一类非线性系统的神经网络控制及其在机械手系统的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械手系统在工业中广泛应用,是一类典型的非线性系统,其数学模型由运动学和动力学模型组成。机械手的任务一般在笛卡儿空间内给定,大部分机械手控制方法需要离线求解逆运动学方程,将机械手的任务分解到机械手各关节电机,然后进行底层的闭环控制。然而对于机械手的任务来说,这实际上是开环控制,使得机械手各关节的协调能力变差。虽然机械手的理论方法很多,但是很多算法都只是处于仿真研究阶段,尚未进行实验研究。另一方面当前的机械手实验平台可以分为封闭式结构和开放式结构两种,尽管开放式机械手实验平台解决了传统封闭式机械手平台不通用的问题,但是由于其算法开发环境采用的是Visual C++或其他面向对象编程语言,使得开发人员不仅要将主要精力放在算法开发上,还要在算法实现上花费大量的时间,因此需要开发一个适合高级控制算法实现的平台。
     针对上面提到的问题,本文依托东北大学“985工程”流程工业综合自动化科技创新平台,针对机械手系统中存在的一类非线性系统控制问题,设计了控制方法,并搭建了机械手快速原型控制实验平台,并将本文所提方法进行了实验研究。
     本文的主要研究工作归纳如下:
     (1)针对机械手系统中存在的非线性问题,提出三类神经网络控制方法:
     (a)考虑摩擦力的线性模型,机械手系统的动力学模型可看作为一类二阶严反馈非线性系统。针对此类系统提出了神经网络线性滑模控制器和神经网络终端滑模控制器,两种方法都具有PD控制加补偿器的结构,易于工业应用,而且采用神经网络终端滑模控制器还可以实现跟踪误差的有限时间收敛。
     (b)考虑摩擦力的线性模型,机械手系统的运动学模型和动力学模型可转化为严反馈多输入多输出非线性系统。针对此类系统,采用Backstepping的设计步骤,设计了神经网络串级控制器。该方法的优势在于:(i)与现有的严反馈非线性系统理论方法相比,该方法具有串级结构,这样在控制器投入使用时可以分级进行调试;另外控制器设计完成后,假如一个子系统发生变化,则只需重新设计相应的部分,无需重复整个控制器设计过程,改善了传统严反馈控制方法工业应用难的问题;(ii)与工业中广泛应用的串级控制器相比,该方法采用非线性的设计工具,提高了控制性能,同时可以严格证明系统的稳定性。
     (c)考虑摩擦力的非线性模型,机械手系统动力学模型可以转化为一类非线性输入输出离散系统。针对该类系统,本文提出了一种带有前馈和神经网络补偿的PD控制方法。该方法只需要系统的输入输出信号,不需要设计复杂的状态观测器,易于工业应用。
     (2)设计和开发了基于快速原型技术的机械手实验平台。该系统可以和Matlab/ Simulink实现无缝连接,控制算法开发、实时控制代码生成以及数据采集均可以借助于Matlab/Simulink实现。本实验平台的设计与开发为复杂算法的快速实现提供了一个有力的支撑。
     (3)将上面提出的三类神经网络控制方法在机械手实验平台上进行了实验研究,并且与机械手现有的控制方法进行了比较,实验结果表明本文方法取得了良好的控制性能。另外利用前面提出的严反馈多输入多输出非线性系统串级控制结构,解决笛卡尔空间机械手的轮廓跟随控制任务,提出了一种基于神经网络的轮廓跟随控制方法。该方法不仅提高了机械手各关节协调能力,而且还改善了现有机械手控制算法存在的“轨径缩减”问题,大大提高了产品的加工速度和精度。
The robotic manipulator system which includes kinematic model and dynamics model is a class of nonlinear systems and widely used in industrial applications. The tasks of robotic manipulators are described in Cartesian space. Most of the reported control methods need to resolve the inverse kinematic model and transform the tasks into that of the motors of robotic manipulators. And then closed loop control in low level is performed. However, this means open loop control for tasks of robotic manipulators and would degrade the coordination ability of the joints of the robotic manipulator. There are many advanced control methods for robotic manipulators. However, most of them are only simulation cases and lack of experiment process on physics systems. On the other hand, the common control platform of robotics has two kinds:closed platform and open platform. Though the open platform has solved the problems of closed platform, the users have to spend much time to programme except for controller design since the development tools are VC++and other similar programme language. Therefore it is urgent to build a control platform to easily test complex controller.
     Supported by the "985" project process industry integrated automation innovation platform in Northeastern university, this thesis proposes control methods for robotics manipulators and builds a rapid control platform for robotic manipulators. Furthermore, the given methods are conducted on the presented platform.
     The main contributions can be summarized as:
     (1) Three kinds of neural network control methods are proposed to deal with the nonlinear problems in robotic manipulators.
     (a) The dynamics model of robotic manipulators with linear friction model can be transformed as a class of second order strict feedback nonlinear system. For such systems, the neural networks based linear sliding model control and the neural networks based terminal sliding model control methods are presented. The two methods possess a structure of PD control plus compensator, which can be easily applied in industrial applications. Moreover, finite time convergence of the tracking error can be realized for the neural networks based terminal sliding model control method.
     (b) The kinematic model and dynamics model of robotic manipulators with linear friction model can be transformed as strict feedback multi-input-multi-output nonlinear system. A neural networks based cascade controller is designed by a backstepping procedure for such system. The advantages of this method are listed as:(i) This method has a cascade structure. Hence, the controller can be put into practice step by step. Moreover, when a subsystem changes, only the related controller is redesigned without the need of redesigning the whole controller, which is easier to be applied than the reported methods for strict feedback systems. (ii) This method adopts nonlinear design tools. Therefore the control performance can be improved and the stability analysis can be critically addressed compared with the cascade control methods in industry.
     (c) The dynamics model of robotic manipulators with nonlinear friction model can be transformed as a class of nonlinear input output discrete system. PD controller including feedforward and neural network compensator is proposed for such system. If only the input and output signals of the system are known, the complex state observer will be not required, which is easy to be applied in industry applications.
     (2) A rapid prototype technology based experiment platform is designed and developed. The platform can be fully integrated with Matlab/Simulink. The development of control arithmetic, the real time control code, and data gathering can be performed by Matlab/ Simulink. Complex control methods can easily be carried out in the experiment platform.
     (3) Three kinds of neural network control methods proposed above are carried out in the experiment platform of the robotic manipulator. The detailed experiment results demonstrate the control performance of the proposed methods compared with other controllers. Moreover, the cascade structure is used to deal with contour following task of the robotic manipulator and a neural network based contour following controller is proposed. This controller can improve the coordination ability of the joints of the robotic manipulator and alleviate the "radius reduction" problem. Hence the machining speed and precision of production can be improved.
引文
1. Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design [M]. New York:JohnWiley & Sons,1995,19-64.
    2. Pan Z, Basar T. Adaptive controller design for tracking and disturbance attenuation in parametric strict feedback nonlinear systems [J], IEEE Trans. Automatic Control,1998,43 (8):1066-1083.
    3. Jiang Z P, Hill D J. A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics [J], IEEE Trans. Automatic Control,1999,44(9):1705-1711.
    4.陈卫田,刘晓华,初学导.一类不确定非线性系统的鲁棒控制[J],控制与决策,1997,12(5):524-527.
    5.陈卫田,周绍生,颜世田等.一类不确定非线性系统的输出反馈控制[J],控制理论与应用,1998,15(5):668-674.
    6. Kokotovic P. Foundations of adaptive control [M], Berlin:Springer-Verlag,1991,311-346.
    7.周绍生,费树岷,冯纯伯.多输入非线性串级系统的H∞控制[J],自动化学报,2001,27(2):214-218.
    8.周绍生,冯纯伯.多输入非线性串级系统的自适应控制[J],系统工程理论与实践,2001,12:30-35.
    9.周绍生,费树岷,冯纯伯.多输入非线性串级系统的非过参数化自适应控制[J], 控制与决策,2000,15(4):412-414.
    10.胡云安,晋玉强,张友安,崔平远.基于神经网络的严反馈块非线性系统的鲁棒控制[J],控制与决策,2004,19(7):808-812.
    11. Polycarpou M M, Mears M J. Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators [J], Int. J. Contr.,1998,70(3):363-384.
    12. Zhang Y, Peng P Y, Jiang Z P. Stable neural controller design for unknown nonlinear systems using backstepping [J], IEEE Trans. on Neural Networks,2000,11:1347-1359.
    13. Huang J T. Hybrid-based adaptive NN backstepping control of strict-feedback systems [J], Automatica,2009,46(6):1497-1503.
    14. Kwan C, Lewis F L. Robust Backstepping Control of Nonlinear Systems Using Neural Networks [J], IEEE Trans. on Systems, Man, and Cybernetics—Part A:Systems and Humans,2000,30(6),753-766.
    15. Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design [J], Automatica,2000,36:1835-1846.
    16. Ge S S, Wang C. Direct adaptive NN control of a class of nonlinear systems [J], IEEE Transactions on Neural Networks [J],2002,13(1),214-221.
    17. Mazenc F, Praly L, Dayawansa W. Global stabilization by output feedback:example and counterexample [J]. Systems & Control Letters,1994,23 (2):119-212.
    18. Arcak M, Kokotovic P. Nonlinear observers:a circle criterion design and robustness analysis [J]. Automatica,2001,37 (12):1923-1930.
    19. Arcak M, K P. Observer based control of systems with slope restricted nonlinearities [J]. IEEE Transactions on Automatic Control,2001,46 (7):1146-1150.
    20. Fan X, Arcak M. Observer design for systems with multi-variable monotone nonlinearities [J]. Systems and Control Letters,2003,50 (4):319-330.
    21.张云,刘允刚.一类非线性不确定系统输出反馈控制设计,山东大学学报,2005,35(3):76-82.
    22. Qian C, Lin W. Output feedback control of a class of nonlinear systems:a nonseparation principle paradigm [J], IEEE Tran. on Automatic Control,2002,47(10):1710-1715.
    23. Russo L R, Bequette, B W. State space versus input/output representations for cascade control of unstable systems [J], Industrial and Engineering, Chemistry Research,1997,36: 2271-2278.
    24. Seborg D E, Edgar T F, Mellichamp D A. Process Dynamics and Control (2nd edition) [M], New York:John Wiley and Sons,2004.
    25. Wolff E A, Skogestad S. Temperature cascade control of distillation columns [J], Industrial and Engineering, Chemistry Research,1996,35:475-484.
    26.潘发举.串级控制在氨汽提塔上的应用[J],石油化工自动化,2006,6:86-87.
    27.窦艳桂,王福荣.串级控制系统在四氟乙烯生产中的应用[J],有机氟工业,2002,1:37-38.
    28.彭道刚,张浩,杨平,王勇.锅炉汽包水位系统的免疫PD—免疫P串级控制[J],信息与控制,2006,35(6):765-768.
    29.张建华,蒋能记,杨水林.前馈串级控制在原油污水处理中的应用[J],控制工程,2006,13:4-6.
    30.刘红波,柴天佑,张晶涛,曹方.一种新的鲁棒串级控制系统及其应用[J],仪器仪表学报,2002,8:384-387.
    31.李树江,高宪文,柴天佑.模糊串级控制及其在精炼炉吹氩系统中应用[J],信息与控制,1998,27(1):60-65.
    32.牛培峰,周丽芹,李国胜,李铁一.大型国产循环流化床锅炉的汽温自适应串级控制系统[J],动力学工程,2004,24(2):204-207.
    33. Espinosa-Perez G, Velasco-Villa M, Rodriguez Cortiz H. Nonlinear Cascaded Control of Electromechanical Systems [C], IEEE International Congress on Power Electronics, Morelia, Mexico,1998,70-75.
    34. Hildebrandt A, Sawodny O, Neumann R, Hartmann A. Cascaded control concept of a robot with two degrees of freedom driven by four artificial pneumatic muscle actuators [C], American Control Conference, Portland, OR, USA,2005,680-685.
    35. Pisano A, Davila A, Fridman L, Usai E. Cascade Control of PM DC Drives Via Second-Order Sliding-Mode Technique. IEEE Trans. on Industrial Electronics [J],2008,55(11): 3846-3854.
    36. Jose A-R, Rodolfo S, America M. Cascade control for a class of uncertain non-linear systems:a backstepping approach [J], Chemical Engineering Science,55(16),2000: 3209-3221.
    37.孙富春.机械手的神经网络稳定自适应控制[D],清华大学,1997
    38. Widrow B. The original adaptive neural net broom-balancer [C], Proceedings of IEEE Int. Symp.Circuits and systems,1987:351-357
    39. Rosenblatt F. Principles of neurodynamics:Perceptrons and the theory of brain mechanism [M], Washington DC:Spartan Books,1961.
    40. Dale E, Michie D. Machine Intelligence [M], Edinburgh:Oliver, Boyd,1968,137-152
    41. Barto A G, Sutton R S, Anderson C H. Neuronlike adaptive elements that can solve difficult learning control problems [J], IEEE Trans.on Systems, Man and Cybernetics, 1983,13(5):834-846.
    42. Miller W T, Sutton R S, Werbos P J. Neural Networks for Control [M], Cambridge, MA: MIT Press,1990.
    43. Albus J S. A new approach to manipulator control:the cerebellar model artieulation controller (CMAC) [J], Journal of Dynamics systems, Measurement and Control,1975,97: 220-227.
    44. Tolle H, Ersii E. Neurocontrol:Learning Control Systems Inspired by Neuronal Architectures and Human Problem Solving [M], Lectures Notes in Control and Information Science, Berlin:Springer-Verlag,1992.
    45. Miller W T, Glanz F H, Kraft L G. Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller [J], IEEE trans, on Robotics and Automation,1990,6 (1):1-9.
    46. Barto A G, Bradtke S J, Singh S P. Learning to act using real time dynamic programming [D], University of Massachusetts, MA,1993.
    47. Berenji H R, Khedkar P. Learning and turning fuzzy logic controllers through reinforcements [J]. IEEE Trans, on Neural Networks 1992,3 (5):724-740.
    48. Rumelhart D E, MeClelland J L. Parallel distributed processing:explorations in the microstructure of cognition [M], Cambridge, MA:MIT Press,1986.
    49. Mason J C, Cox MG. Algorithms for approximation of functions and data [M], Oxford: Oxford University Press,1987:143-167.
    50. Touretzky D S. Advances in neural in formation processing system [M], San Mateo, CA: Morgan Kaufmann,1989.
    51. Harris C J. Advances in Intelligent Control [M], London:Taylor and Francis,1994.
    52. Hopfield J J, Tank D W. Computing with neural circuits:a model [J], Science,1986,233: 625-633.
    53. Miller W T, Sutton R S, Werbos R J. Neural networks for control [M], Cambrige, MA: MIT Press,1990,97-114.
    54. Sanner R M, Slotine J J E. Ganssian networks for direct adaptive control [J], IEEE Trans. on Neural Networks,1992,3(5):837-863.
    55. Polyearpou M M, Ioannou P A. Neural networks as online approximators of nonlinear systems [C], Proceedings of IEEE conference on Decision and Control, Tueson,1992, 7-12.
    56. Polyearpou M M. Stable adaptive neural control scheme for nonlinear Systems [J]. IEEE Trans. on Automatic Control,1996,41 (3):447-451.
    57. Jagannathan S, Lewis F L. Multilayer discrete-time neural-net controller with guaranteed performance [J], IEEE trans. on Neural Networks,1996,7(1):107-130.
    58. Jagannathan S, Lewis F L, Pastravanu O. Discrete-time model reference adaptive control of nonlinear dynamical systems using neural networks [J], International Journal of Control, 1996,64(2):217-239.
    59. Jagannathan S, Lewis F L. Neural network controller design and the effort of neural network size on speed of learning [J], International Journal of Intelligent Control and Systems,1996,1(1):119-132.
    60. Jagannathan S. Adaptive fuzzy logic control of feedback linearizable discrete-time nonlinear systems [C], Proceedings of the 1996 IEEE International symposium on Intelligent Control, Dearborn, MI.,1996,133-138.
    61. Kim Y H, Lewis F L. Direct-reinforcement-adaptive learning neural network control for nonlinear systems [C], Proceedings of the American Control Conference, New Mexico, 1997,1804-1808.
    62. Lin H C. Intelligent neural network-based fast power system harmonic detection [J], IEEE Trans. Industrial Electronics,2007,54(1):43-52.
    63. Singh B, Verma V, and Solanki J. Neural network-based selective compensation of current quality problems in distribution system [J], IEEE Trans. Industrial Electronics,2007,54(1): 53-60.
    64. Kang M S, Chen C S, Ke Y L, Lin C H, and Huang C W. Load profile synthesis and wind-power-generation prediction for an isolated power system [J], IEEE Trans. Industrial Applications,2007,43(6):1459-1464.
    65. Saksornchai T, Lee W J, Methaprayoon K, Liao J R, and Ross R J. Improve the unit commitment scheduling by using the neural-network-based short-term load forecasting [J], IEEE Trans. Industrial Applications,2005,41(1):169-179.
    66. Wai R J and Chu C C. Robust petri fuzzy-neural-network control for linear induction motor drive [J], IEEE Trans. Industrial Electronics,2007,54(1):177-189.
    67. Pajchrowski T and Zawirski K. Application of artificial neural network to robust speed control of servodrive [J], IEEE Trans. Industrial Electronics,2007,54(1):200-207.
    68. Pinto J O P, Bose B K, and da Silva L E B. A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and fluxvector synthesis by neural networks [J], IEEE Trans. on Industrial Applications,2001,37(5):1308-1318.
    69. Wei X L, Wang J, and Yang Z X. Robust smooth-trajectory control of nonlinear servo systems based on neural networks [J], IEEE Trans. on Industrial Electronics,2007,54(1): 208-217.
    70. Rubaai A, Castro-Sitiriche M J, Garuba M, and Burge L. Implementation of artificial neural network-based tracking controller for high performance stepper motor drives [J], IEEE Trans. on Industrial Electronics,2007,54(1):218-227.
    71. Slotine J J E and Li W P. Applied Nonlinear Control [M]. Englewood Cliffs, NJ:Prentice Hall,1991.
    72. Sciavicco L and Siciliano B. Modeling and control of robot manipulators [M], Springer, London,2000.
    73. Canudas C, Siciliano B, Bastin G. Theory of robot control [M], London:Springer-Verlag, 1996.
    74. Spong M W, Vidyasagar M. Robot dynamics and control [M]. New York:Wiley,1989.
    75. Kovio A J, Guo T H. Adaptive linear controller for robotic manipulator [J], IEEE Tran. Automatic Control,1983,28(2):162-173
    76. Slotine J J E and Li W P. On the adaptive control of robot manipulators [J], International Journal of Robotics Research,1987,6:49-57.
    77. Slotine J J E and Sastry S S. Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators [J], International Journal of Control,1983,38(2): 465-492.
    78. Su C Y, Leung T P. A sliding mode controller with bound estimation for robot manipulators [J], IEEE Trans. on Robotics and Automation,1993,9(2):208-214.
    79. Whitcomb L L et al. Comparative experiments with a new adaptive controller for robot arms [J]. IEEE Trans. on Robotics Automatation,1992,9 (1):59-70
    80.代颖.不确定性机器人鲁棒自适应控制方法的研究[D],西安:西安交通大学,1998.
    81. Dai Ying et al. Model-independent robust adaptive tracking control of robot manipulators [J]. Control Theory and Applications,1998,15(6):949-954
    82.代颖等.一类关于不确定性机器人的鲁棒控制策略[J],自动化学报,1999,25(2):205-209.
    83.代颖,施颂椒.全局稳定PD+前馈机器人鲁棒自适应控制[J],自动化学报,2002,28(1):11-18.
    84. Spong M W. On the robust control of robot manipulators [J]. IEEE Transactions on Automatic Control 1992,37(11):1782-1786.
    85.高为炳.变结构控制理论基础[M],北京:中国科学技术出版社,1990.
    86.孙富春,孙增圻,张钹.机械手神经网络稳定自适应控制的理论和方法[M],北京:高等教育出版社,2005.
    87. Narendra K S and Parthasarathy K. Identification andcontrol of dynamical systems using neural networks [J], IEEE Transactions on Neural Networks,1990,1(1):4-27.
    88. Lewis F L, Yesildirek A, Liu K. Multilayer neural-net robot controller with guaranteed tracking performance [J], IEEE Transactions on Neural Networks,1996,7(2):388-399.
    89. Purwar S, Kar I N, and Jha A N. Neuro sliding mode control of robotic manipulator[C], Proceeding of IEEE conference on robotics, automation and mechatronics, Singapore, 2004,595-600.
    90. Jung S, Kim S S. Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems [J], IEEE Transactions on Industrial Electronics, 2007,54(1):265-271.
    91. Imura J, Sugie T, and Yoshikawa T. Adaptive robust control of robot manipulators-theory and experiment [J], IEEE Transactions on Robotics and Automation,1994,10(5): 705-710.
    92. Kim K and Hori Y. Experimental evaluation of adaptive and robust schemes for robot manipulator control [J], IEEE Trans. on Industrial Electronics,1995,42(6):653-662.
    93. Venkataraman S T and Gulati S. Control of nonlinear systems using terminal sliding modes [J], Journal of dynamic systems, measurement, and control,1993,115(3):554-560.
    94. Man Z H, Paplinski A P, and Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulator [J], IEEE Tans. on Automatic Control,1994,39(12): 2464-2469.
    95. Tang Y. Terminal sliding mode control for rigid robots [J], Automatica,1998,34(2): 51-56.
    96. Park K B and Lee J J. Comments on "A Robust MIMO Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators", IEEE Tran. on Automatic Control,1996,41(5): 761-762.
    97. Feng Y, Yu X H, and Man Z H. Non-singular terminal sliding mode control of rigid manipulators [J], Automatica,2002,38(12):2159-2167.
    98. Yu S, Yu X H, and Shirinzadehc B. Continuous finite-time control for robotic manipulators with terminal sliding mode [J], Automatica,2005,41(11):1957-1964.
    99. Man Z H and Yu X H. Terminal sliding mode control of MIMO linear systems, IEEE Tran. on Circuits Syst. I, Fundam. Theory Appl.,1997,44(11):1065-1070.
    100. Lin C K. Nonsingular terminal sliding mode control of robot manipulator using fuzzy wavelet networks [J], IEEE Trans. on Fuzzy System,2006,14(6):849-859.
    101.Takegaki M and Arimoto S. A new feedback method for dynamic control of manipulators [J], ASME Journal of Dynamic Systems, Measurement, and Control,1981, 102(2):119-125.
    102. Kelly R and Coello A. Analysis and experimentation of transpose Jacobian-based Cartesian regulators [J], Robotica,1999,17:303-312.
    103. Galicki M. Motion control of robotic manipulator in the task space [C], Proceeding of the IEEE/RSJ International conference on intelligent robots and systems, Lausanne, Switzerland,2002:2061-2066.
    104. Khatib O. A unitied approach for motion and force control of robot manipulators:the operational space formulation [J], IEEE J. Robotics and Automation,1987,3(1):43-53.
    105. Yazarel H and Cheah C C. Task-Space Adaptive Control of Robotic Manipulators With Uncertainties in Gravity Regressor Matrix and Kinematics [J]. IEEE Transactions on Automatic Control,2002,47(9):1580-1585.
    106. Kelly R and Moreno J. Manipulator motion control in operational space using joint velocity inner loops [J], Automatica,2005,41:1423-1432.
    107. Lee M J and Choi Y K. An adaptive neurocontroller using RBFN for robotic manipulators [J], IEEE Transactions on Industrial Electronics,2004,51(3):711-717.
    108. Wai R J and Chen P C. Robust Neural-Fuzzy-Network Control for Robot Manipulator Including Actuator Dynamics [J], IEEE Transactions on Industrial Electronics,2006, 53(4):1328-1349.
    109. Imura J, Sugie T, and Yoshikawa T. Adaptive robust control of robot manipulators-theory and experiment [J], IEEE Transactions on Robotics and Automation,1994,10(5): 705-710.
    110. Kermani M R, Patel R V, and Moallem M. Friction Identification and Compensation in Robotic Manipulators [J], IEEE Trans. on Instrumentation and Measurement,2007,56(6): 2346-2353.
    111. Li P Y. Coordinated Contour Following Control for Machining Operations-A survey [C], in Proc. American Control Conference, San Diego, California,1999,4543-4547.
    112. Moreno J, Kelly R, and Campa R. Manipulator velocity control using friction compensation [J], IEE proc. Control theory and application,2003,150(2):119-126.
    113. Li P Y, and Horowitz R. Passive Velocity Field Control (PVFC):Part I—Geometry and Robustness [J], IEEE Tran. on Automatic Control,2001,46(9):1346-1359.
    114. Cervantes I, Kelly R, Alvarez-Ramirez J, and Moreno J. A Robust Velocity Field Control [J], IEEE Tran. Contr. Sys. Tech.,2002,10(6):888-894.
    115. Li P Y and Horowitz R. Passive velocity field control of mechanical manipulators [J], IEEE Trans. on Robotics and Automation,1999,15(4):751-763.
    116. Moreno J and Kelly R. On manipulator control via velocity fields [C], Proc.15th PAC World Congress, Barcelona, Spain, July,2002.
    117. Siciliano B. Kinematic control of redundant robot manipulators [J], Journal of Intelligent and Robotic Systems,1990,3:201-212.
    118. Whitney D E. Resolved motion rate control of manipulators and human prostheses, IEEE Trans.on Man-Machine Systems,1969,10(2):47-53.
    119. Li P Y. Passive velocity field control of mechanical manipulators [C], in Proc. Int. Conf. Robotics Automat., Nagoya, Japan, May 1995,2764-2770.
    120. Li J and Li P Y. Passive velocity field control (PVFC) approach to robot force control and contour following [C], Proc. JUSAFA, Ann Arbor, MI,2000.
    121. Li P Y. Passive control of bilateral teleoperated manipulators [C], in Proc.Amer. Contr. Conf., Philadelphia, PA, June 1998.
    122. Yamakita M, Suzuki K, Zheng X Z, Katayama M, and Ito K. An extension of pasive velocity field control to cooperative multiple manipulators systems [C], Proc. IEEE Int. Conf. Intell. Robot. Syst., vol.1, September 1997,11-16.
    123. Yamakita M, Yazawa T, Zheng X Z, and Ito K. An application of passive velocity field control to cooperative multiple 3-wheeled mobile robots [C], Proc. IEEE Int. Conf. Intell. Robot. Syst., vol.1, Oct.1998,1368-1373.
    124. Chiu G T C and Tomizuka M. Contouring Control of Machine Tool Feed Drive System: A Task Coordinate Frame Approach [J], IEEE Trans. Contr. Sys. Tech.,2001,9(1):130-139.
    125. Zhang D, Chen N, and Li Z. A unified contouring control in the task space [C], in proc. IEEE/RSJ International Conference on Intelligent Robots and Systems,2005,1569-1574.
    126.蔡自兴.机器人学[M],北京:清华大学出版社,2001,189-196.
    127.霍伟.机器人动力学与控制[M],北京:高等教育出版社,2005,123-165.
    128. Saeed B. Niku著,孙富春,朱纪洪,刘国栋译.机器人学导论——分析、系统与应用[M],北京:电子工业出版社,2004,113-120.
    129.刘洪义,宋伟刚.机器人技术基础[M],北京:冶金工业出版社,2002,1-5.
    130.范永,谭民.机器人控制器的现状及展望[J],机器人,1999,21(1):75-79.
    131.李开生,张慧慧,费仁元,宗光华.机器人控制器体系结构研究的现状和发展[J],机器人,2000,22(3):235-240.
    132.周玉敏.硅片传输机器人控制系统的研究与开发[D],大连:大连理工大学,2005.
    133.苏伟.基于PMAC的开放式数控教学平台的研究[D],天津:天津大学,2005.
    134.胡鹏.开放式机器人控制系统研究与实现[D],武汉:武汉科技大学,2006.
    135.王天然,曲道奎.工业机器人控制器的开放式体系结构[J],机器人,2002,24(5):256-260.
    136. Zebra ZERO Force Control Robot User Guide, IMI,1993.
    137. Gu J S, de Silva C W. Development and implementation of a real-time open-architecture control system for industrial robot syetems [J], Engineering Applications of Artificial Intelligence,2004,17:469-483.
    138.孙斌,杨汝请.开放式机器人控制器综述[J],机器人,2001,23(4):374-378.
    139. Hong K S, Choi K H, Kim J G, Lee S. A PC-based open robot control system:PC-ORC [J], Robotics and Computer Integrated Manufacturing,2001,17:355-365.
    140. Shao X and Sun D. Development of a New Robot Controller Architecture with FPGA-Based IC Design for Improved High-Speed Performance [J], IEEE Transactions on Industrial Informatics,2007,3(4):312-321.
    141. Craig J J. Introduction to robotics:mechanics and control (third edition) [M], New Jersey: Prentice Hall,2005.
    142. Lewis F L, Abadallah C T, and Dawson D M. Control of Robot Manipulator [M], New York:Macmillan,1993.
    143. Huang J T. An Adaptive Compensator for a Servo system with Coulomb and Viscous friction [C], Proceedings of the 2001 IEEE International Conference on Control Application, Mexico City, Mexico,2001,196-199.
    144. Panteley E, Ortega R, Gafvert M. An adaptive friction compensator for global tracking in robot manipulators [J], System and control letters,1998,33:307-313
    145. Ko C C, Chen B M, Chen J P, Zhuang Y, and Tan K C, Development of a Web-Based Laboratory for Control Experiments on a Coupled Tank Apparatus [J], IEEE Transactions on education,2001,44(1):76-86.
    146.石宇静.复杂工业过程模型预测控制的研究[D],沈阳:东北大学,2009.
    147. Chen L J, Narendra K S. Nonlinear adaptive control using neural networks and multiple models [J], Automatica,2001,37(8):1245-1255.
    148. Zhu Q M, Guo L Z. Stable adaptive neurocontrol for nonlinear discrete-time systems [J], IEEE Transactions on Neural Networks,2004,15(3):653-662.
    149. Hovakimyan N, Yang B J, Calise A J. Adaptive output feedback control methodology applicable to non-minimum phase nonlinear systems [J], Automatica,2006,42(4):513-522.
    150.翟廉飞,基于神经网络的多变量非线性系统解耦控制及应用[D],沈阳:东北大学,2008.
    151. Lee M J and Choi Y K. An adaptive neurocontroller using RBFN for robotic manipulators [J], IEEE Trans, on Industrial Electronics,2004,51(3):711-717.
    152. Reyesa F, Kelly R. Experimental evaluation of model-based controllers on a direct drive robot arm [J], Mechatronics,2001,11(3):267-282.
    153. Yoo D S, Chung M J, and Bien Z. Real-time implementation and evaluation of dynamic control algorithms for industrial manipulators [J], IEEE Trans. on Industrial Electronics, 1991,38(1):26-31.
    154. Wai R J and Yang Z W. Adaptive Fuzzy Neural Network Control Design via a T-S Fuzzy Model for a Robot Manipulator Including Actuator Dynamics [J], IEEE Trans. Syst. Man Cybern.-B,2008,38(5):1326-1346.
    155. Park J, Sandberg I W. Universal approximation using radial basis-function networks [J], Neural Computation,1990,3(2):246-257.
    156. Ryan E P. Finite-time stabilization of uncertain nonlinear planar systems [J], Dynamics and Control,1991,1(1):83-94.
    157. Haimo V. Finite time controllers [J], SIAM Journal of Control and Optimization,1986, 24(4):760-770.
    158. Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rotational double integrators [J], IEEE Transactions on Automatic Control,1998,43(5): 678-682.
    159. Hong Y, Huang J, Xu Y. On an output finite-time stabilization problem [J], IEEE Transactions on Automatic Control,2001,46(2):305-309.
    160. Yu X, Man Z H. Multi-input uncertain linear systems with terminal sliding-mode control [J], Automatica,1998,34(3):389-392.
    161. Yu X, Man Z. Fast terminal sliding-mode control design for nonlinear dynamical systems [J], IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(2):261-264.
    162. Tao C W, Taur J S, and Chan M L. Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties [J], IEEE Trans. Syst., Man, Cybern.-B,2004,34(1):255-262.
    163. Wu Y, Yu X, and Man Z H. Terminal sliding mode control design for uncertain dynamic systems [J], Syst. Lett.,1998,34(5):281-287.
    164. Zhuang K Y, Su H Y, Zhuang K Q, Chu J. Adaptive terminal sliding mode control for high order nonlinear dynamic systems [J], Journal of Zhejiang University,2003,4:58-63.
    165. Zak M. Terminal attractors in neural networks [J], Neural Networks,1989,2(4):259-274.
    166. Su C Y and Stepanenko Y. Adaptive sliding mode control of robot manipulator:general sliding manifold case [J], Automatica,1994,30(9):1497-1450.
    167.舒迪前,饶立昌,柴天佑.自适应控制[M],沈阳:东北大学出版社,1994.
    168. Ge S S, Zhang J, Lee T H. Adaptive MNN control for a class of non-affine NARMAX systems with disturbances [J], Systems & Control Letters,2004,53(1):1-12.
    169. Goodwin G C, Ramadge P J, Caines P E. Discrete-time multivariable adaptive control[J], IEEE Transactions on Automatic Control,1980,25(3):449-456.
    170. R. M. Hirschorn. Incremental sliding mode control of the ball and and beam [J], IEEE Trans. on Automatic Control,2002,47(10):1696-1699.
    171. Nam H. Jo, Jin H. Seo. A state observer for nonlinear systems and its application to ball and beam system [J], IEEE Trans. on automatic control,2000,45(5):968-973.
    172. Turker, Haluk. Exact Model Knowledge and Direct Adaptive Controllers on Ball and Beam [C], Proceedings of International Conference on Mechatronics, Japan,2007,1-6.
    173.杨涤,李立涛,杨旭,朱承元.系统实时仿真开发环境与应用[M],北京:清华大学出版社,2002,32-38.
    174.薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用[M],北京:清华大学出版社,2002,404-410.
    175.刘延斌,金光.半实物仿真技术的发展现状[J],仿真技术,2003,(1):27-32.
    176.王子才.仿真技术发展及应用[J],中国工程科学,2003,5(2):40-43.
    177.王子才.现代仿真技术发展及应用[J],科技与产业,2002,2(2):1-4.
    178.沈悦明,陈启军.dSPACE快速控制原型在机器人控制中的应用[J],机器人ROBOT,2002,24(6):545-549.
    179.曹广忠,徐刚.快速控制原型[J],应用技术,2001,(4):15-17.
    180. Whitcomb L L, Rizzi A, Koditschek D E. Comparative experiments with a new adaptive controller for robot arms [J], IEEE Tranactions on robotics and automation,1993,9(1): 59-70.
    181. Anders U and Korn O. Model selection in neural networks [J], Neural Networks,1999, 12(2):309-323.
    182. Carmo M D. Differential geometry of curves and surfaces [M], Englewood Cliffs: Prentice-Hall,1976.
    183. Oprea J. Differential geometry and its applications (Second Edition) [M], Englewood Cliffs:Prentice Hall,2003.
    184. E.Panteley and R.Ortega. Cascaded control of feedback interconnected systems: Application to robots with AC drives [J], Automatica,1997,33(11):1935-1947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700