基于MEMS技术的超级电容器三维微电极阵列制备及表征方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型超级电容器是一种具有储能密度高、放电功率大、循环寿命长、体积小、充电速度快、可靠性好、污染小等特点的新型储能器件,是信息、电子、仪表、能源、交通和国防安全等领域重要的关键部件。论文针对如何解决微型超级电容器三维微电极加工及其表面功能薄膜制备关键技术难题,开展基于MEMS (MicroElectro Mechanical System)技术的超级电容器三维微电极阵列结构制备关键技术研究,具有重要的科学意义和实际应用价值。
     本文针对微型超级电容器亟待解决的三维微电极加工及其表面功能薄膜制备技术难题,提出基于MEMS技术制备三维微电极阵列结构,在结构表面采用电化学方法沉积电极活性物质薄膜制备超级电容器三维微电极阵列的思路。分析了超级电容器电极性能与结构的关系,建立了三维微电极阵列电场分布模型;研究了基于硅基的SU-8胶和体硅三维微电极阵列结构设计与制备方法,采用恒电流、恒电压、脉冲等电化学沉积方法,在柱状、条状、梳齿、硅基井状等三维微电极阵列结构表面沉积氧化锰、氧化钌、聚苯胺薄膜等作为电极活性功能薄膜,成功研制出三维微电极阵列。采用扫描电镜、循环伏安、恒流充放电等多种表征方法对制备的电极进行了表征。基于聚焦离子束刻蚀方法,研究了导电薄膜电极分离技术,成功实现了超级电容器正电极和负电极的有效分离,研究了导电聚合物胶体电解质,突破了基于MEMS技术制备超级电容器的电极分离和封装关键技术,在硅基上成功研制出微型超级电容器原理样品。本文的研究主要工作:
     ①综述了超级电容器微型电极的研究现状与发展趋势,分析了现有各种微型电极制备方法存在的不足,提出了基于MEMS技术的微型超级电容器三维微电极阵列制备的整体思路;
     ②分析了超级电容器电极形貌、电极间距与性能的关系,采用有限元方法对三维微电极阵列的电场分布进行了分析,建立了电场有限元模型,研究了电极形状、电极尺寸、电极间距等因素对电场的影响,优化了三维微电极阵列结构参数;
     ③基于MEMS技术,提出了基于硅基SU-8胶和体硅三维微电极阵列结构设计与加工方法,使用电化学方法在三维微电极阵列结构表面沉积活性物质薄膜制备电极的方法。研究了SU-8胶微结构制备过程中的应力问题,解决了SU-8胶微电极阵列结构与基底结合力的关键问题;研究了体硅三维微电极阵列结构制备方法,解决了刻蚀过程中的“草地”和“黑硅”问题;
     ④研究了在三维微电极阵列结构表面沉积电极活性物质薄膜的制备方法和三维微电极阵列表面形貌表征及电化学性能表征;采用恒电压、恒电流方法沉积氧化锰薄膜,采用恒电压和循环伏安方法合成聚苯胺薄膜,以双电极方波脉冲方法制备氧化钌薄膜。采用扫描电镜、能谱仪和X射线衍射仪对三维微电极表面活性物质形貌及成分进行了表征,使用电化学工作站对电极进行循环伏安特性、交流阻抗特性、恒流充放电特性测试,完成了对微电极的测试与分析;
     ⑤研究了聚焦离子束刻蚀分离电极技术,成功分离了微型超级电容器的正、负电极;研制了导电聚合物胶体电解质等,解决了微型超级电容器电极分离、封装难题,在硅基上成功研制出基于MEMS技术的三维微电极阵列结构微型超级电容器,比容量可达33.05mF/cm2。
The micro-supercapacitor is a new type of energy storage device with high energystorage density, high-power discharge, long cycle life, small size, charge speed, goodreliability, little pollution and so on, it is key components of information, electronics,instrumentation, energy, transportation, aerospace and National defense and security.Based on MEMS technology, the thesis focuses on solving key technical problems ofthe three-dimensional micro-supercapacitor electrode processing and its surfacefunctional film preparation, carried out supercapacitor three-dimensional microelectrodearray structure fabrication technology research, which possess important scientificsignificance and practical value.
     In this paper, we aiming at the urgent technology problem need to be solved formicro supercapacitor three dimensional micro electrode processing and surface functionfilm preparing, we proposed preparation of three-dimensional microelectrode arraystructure based on MEMS technology, and directly deposit the electrode activesubstance film on the three-dimensional microelectrode array structure surface by theelectrochemical method, then fabricated microelectrode array by this way. Analysisedthe relationship between morphology, spacing and the performance ofmicro-supercapacitor three-dimensional microelectrode array structure, and establishedthe electric field distribution model of three-dimensional micro-electrode array. Andstudied the design and preparation methods of SU–8photoresist and bulk siliconthree-dimensional microelectrode array structures. Galvanostatic, constant potential,pulse electrochemical deposition method were used to deposited manganese oxide,ruthenium oxide, polyaniline functional film as an electrode active substance on thesurface of the columnar, strip, comb, silicon based hole three-dimensionalmicro-electrode array structure. Three-dimensional micro-electrode array weresuccessfully prepared; Used scanning electron microscopy, cyclic voltammetry, constantcurrent charge-discharge method to characterize the electrodes character. Based on thefocused ion beam etching method, this paper studied the conductive film electrodeseparation technology, successfully separated the supercapacitor positive electrode andnegative electrode, researched and prepared the conductive polymer gel electrolyte,broke through the key techniques of supercapacitor electrode separation and packagebased on MEMS technology, and successfully fabricated a miniature super capacitor sample on the silicon. The main research works of this paper is listed as fellow:
     ①Reviewed the status and development trends of the supercapacitormicroelectrode research, and analysised the existing shortcomings of the microelectrodepreparation method. The idea of the preparation micro-supercapacitor three-dimensionalmicroelectrode array based on MEMS technology was proposed.
     ②Analysised the relationship between the micro supercapacitor three-dimensional microelectrode morphology, electrode distance and miniature supercapacitor performance, using finite element method analysis the distribution of theelectric field of the three-dimensional microelectrode array, the finite element model ofthe electric field of the three-dimensional micro-electrode array had been built, theinfluence of electric field of different electrode array morphology, size and distance hadbeen researched, the structure parameters of the three-dimensional microelectrode arrayhad been optimized.
     ③Based on MEMS technology, we proposed design and processing method ofthree-dimensional micro-electrode array structure using the SU-8photoresist and siliconmaterial, and used electrochemical methods to deposit the active material film on thesurface of three-dimensional microelectrode array structure for prepare electrode.Studied the stress problem of SU-8photoresist micro-structure during the preparationprocess, and solved the key issues of binding force of the SU-8photoresistmicroelectrode array structure and the silicon substrate; Studied the preparation methodof the three-dimensional microelectrode array structure using silicon as the material andresolved the problem of “grass "and" black silicon" in the etching process.
     ④Studied the preparation of electrode active material film in three-dimensionalmicroelectrode array structure surface, characterized surface morphology andelectrochemical properties of three-dimensional microelectrode array. Constant voltage,constant current method was used electro-deposition manganese oxide films, usingconstant voltage and cyclic voltammetry method to synthesize Polyaniline film,ruthenium oxide films had been prepared by dual-electrode square wave pulse. Theelectrode structure and the surface morphology and composition of the active materialfilm had been characterized by scanning electron microscopy, energy dispersivespectroscopy and X-ray diffraction. Electrochemical workstation was used to test themicroelectrode with cyclic voltammetry, AC impedance characteristics, constant currentcharge and discharge characteristics method, and completed the testing and analysis ofthe microelectrode.
     ⑤Researched the separation electrode technology using focused ion beam etching,successfully separated the positive and negative electrodes of the micro-supercapacitor.Studied and prepared the conductive polymer gel electrolyte, and solve the problem ofthe micro-supercapacitor electrode separation and supercapacitor package based onMEMS technology, and successfully prepared a micro-supercapacitor withthree-dimensional micro array electrode structure on a silicon substrate based on MEMS,specific capacity can reach33.05mF/cm2.
引文
[1] Conway B E. Electrochemical Supercapacitors-Scientific Fundamentals and Technologicalapplications[M]. Kluwer Academic/Plenum Press: New York,1999.
    [2] Sephen D Senturia著,刘泽文,王晓红,黄庆安译,微系统设计[M].电子工业出版社,北京,2004,1-8.
    [3] M Elwenspoek,H Jansen著,姜岩峰译.硅微机械加工技术[M].化学工业出版社,北京,2006,1-4.
    [4]尤政,戴汩.“航天清华一号”微小卫星及其图像处理[J].遥感学报,2001,5(3):177-182.
    [5]温志渝,陈刚,潘银松,徐溢,李霞,蒋子平.微型生化分析系统[J].微纳电子技术,2003,40(7):338-340.
    [6] Peterson K E. Silicon as a mechanical material [J]. Proceedings of IEEE,1982,70(5):420-457.
    [7]温志渝,温中泉,贺学锋,廖海洋,刘海涛.振动式压电发电机及其在无线传感器网络中的应用.机械工程学报,2008,44(11):75-79.
    [8] Soon-Jong Jeong, Min-Soo Kim, Jae-Sung Song, Hyun-kyung Lee, Two-layered piezoelectricbender device for micro-power generator[J]. Sensors and Actuators A,2008,148(1):158-167.
    [9] Dongna Shen, Jung-Hyun Park, Jyoti Ajitsaria, Song-Yul Choe, Howard C Wikle III andDong-Joo Kim, The design, fabrication and evaluation of a MEMS PZT cantilever with anintegrated Si proof mass for vibration energy harvesting[J] J. Micromech. Microeng.2008,18(5):1-7.
    [10] Ziyang Wang, Vladimir Leonova, Paolo Fiorinia, Chris Van Hoof. Realization of a wearableminiaturized thermoelectric generator for human body applications[J]. Sens. Actuators A: Phys.2009,156(1):95-102.
    [11] Till Huesgen, Peter Woias, Norbert Kockmann, Design and fabrication of MEMSthermoelectric generators with high temperature efficiency[J]. Sensors and Actuators A,2008,145–146:423–429.
    [12] Eichhorn C, Tchagsim R, Wilhelm N, et al. A compact piezoelectric energy harvester with alarge resonance frequency running range[C]. Proceedings Power MEMS, Leuven, Belgium,2010:207-210.
    [13] Durou H, Ardila-Rodriguez G A, Ramond A, et al. Micromachined bulk pzt piezoelectricvibration harvester to improve effectives over low amplitude and low frequency vibrations[C].Proceedings Power MEMS, Leuven, Belgium,2010:27-30.
    [14] Lei Gu. Low-frequency piezoelectric energy harvesting prototype suitable for the MEMSimplementation [J]. Microelectron,2011,42(7):277-282.
    [15] M. J. Spamaay. The electric double layer[M], Sydney: Pergamon Press Pty. Ltd.,1972:4.
    [16] M. Matsumoto. Electrical phenomena at interfaces: fundamentals, measurements, andapplications, Surfacetant science series. New York: marcel ddekker, INC.,1998:87-99.
    [17] O. Stern, Zeit. Elektrochem.,1924,30,508.
    [18] Trasatti S, Buzzanca P. Ruthemum oxide: a new interesting electrode material, solid statestructure and electrochemical behavior[J]. Journal of Electroanalysis chemistry,1997,29(1):l-5.
    [19] Zheng J P, Huang J, Jow T R. Limitations of energy density for electrochemical capacitors[J].Journal of the Electrochemical Society,1997,144(6):2026-2031.
    [20] Weng T C, Teng H. Characterization of high porosity carbon electrodes derived frommesophase pitch for electric double-layer capacitors[J]. J Electrochem Soc,2001,148:368-373.
    [21] Guo Y P, Qi J R, Jiang Y Q, et al. Performance of electrical double layer capacitors withporous carbons derived from rice husk[J]. Mater Chem Phys,2003,80(3):704-709.
    [22] Huang X W, Xie Z W, He X Q, et al. Electric double layer capacitors using activated carbonprepared from pyrolytic treatment of sugar as their electrodes[J]. Synth Metals,2003,135-136:235-236.
    [23]张玲,常俊玲,刘洪波,等.基于竹节的双电层电容器用高比表面积活性炭的研究[J].炭素,2002,1:11-15.
    [24] Toupin M,Belanger D,Hill I R.,QuinnD., performanee of experimental carbon blacks inaqueous supercapacitors[J]. J. Power Sources,2005,140:203-210.
    [25] Mayer S T, Pekala R W, Kaschimiter J L. The aerocapacitor: an electrochemical double-layerenergy-storage device[J]. J Electrochem Soc,1993,140(2):446-451.
    [26]张拴勤,王珏,沈军,等.碳气凝胶/H2SO4双电层电容器的特性[J].功能材料与器件学报,1999,5(1):57-60.
    [27] Li W C, Reichenauer G, Fricke J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors[J]. Carbon,2002,40(15):2955-2959.
    [28]侯朝辉,李新海,何则强,等.炭凝胶的制备及其电化学电容性能[J].中南大学学报(自然科学版),2004,35(4):581-586.
    [29]孟庆函,刘玲,未怀河,等.炭气凝胶为电极的超级电容器的研究[J].功能材料,2004,35(4):457-459.
    [30] Tanahashi I,Yoshida A,Nishino A.Electrochemical characterization of activated carbon-fibercloth polarizable electrodes for electric double-layer capacitors[J]. Journal of theElectrochemical Society,1990,137(10):3052-3057.
    [31] Zhang S J,Yu H Q,Feng H M.PVA-based activated carbon fibers with lotus root-like axiallyporous structure[J].Carbon,2006,44(10):2059-2068.
    [32]田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展[J].电源技术,2002,26(6):466-479.
    [33] Iijima S. Helical microtubules of graphic carbon[J]. Nature,1991,354:56.
    [34]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [35] Niu C, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbonnanotube electrodes[J]. Appl Phys Lett,1997,70(11):1480-1484.
    [36]马仁志,魏秉庆,许才录,等.基于纳米炭管的超级电容器[J].中国科学E,2000,84(7):1186-1188.
    [37] Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular materials as electrodes forsupercapacitors[J]. Fuel Processing Technology,2002,77-78:213-219.
    [38] Trasatti S, Buzzanca P. Ruthenium dioxide: a new interesting electrode material, solid statestructure and electrochemical behavior[J]. Electroanal Chem,1971,29(1):1-5.
    [39] Hadzi J S, Angerstem K H, Conway B E. Surface oxidation and H deposition at rutheniumelectrodes: resolution of component processes in the potential-sweep experience[J].Electroanal Chem,1975,60:359-372.
    [40] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material forelectrochemical capacitors[J]. J Electrochem Soc,1995,142(8):2699-2703.
    [41] Hu C C, Chang K H. Cycle voltammetrie deposition of hydrous ruthenium oxide forelectrochemical capacitors: effects of code Positing iridium oxide[J]. Electroehim Acta,2000,45(17):2685-2696.
    [42] Kim I M, Kim K B, Electrochemical characterization of hydrous ruthenium oxide thin-filmelectrodes for electrodes for electrochemical capacitor application[J]. J Electrochem Soc,2006,153(2): A383-389.
    [43] Pang S C, Anderson M A, Chapman T W. Novel electrode material for thin film ultracapacitors:comparison of electrochemical properties of sol-gel derived and electrodeposited manganesedioxide[J]. J Electrochem Soc,2000,147(2):444-450.
    [44]江奇,陈召勇,于作龙,等. LiMnO4用作电化学超级电容器电极材料的性能初探[J].功能材料,2001,32(10):1060-1062.
    [45]王晓峰,孔祥华,刘庆国,解晶莹.氧化镍超电容器及氧化镍表面“准电容”现象的研究[J].功能材料,2002,33(5):613-517.
    [46]王晓峰,孔祥华.新型氧化镍超电容器电极材料的研究[J].无机材料学报,200116(5):815-820.
    [47] Srinivasan V, Weidner J W.. An electrochemical route for making Porous nickel oxideelectrochemical capacitors[J]. J Electrochem Soc,1997,144(8):210-213.
    [48] Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors[J]. JElectrochem Soc,1996,143(1):124-130.
    [49] Wang Y, Yang W S, Zhang S C, Evans D G, Duan X. Synthesis and ElectrochemicalCharacterization of Co-Al Layered Double Hydroxides[J]. J Electro chem Soc.2005,152(11):A2130-A2137.
    [50] Kandalkar S G, Lokhande C D, Mane R S, Han S H. A non-thermal chemical synthesis ofhydrophilic and amorphous cobalt oxide films for supercapacitor application [J]. AppliedSurface Science,2007,253(8):3952-3956.
    [51] Kim I H, Kim J H, Cho B W, Kim K B. Pseudo capacitive ProPerties of electrochemieallyPrepared vanadium oxide on carbon nanotube film substrate[J]. J Electrochem Soc,2006,153(8):1451-1458.
    [52] Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K AmorphousV2O5/carbon composites as electrochemical supercapacitor electrodes[J]. Solid State Iomics,2002,152-153:833-84l.
    [53] Jayalakshmi M, Venugopal N, Raja K P, Rao M M. nanoSnO2-A12O3mixed oxide andSnO2-A12O3-Carbon Composite oxide as new and novel electrodes for supercapacitorapplications[J]. J Power Sourees,2006,158(2):1538-1543.
    [54] Prasad K R, Miura N. Electrochemical synthesis and characteriazation of nanostructured tinoxide for electrochemical redox supercapacitors[J]. Electrochem Commun,2004,6(8):849-852.
    [55] Jayalaksllmi M, Rao M M, Choudary B M. Identifying nanoSn as a new electrode material forelectrochemieal capacitors in aqueous solution[J]. EleCtrochem Commun,2004,6(11):1119-1122.
    [56] Gujar T P, shinde V R, Lokhande C D, Han S H. Electro synthesis of Bi2O3thin films and theiruse in electrochemieal supercaPacitors[J]. J Power Sources,2006,161(2):1479-1485.
    [57]王晓峰,尤政,阮殿波.聚苯胺在电化学电容器中的应用[J].化学物理学报,2005,18(4):635—640.
    [58] A. Rudge, I. Raistrick, S. Gottesfeld, et al. A study of the electrochemical properties ofconducting polymers for application in electrochemical capacitors[J]. Electrochemical Acta,1994,39(2):273-287.
    [59] A. Rudge, J. davey, I. Raistrick, et al, conducting polymers as active materials inelectrochemical capacitors[J]. J Power Sources,1994,47(1-2):89-107.
    [60] Bélanger D, Ren X, Davey J, et al. Characterization and long-term performance ofpolyaniline-based electrochemical capacitors[J]. J Electrochem Soc,2000,147(8):2923-2929.
    [61] Arbizzani C, Mastragostino M, Meneghello L, et al. Polymer-based redox supercapacitors: acomparative study[J]. Electrochim Acta,1996,41(1):21-26.
    [62] H. Liu, G. Zhu. The electrochemical capacitance of nanoporous carbons in aqueous and ionicliquids[J]. J. Power Sources,2007,171(2):1054-1061.
    [63] H. Yamadaa, I. Moriguchi, T. Kudu. Electric double layer capacitance on hierarchical porouscarbons in an organic electrolyte[J]. J. Power Sources,2008,175(1):651-656.
    [64] A. Lewandowski, A. OlejniczaL N-Methyl-N-propylpiperidinium bisimide as an electrolytefor carbon-based double-layer capacitors[J]. J. Power Sources.2007,172(1):487-492.
    [65] K. Yuyama, G. Masuda, H. Yoshida, et a1. Ionic liquids containing the tetrafluoroborate anionhave the best performance and stability for electric double layer capacitor applications[J]. J.Power Sources.2006.162(2):1401-1408.
    [66] G. H. Sun, K. X. Li, C. G. Sun. Application of l-ethyl-3-methylimidazolium thiocyanate to theelectrolyte of electrochemical double layer capacitors[J]. J. Power Sources,2006,162(2):1444-1450.
    [67]曲新喜,固体双电层电容器[J].电子元件,1989,1:2~10.
    [68]宋晔,刘宗才,全固态双电层电容器的开发和应用前景[J].电子质量,2000,12:8-10.
    [69] J. Vondrák, J. Reiter, J. Velická, et a1. PMMA-based aprotic gel electrolyte[J]. Solid Statelonics,2004,170(1-2):79-82.
    [70]顾温国,李劲,钮扣型双电层电容器的研制[J].电子元件与材料,2000,6:23-24.
    [71] J A Alford. High energy density carbons for use in double layer energy storage devices[P].United States. Patent, No.6060424.2000.
    [72] Becker H J, Ferry V. Low voltage electrolytic capacitor[P]. US Patent2800616,1957.
    [73] R. A. Rightmire. Electrical energy storage apparatus[P]. U. S. Patent3288641,1966.
    [74] Boos D L. Electrolytic capacitor having carbon paste electrodes[P]. US Patent3536963,1970.
    [75] Trasatti S, Buzzanca P. Ruthenium dioxide: a new interesting electrode material, solid statestructure and electrochemical behavior[J]. Electroanal Chem,1971,29:1-5.
    [76] Hadzi J S, Angerstem K H, Conway B E. Surface oxidation and H deposition at rutheniumelectrodes: resolution of component processes in the potential-sweep experience[J].Electroanal Chem,1975,60:359-372.
    [77] B E Conway著,陈艾,吴孟强,张绪礼等译.电化学超级电容器[M].化学工业出版社,北京,2005,9-28.
    [78] Bullard G L, Sierra-Alcazcar H B, Lee H L, et al. Operating principles of the ultracapacitor[J].IEEE Trans Magn,1988,25(1):102-106.
    [79] Sarangaponi S, Lessner P M, Laconti A B. Proton exchange membrane electrochemicalcapacitors[P]. US Patent5136474,1992.
    [80] Razoumov S, Klementov A, Litviennko S, et al. Asymmertric electrochemical capacitor andmethod of making[P]. US Patent6222723,2001.
    [81]王晓峰,王大志,梁吉等.实用型电化学双电层电容器制备[J].北京科技大学学报,2002.12,24(6):651-655.
    [82] B. E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemicalenergy storage[J]. Electrochem. Soc,1991,138(6):1539-1548.
    [83] Z. Li, J. Chen, An impedance-based approach to predict the state-of-charge for carbon-basedsupercapacitors[J]. Microelectronic Engineering2008,85(7):1549–1554.
    [84] A. Cross, A. Morel, A. Cormie, T. Hollenkamp, S. Donne, Enhanced manganese dioxidesupercapacitor electrodes produced by electrodeposition[J], Journal of Power Sources.2011,196(18),7847–7853.
    [85]张琦,王金全.超级电容器及应用探讨[J].电气技术,2007,8:67-70.
    [86] Weinstock I B. Recent advances in the US department of energy’s energy storage technologyresearch and development programs for hybrid electric and electric vehicles[J]. J PowerSources,2002,110(2):471-474.
    [87] Nomoto S, Nakata H, Yoshioka K, et al. Advanced capacitors and their application[J]. J PowerSources,2001,97-98:807-811.
    [88]韦文生,梁吉,徐才录,等.碳纳米管超大容量电容器在光伏系统中的应用[J].太阳能学报,2002,23(2):223-226.
    [89] Jung D Y, Kim Y H, Kim S W, et al. Development of ultracapacitor modules for42VAutomotive electrical systems[J]. J Power Sources,2003,114(2):366-373.
    [90]王海杰,超级电容器在电力驱动系统中的应用[J].电气技术,2007,8:62-66.
    [91]程夕明,孙逢春.电动汽车能量存储技术概况[J].电源技术,2001,25(1):47-52.
    [92]王晓峰,解晶莹,孔祥华,等.“超电容”电化学电容器研究进展[J].电源技术,2001,25(s1):166-171.
    [93]梁子雷,陈崇宽,陈彤,等.电化学电容器电极材料研究现状[J].电源技术,2010,34(7):738-741.
    [94]王喆垚.微系统设计与制造[M].清华大学出版社,北京,2-8,2008.
    [95] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer. Fabrication ofMicrostructures with High Aspect Rations and Great Structural Heights by SynchrotronRadiation Lithography, Galvanoforming, and Plastic Moulding(LIGA process)[J].Microelectronic Engineering.1986,4:35-36.
    [96] W. Bacher, W. Menz et al. IEEE Transactions on Industrial Electronics.1995,42(5):431~441.
    [97] R. Kondo, et al. High Aspect Ratio Electrostatic Micro Actuators Using LIGA Process[J].Microsystem Technologies.2000,6:218~221.
    [98] H.Lorenz,M.Despont,N.Fahrni,et al.High-aspect-ratio,ultra-thick,negative-tone near-UVphoto resist and its applications for MEMS[J].Sensors and Actuators A,1998,64:33-39.
    [99] Fang Q L, Evans D A, Roberson S L, Zheng J P. Ruthenium oxide film electrodes Prepared atlow temperatures for electrochemical capacitors[J]. J Electrochem Soc,2001,148(8):833-837.
    [100]黄小文,谢忠巍,曲晓光,等.以食糖热裂解碳作为电极的双电层电容器的性能[J].高等学校化学学报,2002,23(2):291-293.
    [101] Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. JMater Sci,1989,24(9):3221-3227.
    [102] PineroR E, Amoros C D, Solano L A, et al. High surface area carbon nanotubes prepared bychemical activation[J]. Carbon,2002,40(9):1614-1617.
    [103]杨建军,黄俊杰,江志裕.喷墨打印法制备薄膜电极的超电容性能[J].物理化学学报,2007,23(9):1365-1369.
    [104] Wei Chen, Majid Beidaghi, Varun Penmatsa, et al. Integration of Carbon Nanotubes toC-MEMS for On-chip Supercapacitors[J]. IEEE Transactions on Nanotechnology.2010,9(6):734-740.
    [105] Miller L M, Wright P K, Ho C C, et al. Integration of a low frequency, tunable MEMSpiezoelectric energy harvester and a thick film micro capacitor as a power supply system forwireless sensor nodes[C].2009IEEE Energy Conversion Congress and Exposition. ECCE2009San Jose, CA, USA,2009,2627-2634.
    [106] Xinwei Cui, Fengping Hu, Weifeng Wei, et al. Dense and long carbon nanotube arraysdecorated with Mn3O4nanoparticles for electrodes of electrochemical supercapacitors.Carbon,2011,49(4):1225–1234.
    [107]周扬,王晓峰,张高飞,阮勇,尤政.基于聚吡咯微电极的MEMS微型超级电容器的研究[J],电子器件,2011,34(1):1-6.
    [108] David Pech, Magali Brunet, Pierre-Louis Taberna, et al. Elaboration of a microstructuredinkjet-printed carbon electrochemical capacitor[J]. Journal of Power Sources,2009,195(4):1266-1269.
    [109] Beidaghi Majid, Wang Chunlei. Micro-supercapacitors based on three dimensional interdigitalpolypyrrole/C-MEMS electrodes. Electrochimica ACTA,2011,56(25):9508-9514
    [110] Wei Chen, Chunlei Wang. Electrochemically activated carbon micro-electrode arrays forelectrochemical micro-capacitors. Journal of Power Sources,2011,196(4):2403–2409.
    [111] Mianqi Xue, Zhuang Xie, Lesheng Zhang, Xinlei Ma, Xinglong Wu, Yuguo Guo, WeiguoSong, Zhibo Li, Tingbing Cao. Microfluidic etching for fabrication of flexible andall-solid-state micro supercapacitor based on MnO2nanoparticles. Nanoscale,2011,3(7):2703-2708.
    [112] Wei Sun, Ruilin Zheng, Xuyuan Chen. Symmetric redox supercapacitor based onmicro-fabrication with three-dimensional polypyrrole electrodes[J]. J of Power Sources,2010(20):7120-7125.
    [113] C.W. Shen, X.H. Wang, W.F. Zhang, F.Y. Kang, C. Du. A novel three-dimensional microsupercapacitor using self-support nano composite materials[C]. MEMS2011, Cancun,MEXICO,20111285-1288.
    [114] Chi-Chie Liu, Dah-Shyang Tsai, Diah Susant, et al. Planar ultracapacitors of miniatureinterdigital electrode loaded with hydrous RuO2and RuO2nanorods[J]. Electrochimica Acta,2010,55(20):5768–5774.
    [115] Carlos Ce′sar Bof Bufon, Jose′David Cojal Gonza′lez, Dominic J. Thurmer, et al.Self-Assembled Ultra-Compact Energy Storage Elements Based on Hybrid Nanomembranes[J]. Nano Lett.,2010,10(7):2506–2510.
    [116] Hengxing Ji, Yongfeng Mei, Oliver G. Schmidt. Swiss roll nanomembranes with controlledproton diffusion as redox micro-supercapacitors [J]. Chem. Commun,2010,46:3881–3883.
    [117] Yongfeng Mei, Dominic J Thurmer, Christoph Deneke, et al. Fabrication, Self-Assembly, andProperties of Ultrathin AlN/GaN Porous Crystalline Nanomembranes: Tubes, Spirals, andCurved Sheets[J]. ACS NANO,2009,3(7):1663–1668.
    [118] B E Ccnway著,陈艾,吴孟强,张绪礼等译.电化学超级电容器[M].化学工业出版社,北京,2005,17-18.
    [119]曲新喜.电容器设计[M].科学出版社,北京,1985,8-9.
    [120]马西奎.电磁场理论及应[M].西安交通大学出版社,西安,2000,367-385.
    [121]袁国辉.电化学电容器[M].化学工业出版社,北京,150-151,2006.
    [122]王喆垚.微系统设计与制造[M].清华大学出版社,北京,93-103,2008.
    [123] F L rmer, A Schilp.Method of Anisotropically Etching Silicon[P]. German Patent,DE4241045[P], USA patents4855017and4784720[P].
    [124] J. Bhardwaj, H. Ashraf, A. McQuarrie.Dry silicon etching for mems[C]//The Symposium onMicrostructures and Microfabricated Systems, the Annual Meeting of the ElectrochemicalSociety, Montreal, Canada.1997:1-13.
    [125] Surface Technology Systems (STS).STS LPX ICP ASE-SR User’s manual.2008.
    [126] J.D. Gelorme, R.J. Cox, S.A.R. Gutierrez. Photoresist composition and printed circuit boardsand packages made therewith[p]. USA:No.4882245,November21,1989.
    [127] Yoshihisa sensu,Atsushi sekiguchi,et al. profile simulation of SU-8thick film resist advancein resist Technology and processing XXII,2005,5753(2):1170-1185.
    [128] LaBianca N,Gelorme J D. high aspect ratio resist for thick film applications[J].SPIE,1995,2438:846-852.
    [129] L Dellmann,S Roth,C Beuret.Two steps micromoulding and photopolymer high-aspect ratiostructuring for applications in piezoelectric motor components[J].Microsyst Technology,1998,4:147-150.
    [130]马峰.薄膜体系界面结合强度及其测试研究[D].上海,上海交通大学,2002:3.
    [131] Kurt H Stern.Metallurgical and Ceramic Protective Coating[M].Cahaopman&Hall, London,1996,306.
    [132]潘永强,卢进军,万菁昱.光学塑料真空镀膜附着力机理.应用光学,2003,24,03:32-34.
    [133] H.Lorenz,M.Laudon,P.Renaud.Mechanical characterization of a new high-aspect-ratio nearUV-photo resist[J]. Microelectronic Engineering,1998,4,41-42:371-374.
    [134] Chang Hyun-Kee, Kim Yong–Kweon. UV-LIGA process for high aspect ratio structure usingstress barrier and C–shaped etch hole[J].Sensors and Actruators,2000,84:342-350.
    [135] Micro chem SU-8photoresist user manual [EB/OL].http://www.microchem.com/products/pdf/SU8.Pdf.2010.06.12.
    [136]田扬超.深度紫外光刻图形精度模拟研究[J].安徽师范大学学报(自然科学版),2005,28(3):253-257.
    [137]田学红,刘刚,田扬超,张新夷.SU-8的紫外深度光刻模拟[J].真空科学与技术,2002,22(6):417-420.
    [138]翁诗甫.傅里叶变换红外光谱仪[M].化学工业出版社,北京,2005,288-302.
    [139]冯明,黄庆安,李伟华,周再发,朱真.SU-8胶在深紫外光源下的光强分布模拟[J].半导体学报,2007,28(9):1465-1470.
    [140]李雄,徐智谋,易新建,何少伟,刘胜,连昆.不同波段近紫外光在SU-8胶中穿透深度的研究[J].微细加工技术,2004,1:38-40.
    [141] F L rmer, A Schilp.Method of Anisotropically Etching Silicon[P]:German Patent,DE4241045[P], USA patents4855017and4784720[P].
    [142] LAERMER F, URBAN A. Challenges, developments and applications of silicon deep reactiveion etching[J]. Microelectron Eng,2003,67:349-355.
    [143] J. Bhardwaj, H. Ashraf, A. McQuarrie.Dry silicon etching for mems[C].The Symposium onMicrostructures and Microfabricated Systems,the Annual Meeting of the ElectrochemicalSociety, Montreal, Canada.1997:1-13.
    [144] Mathieu Toupin, Thierry Brousse, Daniel Be′langer. Charge Storage Mechanism of MnO2Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater.2004,16:3184-3190.
    [145] E. Beaudrouet, A. Le Gal La Salle, D. GuyomardToupin, Nanostructured manganese dioxides:Synthesis and properties as supercapacitor electrode materials[J].. Electrochimica Acta,2009,54(4):1240-1248.
    [146]田颖,阎景旺,刘小雪,薛荣,衣宝廉.活性炭表面担载氧化锰复合电极的电化学电容性能[J].物理化学学报,2010,26(8):2151-2157.
    [147] Jeng-Kuei Chang, Chiung-Hui Huang, Ming-Tsung Lee, Wen-Ta Tsai, Ming-Jay Deng, I-WenSun. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mnoxide electrodes[J]. Electrochimica Acta,2009,54(12):3278–3284.
    [148] Jinho Chang, Sangjin Lee, T. Ganesh, Rajaram S. Mane, Sunki Min, Wonjoo Lee, Sung-HwanHan. Viologen-assisted manganese oxide electrode for improved electrochemicalsupercapacitors[J]. Journal of Electroanalytical Chemistry,2008,624(1-2),:167–173.
    [149]韩玲,倪纪朋,张良苗,岳宝华,申杉杉,张浩,陆文聪.纺锤形介孔纳米二氧化锰的控制合成[J].物理化学学报,2011,27(03):743-748.
    [150]夏熙.二氧化锰电极电化学(4)[J].电池工业,2006,11(1):66-72.
    [151] Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors[J]. J.Electrochem. Soc.1996,143,124-130.
    [152] Xiao feng Wang,Zheng You,Dian bo Ruan。Hydrous Ruthenium Oxide With High RatePseudo—Capacitance Prepared by a New Sol-Gel Process[J].Chinese journal of chemicalphysics,2006,19(4):341-346.
    [153]甘卫平,马贺然,师响,刘泓,李祥.超级电容器用(RuO2/MnO2)·nH2O复合电极的研究[J].电源技术,2010,34(7):654-657.
    [154]徐艳,王本根,王清华,刘宏宇.循环伏安沉积制备钽基氧化钌电极[J].电池,2007,37(3):187-189.
    [155]张莉,邹积岩,宋金岩.二氧化钌薄膜电极的制备及其性能研究[J].仪器仪表学报,2006,27(6):930-932.
    [156]唐晓庆,于军胜,李璐,王军,蒋亚东.聚合物掺杂的高亮度磷光有机电致发光器件[J].物理化学学报,2008,24(6):1012-1016.
    [157] Wang D W, Li F, Zhao J P, Ren W C, Chen Z G, Tan J, Wu Z S, Gentle I, Lu G Q, Cheng H M.Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode[J]. ACS Nano,2009,3(7):1745.
    [158] Minehan D S, Marx K A, Tripathy S K. Kinetics of DNA Binding to Electrically ConductingPolypyrrole Films[J]. Macromolecules,1994,27(3):777-783.
    [159] Solanki P R, Singh S, Prabhakar N, Pandey M K, Malhotra B D. Application of conductingpoly(aniline-co-pyrrole) film to cholesterol biosensor[J]. J. Appl. Polym. Sci.2007,105(6):3211-3219.
    [160] Sivaraman P, Rath S K, Hande V R, Thakur A P, Patri M, Samui A B. All-solid-supercapacitorbased on polyaniline and sulfonated polymers[J]. Synth. Met.2006,156(16/17):1057-1064.
    [161]张雷勇,何水剑,陈水亮,郭乔辉,侯豪情.聚苯胺/碳纳米纤维复合材料的制备及电容性能[J].物理化学学报,2010,26(12):3181-3186.
    [162] Ganesan R, Shanmugam S, Gedanken. Pulsed sonoelectrochemical synthesis of polyanilinenanoparticles and their capacitance properties[J]. A. Synth. Met.2008,158(21-24):848-853.
    [163] Chi Chang Hu,Jeng Yan Lin.Effects of the loading and polymerzation temperature on thecapacitive performance of polyaniline in NaNO3[J].Electrochimica Acta,2002,47:4055-4067.
    [164] Subramania A, Devi S L. Polyaniline nanofibers by surfactant-assisted dilute polymeriz ationfor supercapacitor applications[J]. Polym. Adv. Technol.2008,19(7):725-727.
    [165] J. K. Chang, Y. L. Chen, W. T. Tsai, Effect of heat treatment on material characteristics andpseudo-capacitive properties of manganese oxide prepared by anodic deposition[J]. J. PowerSources.2004,135(1-2),344-350.
    [166] A. J. Bard, L. R. Faulkner著,邵元华,朱果逸,董献堆,张柏林译.电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2005,166一167,256.
    [167]查全性.电极过程动力学导论[M].北京:科学出版社,2002,236一238.
    [168] Cotter J L,Knight G J,Wright W W.Thermal degradation of some perfluoroalkylene-linkedpolymers[J].Br Polymer J,1975,7(6):389—396.
    [169] Blumberg A A, Pollack S S, Hoeve C A. A poly (ethylene oxide)–mercuric chloride complex[J].J.Polym.sci.1964, A2:2449-2455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700