温低浊地表水处理技术的探讨[J].科技信息. 2007(10): 224-225.
    [19] Morris J K, Knocke W R. Temperature effects on the use of metal-ion coagulants for water treatment[J]. Journal / American Water Works Association. 1984, 76(3): 74-79.
    [20] T H A. The effects of Temperature on Turbulent Flocculation:Fluid Dynamics and Chemistry[J]. Journal / American Water Works Association. 1990, 82(11): 56-73.
    [21]李圭白,张杰.水质工程学[M].北京:中国建筑工业出版社, 2007.
    [22] Tan-Ling Y, Li-Xin S, Xing L, et al. Enhanced disinfection by combined application of potassium permanganate and chloramine[J]. Journal of Harbin Institute of Technology. 2004, 36(1): 242-271.
    [23] Chen H, Wang A. Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite[J]. Journal of Hazardous Materials. 2009, 165(1-3): 223-231.
    [24] Cao J, Shao G, Wang Y, et al. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation[J]. Catalysis Communications. 2008, 9(15): 2555-2559.
    [25] Potgieter J H, Potgieter-Vermaak S S, Kalibantonga P D. Heavy metals removal from solution by palygorskite clay[J]. Minerals EngineeringSelected papers from Processing and Disposal of Minerals Industry Wastes '05. 2006, 19(5): 463-470.
    [26] Matilainen A, Veps?l?inen M, Sillanp?? M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in colloid And Interface Science. 2010(159): 189-197.
    [27] Guerra D L, Viana R B R, Da Costa L P, et al. Sodium alginate films modified by raw and functionalized attapulgite for use of thorium(IV) adsorption: A thermodynamic approach[J]. Journal of Physics and Chemistry of Solids. 2009, 70(11): 1413-1421.
    [28] Li M, Wu Z, Kao H. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials[J]. Applied Energy. 2011, 88(9): 3125-3132.
    [29]刘文江,戴之荷.气浮技术在水库水处理中的应用[J].给水排水. 2000(9): 4-6.
    [30] Malley J P J, Edzwald J K. Laboratory Comparison of DAF With ConventionalTreatment[J]. AWWA. 1991, 83(9): 56-61.
    [31] N T, K F. An electrophoretic study of air bubble attachment to aluminium clay/ color flocs[J]. J Japan Water Works Association. 1985, 54(1): 2-6.
    [32]田珍,李梅,由振华,等.浮沉池技术在低温低浊水处理中的应用[J].山东建筑大学学报. 2010(1): 62-65.
    [33]包晨雷,杨琳,杨忠宇.微絮凝直接过滤处理低温低浊水的研究和探讨[J].中国科技信息. 2010(14): 31-32.
    [34]李三中.微絮凝直接过滤处理水库水的探讨[J].中国给水排水. 1997(5): 17-19.
    [35] Metcalf, Eddy. Wastewater Engineering,Collection,treatment,disposal [R]. MCG raw Hill Book Company, 1979.
    [36]刘继平.污泥回流法处理低温低浊水的试验研究[J].给水排水. 1995(1): 12-15.
    [37] Desjardins C, Koudjonou B, Desjardins R. Laboratory study of ballasted flocculation[J]. Water Research. 2002, 36(3): 744-754.
    [38] B J, A C, C H. Alternative treatment for wasterwater destined for agricultural use [J]. Water science And technology. 1999, 40(4-5): 355-362.
    [39]张志军.高密度沉淀池+V型滤池工艺的再生水厂设计[J].中国市政工程. 2010(5): 24-25.
    [40]周济元,崔炳芳.国外凹凸棒石粘土的若干情况[J].资源调查与环境. 2004(4): 248-259.
    [41] Bradley W F. The Structure Scheme of Attapulgite[J]. Am Mineral. 1940, 25(6): 405-410.
    [42] Caaillere S, Henin S. The X-ray identification and crystal structures of clay[M]. London: 1961: 343-353.
    [43]许冀泉,方邺森.粘土矿物的分类和名称[J].硅酸盐通报. 1982(3): 1-8.
    [44] Van Olphen H, Fripiar J. Data Handbook for Clay Materialsand Other Non-Metallic Minerals[J]. Soil Science. 1981, 131(1): 62.
    [45]周杰,刘宁,李云,等.凹凸棒石粘土的显微结构特征[J].硅酸盐通报. 1999(6): 50-55.
    [46] Hayashi H, Otsuka R, Imai N. Infrared study of sepiolite and palygorskite on heating[J]. American Mineral. 1969, 53(4): 1624-1969.
    [47] Nagy, Bartholomew, Bradley W F. The structral scheme of sepiolite[J].American Mineral. 1955, 40: 885-892.
    [48] Martin-Vivaldi J, Cano-Ruiz A J. Contribution to the study of sepiolite:II.Some consideration regarding the mineral formula[J]. Clays And Clay Minerals. 1955(60): 232-276.
    [49] Preisinger A. X-ray study of the structure of sepiolite[J]. Clays And Clay Minerals. 1959, 6(1957): 61-67.
    [50] W. Lynwood Haden I A S. Attapulgite its properties and application[J]. industrial & Engineering Chemistry Research. 1967, 59(9): 58-69.
    [51] Serratosa J M. Surface Properties of Fibrous Clay Minerals (Palygorskite and Sepiolite)[M]. Elsevier, 1979: 99-109.
    [52] Galan E. Properties and applications of palygorskite-sepiolite clays[J]. Clay Minerals. 1996, 31(4): 443-453.
    [53] Green B K. Paper having improved printing characteristic[P]. US.
    [54]杨利营,盛京.凹凸棒粘土的研究开发与应用[J].江苏化工. 2001(6): 33-37.
    [55] Duke J, Ew G. Attapulgite clay filter air product[P]. US, 3080214.
    [56] Barrer R M, Mackenzie N. Sorption by Attapulgite. I. Availability of Intracrystalline Channels[J]. The Journal of Physical Chemistry. 1954, 58(7): 560-568.
    [57] Barrer R M, Mackenzie N, Macleod D M. Sorption by Attapulgite. II. Selectivity Shown by Attapulgite, Sepiolite and Montmorillonite for n-Paraffins[J]. The Journal of Physical Chemistry. 1954, 58(7): 568-572.
    [58] Pan B, Yue Q, Ren J, et al. A study on attapulgite reinforced PA6 composites[J]. Polymer Testing. 2006, 25(3): 384-391.
    [59]张国宇,王鹏.凹凸棒石粘土及在水处理中的应用[J].工业水处理. 2003(4): 1-5.
    [60]夏春镗,张悠敏,张俊勇.江苏盱眙凹凸棒石理化性质研究[J].上海铁道学院学报. 1993, 14(2): 57-63.
    [61]宋宁宁,王丽萍,耿建新,等.凹凸棒石粘土资源化现状研究[J].中国环保产业. 2007(1): 26-28.
    [62]高华,方兴.凹凸棒土改性方法研究进展[J].资源开发与市场. 2008(12): 1090-1093.
    [63]罗平,邹建国,刘燕燕.凹凸棒土在环境保护中的应用进展[J].江西科学. 2010(4): 466-469.
    [64] Shariatmadari H, Mermut A R, Benke M B. Sorption of selected cationic andneutral organic molecules on palygorskite and sepiolite[J]. Clays and Clay Minerals. 1999, 47(1): 44-53.
    [65]罗岳平,施周,王仕汇,等.用粘土作助凝剂提高聚合氯化铝除藻效果的研究[J].中国给水排水. 2007(17): 61-65.
    [66]晗桢.矿物复配PAC混凝去除给水中腐殖酸研究[D].青岛科技大学, 2009.
    [67]王欣.浅谈水处理的混凝方法与混凝剂[J].黑龙江科技信息. 2010(20): 74.
    [68]寻涛.高锰酸钾预氧化复合矿物质与PAC混凝去除水中颤藻的研究[D].青岛科技大学, 2009.
    [69]张文燕.混凝过程中腐殖酸与铝盐的化学反应特性研究[D].西安建筑科技大学, 2008.
    [70]常青.水处理絮凝学[M].北京:化学工业出版社, 2003.
    [71]蒋绍阶,梁建军.净水中残余铝的危害与控制[J].重庆建筑大学学报. 1999(6): 27-30.
    [72] Srinivasan P T, Viraraghavan T. Characterisation and concentration profile of aluminium during drinking-water treatment[J]. Water SA. 2002, 28(1): 99-106.
    [73] Schintu M, Meloni P, Contu A. Aluminum Fractions in Drinking Water from Reservoirs[J]. Ecotoxicology and Environmental Safety. 2000, 46(1): 29-33.
    [74] Gauthier E, Fortier I, Courchesne F, et al. Aluminum Forms in Drinking Water and Risk of Alzheimer's Disease[J]. Environmental Research. 2000, 84(3): 234-246.
    [75] Berthon G. Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity[J]. Coordination Chemistry Reviews. 2002, 228(2): 319-341.
    [76] Srinivasan P T, Viraraghavan T, Subramanian K S. Aluminium in drinking water: An overview[J]. Water SA. 1999, 25(1): 47-55.
    [77]杨忠莲,高宝玉,岳钦艳,等.铝盐混凝剂的混凝效果与残留铝含量和组分之间的关系研究[J].环境科学. 2010(6): 1542-1547.
    [78]张国权,张国生.凹凸棒石在净化矿化水剂上的应用研究[J].合肥工业大学学报(自然科学版). 1989(4): 92-98.
    [79]朱振海,王岩,沈容,等.我国新型天然吸附剂凹凸棒粘土安全、毒理学研究[J].粮食储藏. 1991(6): 25-32.
    [80]仰榴青.国产凹凸棒土的研究[J].江苏理工大学学报. 1995(1).
    [81]水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    [82] Liu X L, Wang W J, Ren H R, et al. Quality monitoring of flowing water usingcolorimetric method based on a semiconductor optical wavelength sensor[J]. MEASUREMENT. 2009, 42(1): 51-56.
    [83]孙自瑾,张因,高春光,等.分光光度法测定聚四氢呋喃的色度[J].山西大学学报(自然科学版). 2009(3): 447-450.
    [84]曾凡亮,罗先桃.分光光度法测定水样的色度[J].工业水处理. 2006(9): 69-72.
    [85]于夕娟.水中色度的分光光度测定法[J].职业与健康. 2008(15): 1515-1516.
    [86]刘金凤王滨.分光光度法测定水中色度[J].中国卫生检验杂志. 1996(2).
    [87]生活饮用水标准检验方法金属指标[S].中国国家标准化管理委员会, 2006: 2006.
    [88]金伟,范瑾初.紫外吸光值作为有机物替代参数的探讨[J].工业水处理. 1997(6): 32-34.
    [89] Edzwalde J K. Coagulation in Drinking Water Treatment-Particles, Organics and Coagulants[J]. Water Science and Technology. 1993, 27(11): 21-35.
    [90] Eaton, Andrew. Measuring UV-Absorbing Organics: A Standard Method[J]. American Water Woks Association. 1995, 87(2): 86-90.
    [91] Rebhun M, Lurie M. Control of organic matter by coagulation and floc separation[Z]. Geneva, Switz: 19931-20.
    [92]林星杰,杨慧芬,宋存义. UV254在水质监测中应用的研究[J].能源与环境. 2006(1): 22-24.
    [93]于浩,李宁.地表水中UV254与COD之间的关系分析[J].水资源保护. 2009(4): 67-69.
    [94]耿安朝,章申.腐殖酸与稀土元素的作用及体系稳定性[J].中国环境科学. 1998(1): 53-57.
    [95] Bellar T A, Lichtenberg J J, Kroner R C. The Occurrence of Organohalides in Chlorinated Drinking Waters[J]. American Water Works Association. 1974, 66(12): 703-706.
    [96] Wu D, Zheng W, Xu C, et al. Effect of diatomite on enhanced coagulation for micro-polluted water from Huaihe river[C]. Wuhan, China: IEEE Computer Society, 2010.
    [97] Brunauer S, Deming L S, Deming W E, et al. On a Theory of the van der Waals Adsorption of Gases[J]. Journal of the American Chemical Society. 1940, 62(7): 1723-1732.
    [98]牛畅.粉末活性炭吸附去除水源水突发乙苯污染的小试研究[D].哈尔滨工业大学, 2010.
    [99] Doulia D, Leodopoulos C, Gimouhopoulos K, et al. Adsorption of humic acid on acid-activated Greek bentonite[J]. Journal of Colloid and Interface Science. 2009, 340(2): 131-141.
    [100]张延红,程国斌,马伟.利用Origin软件对吸附等温线拟合进行分析[J].计算机与应用化学. 2005(10).
    [101]王诗生.凹凸棒石吸附水溶性染料的性能及机理研究[D].合肥工业大学, 2005.
    [102]罗彦伟.超声波强化沸石分子筛离子交换吸附传质过程的研究[D].湖南工业大学, 2008.
    [103] S L. About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens.Handling,Band. 1989, 24(4): 1-39.
    [104]林明利,赵志伟,崔福义.粉末活性炭吸附水中氯苯的动力学研究[J].哈尔滨工业大学学报. 2010(12): 1898-1901.
    [105] Tütem E, Apak R,ünal ? F. Adsorptive removal of chlorophenols from water by bituminous shale[J]. Water Research. 1998, 32(8): 2315-2324.
    [106] Slaney A J, Bhamidimarri R. Adsorption of pentachlorophenol (PCP) by activated carbon in fixed beds: Application of Homogeneous Surface Diffusion Model[J]. Water Science and TechnologyWater Quality International '98, Selected Proceedings of the 19th Biennial Conference of the International Association on Water Quality. 1998, 38(7): 227-235.
    [107] Reddad Z, Gerente C, Andres Y, et al. Adsorption of Several Metal Ions onto a Low-Cost Biosorbent:? Kinetic and Equilibrium Studies[J]. Environmental Science & Technology. 2002, 36(9): 2067-2073.
    [108] Ho Y S, Mckay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research. 2000, 34(3): 735-742.
    [109] Otero M, Rozada F, Calvo L F, et al. Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges[J]. Biochemical Engineering Journal. 2003, 15(1): 59-68.
    [110] Rozada F, Otero M, Mor An A, et al. Activated carbons from sewage sludge and discarded tyres: Production and optimization[J]. Journal of Hazardous Materials. 2005, 124(1-3): 181-191.
    [111] Maw L W, Yu M H, Rong Y C. Study of Dichlorocyclopropanation of 1,7-octadiene under Two-Phase Phase-Transfer Catalysis at Low AlkalineConcentration[J]. Molecular Catalysis A:Chemical. 2003, 198: 111-124.
    [112] Weber W J, Morris J C. Kinetics of adsorption on carbon from solutions[J]. Sanitory Engineering Divison Ammerican Society of Chemical Engineering. 1963, 89: 31-39.
    [113] Bulut Y, Aydin H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells[J]. Desalination. 2006, 194(1-3): 259-267.
    [114] Chen H, Wang A. Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay[J]. Journal of Colloid and Interface Science. 2007, 307(2): 309-316.
    [115] Ofomaja A E. Kinetics and mechanism of methylene blue sorption onto palm kernel fibre[J]. Process Biochemistry. 2007, 42(1): 16-24.
    [116]夏红云,陈蓉,年耀萍.搅拌条件对两种染料混凝气浮去除效果的影响研究[J].环境科学导刊. 2010(1): 8-10.
    [117]周勤,肖锦.搅拌条件对强化混凝去除给水微细颗粒的影响研究[J].环境科学与技术. 2004(3): 18-19.
    [118]付英,于水利,暴瑞玲.聚硅酸铁(PSF)混凝剂搅拌动力学的特性及理论分析[J].水处理技术. 2006(11): 16-20.
    [119]周莹,王孙巍,王彦军.快速搅拌对混凝—絮凝最佳处理效果的影响研究[J].北方环境. 2000(2): 36-39.
    [120]李伟英,范瑾初.烧杯搅拌试验的规范化[J].城市公用事业. 2000(4): 22-24.
    [121]于水利,孙凤鸣,李玉华,等.最优混凝搅拌条件的研究[J].哈尔滨建筑大学学报. 1999(6): 49-52.
    [122]李敏,宗栋良.混凝中Zeta电位的影响因素[J].环境科技. 2010(3): 9-11.
    [123]燕峒胜.低温低浊期中置式高密度沉淀池的调试[J].中国给水排水. 2010(11): 84-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700