磁场对复合乳化剂/苯胺微乳液聚合体系相行为及其产物性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺(PANI)因其具有环境稳定性好、独特的掺杂机制、优异的电化学性能等优点,成为最重要的导电高分子材料之一。目前,PANI已广泛应用于实际生产应用中,如pH传感器、二次电池、膜材料以及防腐涂料等。
     磁场能影响含自由基(对)的化学反应,并诱导大多数有机聚合物分子和生物大分子的取向。由于PANI分子的抗磁性,其具有各向异性抗磁磁化率,将磁场引入聚苯胺的合成过程中,可使聚苯胺链更加规整、有序,有效提高聚苯胺的掺杂度、电导率、分子量和溶解性等。且两种或两种以上的表面活性剂复配,能起到增效、互相弥补各自性能缺陷的作用,即表面活性剂的协同效应。
     因此,本文利用利用表面活性剂的协同效应,制备十二烷基苯磺酸钠(SDBS)/聚乙二醇辛基苯基醚(TX-100)/正丁醇(nBA)/苯胺(An)/盐酸水溶液(HCl)微乳液聚合体系。并通过该微乳液聚合体系的拟三元相图,考察了恒定磁场(0.4T)、助表面活性剂(nBA)与复配乳化剂的质量比(Km=mnBA/mSDBS/TX-100)及SDBS与TX-100的质量比(Sm=mSDBS/mTX-100)对复合乳化剂/苯胺微乳液聚合体系的相行为和电导行为的影响。以碳纸负载PANI为工作电极,通过循环伏安和Tafel测试,探讨了磁场强度、复合乳化剂配比、乳化剂用量、氧化剂浓度和聚合时间对微乳液聚合法合成PANI电化学性能的影响;并通过对PANI的X射线衍射(XRD)、紫外光谱分析(UV)、电导率、产率以及特性粘度的表征分析,印证了其电化学性能分析结果的可靠性。
     研究结果表明,在复合乳化剂/苯胺/盐酸水溶液微乳液体系中,随着Km的增加,微乳区面积先增大后减小,当Km=1.0时,形成的微乳区面积最大;随着Sm的减少,微乳区面积逐渐增大;外加磁场可以增大微乳区面积,且随着Sm的减小,磁场对微乳液体系的作用逐渐减弱,通过对有、无外加磁场条件下溶液电导率随水含量变化规律分析,印证了拟三元相图的表征结果。循环伏安的测试结果表明,复合乳化剂微乳液法制备的聚苯胺,其循环伏安性能优于单组份乳化剂(SDBS或TX-100)微乳液法制备的聚苯胺。电导率和XRD分析结果表明,磁场条件下合成的PANI具有更高的导电性和规整度;紫外谱图分析表明,由于磁场的取向作用使分子间相互作用力降低,分子链离域程度增大,使磁场条件下合成PANI的主要特征吸收峰向低频方向移动。
Polyaniline has been one of the most promising commercial conductive polymers, because of its advantages of unique doping-dedoping mechanism, excellent environmental stability and good electrochemical properties. Currently, it has been widely used in basic materials, such as pH-sensors, rechargeable batteries, membranes and corrosion-protecting coating.
     Magmetic field (MF) affect has a marked impact on free radical polymerization and induces the polumer orientation of most organic molecules and biological macromolecules. Because of the anti-magnetic of PANI, the molecules of PANI has anisotropic diamagnetic susceptibility, therefore, the introduction of MF into the synthesis process of PANI can obviously improve doping degree, conductivity, molecular weight and solubility of the PANI. Besides, two or more surface active agent mixture, can play a synergistic to each other to make up for the role of defects in their performance, and that is the synergistic effect of surfactants.
     Therefore, this paper prepared the microemulsion system of sodium dodecyl benzenesulfonate preparation (SDBS)/Triton X-100(TX-100)/n-butanol(nBA)/ aniline(An)/hydrochloric acid solution (HCl). The effects of the magnetic field(MF)(0.4T), the mass ratio of n-butanol(nBA) to composite emulsifier (Km=mnBA/mSDBS/TX-100) and sodium dodecylbenzenesulfonate(SDBS) to Triton X-100(TX-100)(Sm=mSDBS/mTX-100) on the phase behavior and conductivity of the microemulsion system during composite emulsifier/aniline polymerization were investigated by the pseudo-ternary phase diagram of SDBS/TX-100/nBA/An/HCl. The effects of preparation conditions such as the MF, the effects of the mass ratio of sodium dodecylbenzenesulfonate (SDBS) to Triton X-100(TX-100) and the amout of composite emulsifier(E) and oxidant(APS) and the polymerization time on the electrochemical properties of PANI were discussed by cyclic voltammogram and Tafel using the carbon paper loaded PANI as working electrode. The characterization results of the electrochemical properties of the products were proved by the analysis of the UV (UV), X-ray diffraction (XRD) and conductivity.
     The results showed that with the increase of Km, the area of microemulsion region increased initially and then decreased, the area reached the maximum on condition that Km is equal to 1.0; with the decrease of the Sm, the area increased gradually; the area was increased by the MF, and with the decrease of the Sm, the effect of MF on the microemulsion system was weakened. The characterization result of cyclic voltammogram(CV) showed that the CV property of the polyaniline prepared by microemulsion polymerization in the presence of composite emulsifier was better than that prepared in the presence of single emulsifier (SDBS or TX-100). Conductivityand XRD analysis result indicated that the PANI synthesized in the presence of MF there is significant on the crystalline degree and the conductivity properties. UV results indicated that the interaction force between molecules reduced, the delocalization of molecular chain increased, and the main characteristic absorption peaks of the PANI prepared in the presence of MF had the trend of moving to low-frequency due to the orientation of MF.
引文
[1]崔正刚,殷福珊.微乳化技术及应用[M].轻工业出版社, 1999.
    [2]李干佐等.微乳液理论及其应用[M].北京:石油出版社, 1995.
    [3]姚惠玲.微乳液合成核壳结构纳米聚苯胺和QSPR表面活性剂的浊点的研究[D].山东:山东大学, 2008.
    [4] Sambhu Bhadra, Dipak Khastgir, Nikhil K. Sing, Joong Hee Lee. Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science, 2009, 34:783~810.
    [5]黄美荣,李新贵,杨海军.高含量聚苯胺水性微乳液的制备[J].涂料工业, 2005, 35(3): 1~7.
    [6]马利,陈云,刘家和,王成章.微乳液法合成纳米聚苯胺的研究[J].包装工程, 2005, 26(11): 57~61.
    [7]井新利,郑茂盛,蓝立文.反向微乳液法合成导电聚苯胺纳米粒子[J].高分子材料科学与工程, 2000, 16(2): 23~25.
    [8] Yan F, Xue G. Synthesis and characterization of elect rically conducting polyaniline in water-oil microemul sion [J]. J Mater Chem. , 1999, 9:3035~3039.
    [9]刘兰,王晓川,钟发春.聚苯胺的乳液聚合研究进展[J].化工新型材料, 2007, 35(9): 37-39.
    [10]周舟,何德良,李雪玲等.聚苯胺在离子液体/水体系中的微乳液法合成[J].高分子学报, 2007, 8: 757~760.
    [11] Xia Hesheng, Wang Qi. Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization[J]. Journal of Nanoparticle Research, 2001, 3: 401~411.
    [12]王国祥,叶盛.丙烯酰胺微乳液三相图的研究[J].湖南理工学院学报, 2008, 21(2): 65~67.
    [13]郑永军,吾满江?艾. Tween80/BmimPF6/醇/甲苯体系的相行为[J].物理化学学报, 2008, 24(11): 2143~2148.
    [14]王金英,张景林,彭英健.用于纳米微反应器的微乳液的相行为研究[J].中北大学学报, 2009, 30(4): 349~353.
    [15]完茂林,鲁传华,张玉莲等.醇的链长对非离子表面活性剂微乳增溶水量的影响研究[J].安徽大学学报, 2007, 32(4): 73~76.
    [16] Fang, J, Raymond, L. V. Colloid Inter Sci. , 1978, 116: 269.
    [17] Lada, A., Lang. J., Zana, R. Relation between electrical percolation and rate constant for exchange of material between droplets in water and oil microemulsions[J]. Phys. Chem, 1989,93(1): 10~12.
    [18] Prince, L. M. Microemulsions theory and practice[M]. New York: Academic Press, 1977.
    [19]赵辉,路福绥,李培强.不同因素对高效氯氟氰菊酯微乳液相图的影响[J].物理化学学报, 2006, 22(4): 475~480.
    [20]孙华,路福绥,赵辉.氰戊菊酯微乳液相行为及其结构转变[J].应用化学, 2005, 22(7):780~783.
    [21]刘进涛.表面活性剂在微乳液聚合中的应用[J].石油化学工业, 2007, 26(5): 4~7.
    [22]朱步瑶.表面活性剂复配规律[J].日用化学工业. 1988, (4): 37.
    [23]李干佐,李方,汪汉卿.郝树萱.高等学校化学学报. 1996, 17, 1446.
    [24]周震涛,杨洪业,王克俭,刘芳.聚苯胺掺杂、除掺杂和再掺杂与结构性能的研究[J].华南理工大学学报(自然科学版), 1995, 23(10): 66~71
    [25] Wan Meixiang. Absorption spectra of thin film of polyaniline[J]. Journal of polymer science, 1992, A (30): 543~549
    [26]耿延候,万梅香,王佛松等.高性能掺杂态聚苯胺[J].高分子材料科学与工程, 1997, 13(6): 124~127.
    [27]陆珉,吴益华,姜海,夏李勇.高电导率聚苯胺[J].功能材料, 1998, 29(5): 455~460.
    [28]张其锦,崔焱.聚苯胺的电化学合成实验[J].大学化学, 1998, 3(4): 41~46.
    [29]郑海林.新型导电高分子材料聚苯胺的合成及应用[J].广西化工,1998,13(27): 41~46.
    [30]阿卜杜·伊拉明,姚凯伦.不同酸掺杂对聚苯胺导电性能的影响[J].华中理工大学学报, 1999, 27(6): 55~69.
    [31] Diaz A. F., Logan J. A: Electronic display element. [J] J Eelctroanal Chem. 1980, 111: 111.
    [32] Genies E. M., Lapkowski M:Synthesis and Polymerization n of o-hexylaniline Characterization of the corresponding polyaniline[J]. J Eleetroanal Chem. 1987, 220: 67~82
    [33] Genies E. M., Lapkowski M., Penneau. J. F:Cyclic voltammeters of Polyaniline: Interpretation of the Middle Peak[J]. J Electroanal Chem. 1988, 249: 97~107.
    [34]潘春跃,胡慧萍,马承银,等.苯胺乳液聚合条件的研究[J].应用化学, 2000, 17(5): 491~493.
    [35] Macdiarmid A G.Polyaniline protonie acid doping of the emeraldine form to the metallic regime [J]. Chem Engin New, 1984, 10: 38~41.
    [36] Dewberry. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating [J]. Electrochemical Society, 1985, 132: 102
    [37]柳艳,吉宁,郭雪峰.导电聚苯胺的制备方法及应用[N]. 2009. 3: 4-10.
    [38] Hiromasa Gotoa, Kazuo Akagia, Kikuo Itohb. Synthesis of liquid crystalline polyaniline derivatives and their orientational behaviors under magnetic field[J]. Synthetic Metals, 2001,117(1~3): 91~93.
    [39]马利,卢苇,甘孟瑜,陈超,严俊,陈奉强.恒定磁场(0. 4 T)对聚苯胺微观取向结构的影[J].化学学报, 2008, 66(10): 1259-1264.
    [40] Jinqing Kan, Yan Jiang, Ya Zhang. Studies on synthesis and properties of uniform and ordered polyaniline nanoparticles in the magnetic field[J]. Materials Chemistry and Physics, 2007, 102(2~3): 260~265.
    [41] DiaZaf, Loganja. Electroactive Polyaniline film[J]. Electroanal Chem, 1980, 111(1): 11~14.
    [42] Beretta A, Piovesan L, Forzzatti P, et al. Oxidative dehydrogenation of propane in annular reactor over a Pt/Al2O3catalyst[J]. Studies in Surface Science and Catalysis, 1998, (119): 659~664.
    [43] Huang J. X., Virji S., Weiller B. H. , Richard B.J. Am. Chem. Soc [J]. 2004, 125 (2): 314-315.
    [44] Gao J. B. , Sansinena J . M. , Wang H. L. Synth. Met [J], 2003, 135 (4) : 809~810
    [45]郭雪梅,石南林.微/纳米结构聚苯胺的制备及应用的新进展[J].功能高分子学报, 2004, 17 (3): 521-52.
    [46] Gospodinova N, Mokreva P, Tsanov T, Terlemezyan L. A new route to polyaniline composites[J]. Polymer communication, 1997, 38 (3): 743-746.
    [47]黄美荣,王建.导电纳米聚苯胺的合成及应用[J].石油化工, 2004, 33 (3): 284-291.
    [48] Sambhu B, Nikhil K. S, Dipak K. Polyaniline by new miniemulsion polymerization and the effect of reducing agent on conductivity[J]. Synthetic Metals, 2006, 156: 1148~1154.
    [49]马利,黎小峰,甘孟瑜,刘兴敏,罗来正,苏文义,刘艳.磁场对苯胺微乳液聚合体系相行为的影响[J].物理化学学报, 2010, 26(3): 541~546.
    [50] Nicolas K. S., Stephanie R, Jeanne F. Synthesis and characterization of polyaniline prepared in the prepared in the presence of onionic surfactants in an aqueous dicpersion [J]. Synthetic Metals, 2005, 150: 107~114.
    [51] Girija T.C., Sangaranarayanan M.V. Polyaniline-based nickel electrodes for electrochemi- cal supercapacitors-Influence of Triton X-100[J]. Journal of Power Sources[J], 2006,159: 1519~1526.
    [52] LI Ying, He Xiu-juan, Cao Xu-Long. Molecular behavior and synergistic effects between sodium dodecylbenzene sulfonate and Triton X-100 at oil/water interface[J].Journal of Colloid and Interface Science, 2007, 307: 215–220.
    [53] Wakasa M, Sakaguchi Y, Hayashi H. Magnetic field effect on the photodecomposition of p-aminophenyl disulfide in a micellar solution[J]. J.Phys Chem, 1993, 97: 1733~1734 .
    [54] Aurica P C. J. Appl. Polym. Sci. , 2005, 98: 1025 ~1031.
    [55] Ma Li, Zheng Xing, Gan Mengyu, Du Xingsheng, Feng Lijun.Synthesis and Characterizationof Polyaniline in Magnetic Field[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2008, 3(23): 316~318.
    [56]颜肖慈,罗道明.界面化学[M].北京, 2005: 156.
    [57]李真.磁化处理对液-液相平衡的应先[D].天津:天津大学, 2005.
    [58] Lada, A. ; Lang, J. ; Zana, R. . Phys. Chem. 1989, 93, 10.
    [59]闫景辉,张鸣,连洪州,叶泽人,石春山.微乳液体系相图的研究及其在纳米氟化物制备中的应用[J].高等学校化学学报, 2005, 26, 1006.
    [60] Guo, R. ; Li, Z.C. ; Liu, T. Q. Catalysis of the electrochemical oxidation of L-cysteine by lyotropic mesophases[J]. Colloid.Polym. Sci. 2004, 283, 243.
    [61]王国全,吴中云.磁化学与磁医学[M].北京.兵器工业出版社, 1997.
    [62] LüRong-guan, TANG Rong, KAN Jin-qing. Effect of magnetic field on properties of polyaniline doped with dysprosium chloride[J]. Materials Chemistry and Physics, 2005, 95: 294?299.
    [63] Palaniappan S, Amarnath C A. Materials. Polyaniline-dodecylhydrogensulfate-aid salt: synthesis and characterization[J]. Chemistry and Physics, 2005, 92: 82~88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700