乙醇对内皮细胞黏着斑激酶的影响及其细胞毒性作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国酒文化源远流长,但随着饮酒在社会交往活动中更加频繁,饮酒所带来的社会问题也日益凸显。近年来饮酒后伤害案件屡见不鲜,加之案情复杂,给检案人员造成很大压力。早在1963年有国外法医提出外伤性蛛网膜下腔出血(traumatic subarachnoid hemorrhage,tSAH)与酗酒有关,实际检案过程发现酒后受到轻微外力作用,颅内出血的发病率和死亡率明显增高。虽然已知饮酒可以调节心率和局部血流,改变血管通透性,影响血管舒缩功能,破坏凝血、抗凝血平衡,但这些改变尚不足以解释饮酒后外力作用易于引发颅内出血的原因。此外,长期困扰法医工作者的难题是:如何界定饮酒和外力各自的参与度,进而判定案件性质。所以更深入地研究饮酒易于造成脑血管破裂出血机制,有助于指导法医实践、改进检案思路和明确判定结果。
     乙醇(ethanol,EtOH)又名酒精,是酒类饮品中的主要成分。饮酒后乙醇可以以原型形式进入血液,血乙醇浓度(blood alcohol concentration,BAC)快速升高,乙醇随血流遍布全身。内皮细胞(endotheilial cell,EC)位于血管腔面最内侧,直接接触血液中乙醇及其代谢产物;另一方面内皮细胞生物功能活跃,拥有乙醇代谢相关酶体参与乙醇代谢,这就决定了内皮细胞可能遭受乙醇的直接和间接毒性作用,成为乙醇首当其冲的损伤靶点。
     由于血管内皮承担着重要的血管调节功能,在物质交换、血管张力调控、凝血、血管发生、白细胞游走等多种生物过程中发挥不可替代的作用;并可以“感知”血流切应力、周期应力等各种机械应力及各种血液成分改变,协调其他细胞共同作出相应反应,所以乙醇引起的内皮细胞损伤会危及到整个血管系统。
     其中脑血管具有其他部位血管不可比拟的自主调控能力以保持稳定的脑灌流量,对内皮细胞损伤愈发敏感。本课题以内皮细胞作为主要研究对象,探索乙醇的血管毒性作用,为进一步研究饮酒后轻微外力引发蛛网膜下腔出血(subarachnoid hemorrhage,SAH)的机制做好铺垫。
     血管内皮以单层细胞形式分布,其结构、功能完整性特别依赖于与细胞外基质(extracellular matrix,ECM)的连接、交流。黏着斑复合体是细胞与ECM连接处的复合结构,实现了细胞骨架与ECM的连接。一方面它可以将细胞外的信号传入胞内,通过“引导”应力纤维分布实现对细胞形态、功能的调整;另一方面将细胞生命活动产生的细胞内牵引力(tractionforce)传递到ECM,进而转化为生物信号传递给周围细胞,使机体能作出及时的宏观调整。
     黏着斑激酶(focal adhesion kinase,FAK)是黏着斑复合体重要的组成成分。一方面FAK受到integrin聚集、生长因子受体连接、切应力等多种因素调节活化;另一方面FAK可以连接并激活其他黏着斑结构蛋白,参与黏着斑复合体形成与成熟,调节细胞粘附、迁移等基本功能,还可以招募多种功能蛋白,参加到不同的信号通路调节中去。现已证实FAK在内皮细胞中发挥着举足轻重的作用。用特异失活内皮细胞内FAK的方法研究胚胎发育,发现FAK失活的胚胎虽然早期发育正常,但是在胚胎发育晚期出现胚胎、卵黄囊和胎盘的血管发育异常,内皮细胞死亡增多,血管破裂进而出现出血、水肿。多种疾病中也发现内皮细胞FAK表达、活化异常。对于过量乙醇刺激对内皮细胞FAK的影响及相应的生物学意义尚缺乏研究。本研究将着眼于过量乙醇对内皮细胞FAK的影响,探讨乙醇血管毒性的相关机制。
     第一部分:乙醇对内皮细胞的毒性作用
     目的:本部分将从动物整体水平和体外细胞水平观察乙醇对血管的毒性作用,全面研究乙醇对内皮细胞结构和功能的影响。
     方法:
     1采用灌胃器给酒制备大鼠饮酒模型,检测饮酒后BAC变化。运用Masson三色染色和透射电子显微镜(transmission electron microscope,TEM)技术观察不同饮酒时间大鼠脑实质毛细血管和基底动脉形态改变;
     2给予人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)不同浓度、不同时间的乙醇刺激,利用MTT检测HUVEC存活率,反映乙醇的细胞毒性;
     3利用流式细胞术观测乙醇诱导的HUVCE凋亡;
     4用光镜、扫描电子显微镜(scanning electron microscope,SEM)和TEM观察乙醇引起的内皮细胞形态结构改变;
     5待乙醇干预结束后用胰酶替代物消化HUVEC,重新接种于纤维连接蛋白(fibronectin,FN)包被的培养板中,测量1-2h内的粘附率和粘附过程中细胞铺展的面积以评价内皮细胞粘附能力;利用特异阻断抗体预处理细胞实现整合素(integrin)阻断后,进行粘附实验,观察integrin在其中作用;
     6给予乙醇干预后,利用划痕实验检验乙醇对HUVEC迁移能力的影响。
     结果:
     1短期饮酒大鼠脑内既可见明显血管源性水肿,毛细血管周围间隙明显增大,内皮细胞微绒毛减少,胞质内线粒体空泡化;
     2长期饮酒大鼠基底动脉中膜平滑肌成分与外膜胶原成分增多,壁/腔比明显增大(p<0.05),并可见内皮细胞脱落;
     3乙醇使内皮细胞生存率呈剂量、时间依赖性下降,与对照组相比出现较多早期凋亡细胞(p<0.05),这些凋亡细胞在TEM下呈现出细胞核形态不规则,核染色质边集呈半月状且电子密度增高,细胞胞浆减少等征象;
     4光镜、SEM、TEM观察可见乙醇刺激使HUVEC失去正常形态,胞内细胞器表现出空泡化等损伤征象;
     5乙醇明显降低HUVEC粘附率(p<0.05)和平均细胞铺展面积(p<0.05)。特异integrin β1抗体预处理后可以降低正常组细胞粘附率,但对乙醇组影响不明显;
     6乙醇明显降低HUVEC单细胞层划痕的愈合速度(p<0.05)。
     小结:在体和细胞实验均证明过量乙醇具有明显的内皮毒性作用,影响内皮细胞形态、降低生存率、抑制其与ECM粘附及粘附后铺展,以及降低内皮细胞迁移能力;乙醇作用后HUVEC粘附力下降可能与integrin信号通路有关。
     第二部分:过量乙醇对内皮细胞黏着斑激酶的影响及其产生机制
     目的:本部分将系统研究过量乙醇对内皮细胞中FAK分布、蛋白表达及磷酸化的影响,并探讨相关机制。
     方法:
     1用细胞免疫荧光标记细胞粘附、铺展和迁移过程中的磷酸化的FAK酪氨酸397位点(phosphorylated FAK at Tyr397,pFAK Y397),观察黏着斑复合体分布变化;
     2利用western blot检测乙醇作用对FAK总蛋白水平和磷酸化水平的影响;
     3给予HUVEC特异乙醇脱氢酶(alcohol dehydrogenase,ADH)抑制剂4-甲基吡唑(4-methyle-pyrazole,4MP)预孵或给予乙醇主要的代谢产物乙醛(acetaldehyde,Ach)刺激,研究乙醇代谢在FAK变化中的作用;
     4利用活性氧簇(reactive oxygen species,ROS)特异探针DCFH-DA标记ROS观察乙醇、乙醛引起的氧化应激变化;
     5给予外源性过氧化氢(H2O2)或非特异性内源性ROS清除剂N-乙酰-L-半胱氨酸(N-acetyl-L-cysteine,NAC),研究氧化应激在FAK变化中的作用。
     结果:
     1乙醇并未影响integrin β1的表达和分布;
     2在铺展过程中的对照组细胞内pFAK Y397形成较大的片状分布,尤以细胞边缘明显,迁移过程中细胞迁移方向的前缘亦可形成大片状pFAK Y397表达;而过量乙醇干预过的HUVEC中形成的片状结构小而少;
     3乙醇增加FAK磷酸化,且呈剂量、时间依赖性(p<0.05,p<0.01),但并不影响FAK总蛋白水平;
     4给予4MP可以削弱过量乙醇引起的FAK磷酸化增高(p<0.05);给予乙醛增加pFAK Y397(p<0.01);
     5乙醇、乙醛刺激均可激发内皮细胞中ROS产生;
     6给予外源性H2O2可以激发FAK磷酸化(p<0.01);给予NAC可部分降低乙醇、乙醛引起的FAK磷酸化水平(p<0.05)。
     小结:过量乙醇一方面干扰了FAK参与的内皮细胞黏着斑成熟,不能有效“引导”F-actin骨架,导致内皮细胞生存、粘附、迁移功能受损;另一方面增加pFAK水平,且乙醇和(或)其代谢产生的乙醛、氧化应激是引起FAK酪氨酸磷酸化的重要因素之一;过量乙醇并不影响FAK总蛋白水平。
     第三部分:黏着斑激酶磷酸化在过量乙醇引起的内皮细胞毒性中的作用
     目的:本部分实验将以PI3K/AKT信号通路着手研究过量乙醇干预后FAK磷酸化增高在内皮细胞一氧化氮(nitric oxide,NO)内稳态破坏中的作用。
     方法:
     1利用NO特异探针DAF-FM检测内皮细胞NO产生,并利用eNOS特异抑制剂N-硝基-L-精氨酸甲酯盐酸盐(ω-nitro-L-argine methyl ester,L-NAME)、 iNOS特异抑制剂L-canavanine和FAK自主磷酸化抑制剂PF573228(PF228)研究NO来源;
     2在给予HUVEC乙醇刺激前给予PI3K/AKT通路抑制剂wortmannin和PF228预处理研究eNOS活化的相关通路;
     3用western blot检测硝基酪氨酸(nitrotyrosine,NT)产生量。
     结果:
     1乙醇引起NO明显增高(p<0.05);L-NAME或PF228可以减弱乙醇引起的NO增加(p<0.05),而L-canavanine作用不明显;
     2给予wortmannin和PF228均可明显减弱乙醇引起AKT和eNOS磷酸化(p<0.05);
     3200mM乙醇干预24h后明显增加内皮细胞NT生成量(p<0.05)。
     小结:过量乙醇刺激引起的FAK磷酸化通过PI3K/AKT通路促进的eNOS活化,产生过量NO,生成具有细胞毒性的NT,造成内皮细胞损伤。
     结论:
     过量乙醇可以引起脑血管内皮细胞损伤,其机制主要表现在两个方面:
     1乙醇干扰黏着斑复合体成熟,影响内皮细胞功能;
     2乙醇及其代谢产生的乙醛、氧化应激通过增加FAK磷酸化水平,激活PI3K/AKT通路,上调eNOS/NO系统,使NT过量生成,造成内皮细胞损伤。
Drinking has a long history in China, and with the development of socialactivities, drinking is becoming more and more common. The related socialproblems have been serious. In recent years, injury cases after drinking havebeen increasing, and the related cases are always complicated to judge. In1963, some researchers indicated that traumatic subarachnoid hemorrhage(tSAH) was related with heavy drinking. In forensic medicine cases, drinkingleads to high incidence and mortality of intracranial hemorrhage with a slightexternal force. Although some mechanisms have been studied, such as chagesof heart rate and blood flow, vascular permeability,vasomotor function, andthe imbalance between coagulation and anticoagulation, it is still difficult toexplain the reasons. There are some challenges in forensic practice: how toevaluate the contribute degree of external force and alcohol and how toevaluate the case nature.
     Ethanol (EtOH) is the most important component of alcoholic beverages.Aftering drinking, the ethanol is taken into blood and the blood alcoholconcentration (BAC) increases rapidly. With blood stream, ethanol is taken toorgans in the body. Vascular endothelial cells (EC) lining the blood vesselsform the interface between the bloodstream and the vessel wall and as suchthey are continuously subjected to ethanol and metabolites from the flowingblood after drinking. And EC take part in ethanol metabolism. As result, ECare susceptible to ethanol totoxicity.
     Endothelial cells (EC) are the substaintial constitution of vessels, whotake responsibility to material exchange, angiotasis regulation, bloodcoagulation, angiogenesis and leukocyte migration. In addition, EC ‘sense’and transmit the biosignals from shear stress, cycle tension and bloodcomponents and coordinate diverse cells to make biological response. In summary, the toxicity of ethanol to EC will lead injury of vascular disorder.
     Cerebral vessels are charactered with autonomic regulation, so they aresensitive to EC injury. The current study was designed to study toxicity ofethanol to cerebral vessels, which will be helpful to futher study aboutmechanisms of tSAH with slight blow after drinking.
     EC line the wall of all blood vessels with monolayer of cells, so thedelicate balance between cell-cell interaction and EC-matrix adhesion areimportant to endothelial function. Focal adhesions (FAs) are complexstructures that assemble at the plasma membrane in discrete regions ofintegrin-mediated recognition of extracellular matrix (ECM) components.They connect the extracellular filamentous meshwork to the intracellularcytoskeleton controlling or mediating bidirectional signal transductionthrough endothelial cell.
     Focal adhesion kinase (FAK) is an important member in FA pathwaytransducting in-outside or outside-in signals. FAK is a non receptor proteintyrosine kinase (PTK), taking part in composition of focal adhesion (FA)complex and regulation of cytoskeleton. In the one hand, several factors, suchas integrin clustering, growth factor receptors and shear stress, regulate FAK.In another hand, FAK is a scaffolding protein binding with other proteins. SoFAK is involved in multiple pathways. There is evidence that FAK is relatedwith adhesion, migration, proliferation and mechanotransduction. Inpathological conditions, FAK related signal pathways become disorder. Thecurrent study was designed to observe the changes of FAK induced byexcessive ethanol, and to explore the mechanisms.
     Part I: The cytotoxicity of ethanol to endothelial cells
     Objective: To observe the cytotoxicity of excessive ethanol to vessels invivo and in vitro and to study systematically the effects of ethanol on structureand functions of endothelial cells.
     Methods:
     1The rats were given alcoholic beverage with a blunt tipped needle, andBAC was detected after drinking. Masson’s trichrome staining and transmission electron microscope (TEM) were used to observe themorphological changes of capillaries and basilar arteries (BA) from alcoholicrats with different duration of drinking;
     2Human umbilical vein endothelial cells were given differentconcentrations or different duration of ethanol treatment, and the viability wasdetected with MTT, representing the cytotoxicity of ethanol;
     3Apoptotic cells were determined by Annexin V/PI apoptosis detectionkit with flow cytometry;
     4The morphological changes of the endothelial cell after ethanol treatedwere observed with light microscope, scanning electron microscope (SEM)and transmission electron microscope (TEM);
     5After the ethanol treatment, the cells were harvested by TrypLE Express, and allowed to adhere in plates coated with fibronectin (FN) for1-2h.The adhesion was detected with MTT and the average areas were measured byimage soft; the role of integrin pathway in adhesion was observed by blockingintegrin with specific blocking antibody;
     6Wound healing assay was used to observe the migration of HUVECafter ethanol treatment.
     Results:
     1The rats with short-time drinking appeared changes in capillaries:obvious vasogenic edema, enlarged perivascular space, microvillus decreasedand vacuolus in mitochondria;
     2The rats with long-time drinking appeared vascular remodeling: SMChyperplasia in tunica media and collagen deposition in tunica adventitia, thewall: lumen ratio increasing (p<0.05), and endothelial desquamation;
     3Excessive ethanol treatment decreased the HUVEC viability in a dose-and time-dependent manner. Compared to the control group, there were moreearly apoptotic cells (p<0.05) showing unregular nucleus, increased electrondensity of chromatin with half moon shape, and decreased cytoplasm;
     4HUVEC after excessive treatment lost normal shape, even withorganelle injury.
     5Excessive ethanol treatment decreased adhesion rate (p<0.05) andspreading areas of HUVEC (p<0.05). The antibody to block integrin β1reduced adhesion rate of control EC, without affects on ethanol treated EC.
     6Excessive ethanol treatment decreased migration of HUVEC in woundhealing assay.
     Summary: Excessive ethanol caused endothelial injury, includingmorphological changes, viability decreasing, and interference of adhesion,spreading, and migration of EC. The adhesion injury induced by ethanol mightbe related with integrin pathway.
     Part Ⅱ: Changes of FAK and the related mechanisms in EC caused byexcessive ethanol
     Objective: This part was designed to study the distribution, proteinexpression and phosphorylation of FAK after excessive ethanol treatment, andto explore the related metablisms.
     Methods:
     1Distribution of pFAK Y397in spreading and migarating EC wasobserved with immunofluorenscence.
     2Total protein level and phosphorylation level of FAK were detectedwith western blot.
     3To study the relationship between the metabolism of ethanol and theFAK changes, specific ADH inhibitor4MP and ethanol metaboliteacetaldehyde (Ach) were given to HUVEC.
     4The oxidative stress from ethanol or Ach was detected with specificprobe DCFH-DA.
     5To study the relationship between oxidative stress caused by themetabolism of ethanol and the FAK changes, exogenous H2O2and nonspecific ROS scanvenger N-acetyl-L-cysteine (NAC) were given to HUVEC.
     Results:
     1In control group, pFAK397appeared as large pelltes, especially at edgeof cells during spreading and in parapodia during migrating. In ethanol group,pFAK397appeared as small dots;
     2Ethanol increased pFAK in a dose-and time-dependent manner(p<0.05,p<0.01), without affect on total FAK protein;
     3Increased pFAK induced by ethanol was attenuated by4MP (p<0.05);Ach increased pFAK397significantly (p<0.05);
     4Both ethanol and Ach increased ROS level of HUVEC;
     5Exogenous H2O2incresased FAK phosphorylation (p<0.01); IncreasedpFAK induced by ethanol or Ach was attenuated by NAC (p<0.05).
     Summary:Ethanol disordered the distribution of pFAK, and increasedthe level of pFAK; disordered distribution of pFAK was involved in FA mature,leading to injury in EC survival, adhesion and migration; Ach and oxidativestress induced by ethanol metabolism was one of important factors of FAKphosphorylation.
     Part Ⅲ: The role of FAK phosphorylation on cytotoxicity of excessiveethanol to EC
     Objective:This part was designed to explore the relationship betweenincrease of pFAK and NO-mediated homeostasis, and to evaluate whetherPI3K/AKT pathway was involved in this process.
     Methods:
     1NO production was detected with specific probe DAF-FM; eNOSinhibitor L-NAME, iNOS inhibitor L-NAME L-canavanine and inhibitor ofFAK autophosphorylation PF228were employed to assess the origin of NO;
     2NT production was dectected by western blot;
     3The pathways involving in eNOS activation were vertified withPI3K/AKT inhibitor wortmannin and PF228.
     Results:
     1Ethanol increased NO production (p<0.05),which was attenuated bypretreatment of L-NAME or PF228(p<0.05), but not by L-canavanine.
     2NT production was significantly increased after treated with200mMethanol for24h (p<0.05).
     3Increase of AKT and eNOS phosphorylation induced by ethanol wasattenuated by both wortmannin and PF228(p<0.05).
     Summary: Excessive ethanol increased NO generation and toxic NTproduction; FAK phosphorylation induced by ethanol promote the activationof eNOS via PI3K/AKT, which broke the NO-mediated endothelialhomeostasis.
     Conclusions:
     1Short-time drinking leads to microvasular morphological and structuralchanges, while long-time drinking causes vascular remodeling of cerebralarteries. Endothelial cells are the injury target of ethanol cytotoxicity.
     2Ethanol disorders the distribution of FA, inducing decrease of survivalrate, and down-regulation of adhesion and migration ability.
     3Metabolites and oxidative stress from ethanol increase FAKphosphorylation, which up-regulates FAK/PI3K/AKT/eNOS pathway.Overproduction of NO and ROS generates NT, taking part in endothelialinjury.
引文
1Iso, H., S. Baba, T. Mannami, et al., Alcohol consumption and risk ofstroke among middle-aged men: The jphc study cohort i. Stroke,2004.35(5):1124-9
    2Stach, K., A.I. Kalsch, C. Weiss, et al., Effects of ethanol on theproperties of platelets and endothelial cells in model experiments. World JCardiol,2012.4(6):201-5
    3Reynolds, K., B. Lewis, J.D. Nolen, et al., Alcohol consumption and riskof stroke: A meta-analysis. Jama,2003.289(5):579-88
    4Bunai, Y., A. Nagai, I. Nakamura, et al., Traumatic rupture of the basilarartery: Report of two cases and review of the literature. Am J ForensicMed Pathol,2000.21(4):343-8
    5Gray, J.T., S.M. Puetz, S.L. Jackson, et al., Traumatic subarachnoidhaemorrhage: A10-year case study and review. Forensic Sci Int,1999.105(1):13-23
    6Wei, L., H.C. Lei, X.J. Yu, et al., Relation between expression of cerebralbeta-app in the chronic alcoholism rats and death caused by TSAH. Fa YiXue Za Zhi,2013.29(2):91-5
    7Wang, H., Yu X., Xu G., et al., Alcoholism and traumatic subarachnoidhemorrhage: An experimental study on vascular morphology andbiomechanics. J Trauma,2011.70(1): E6-12
    8Walker, J.E., Jr., A.R. Odden, S. Jeyaseelan, et al., Ethanol exposureimpairs lps-induced pulmonary lix expression: Alveolar epithelial celldysfunction as a consequence of acute intoxication. Alcohol Clin Exp Res,2009.33(2):357-65
    9Brecher, A.S., A.R. Moon K.D. Gray, et al., The effect ofacetaldehyde-glycosaminoglycan mixtures upon factor ixa and factorix-deficient plasma. Alcohol,2006.39(2):97-104
    10Suchocki, E.A., A.S. Brecher, The effect of acetaldehyde on humanplasma factor xiii function. Dig Dis Sci,2007.52(12):3488-92
    11Radek, K.A., E.J. Kovacs, R.L. Gallo, et al., Acute ethanol exposuredisrupts vegf receptor cell signaling in endothelial cells. Am J PhysiolHeart Circ Physiol,2008.295(1): H174-84
    12Collins, X.H., S.D. Harmon, T.L. Kaduce, et al., Omega-oxidation of20-hydroxyeicosatetraenoic acid (20-hete) in cerebral microvascularsmooth muscle and endothelium by alcohol dehydrogenase4. J BiolChem,2005.280(39):33157-64
    13Haorah, J., B. Knipe, J. Leibhart, et al., Alcohol-induced oxidative stressin brain endothelial cells causes blood-brain barrier dysfunction. JLeukoc Biol,2005.78(6):1223-32
    14中国营养学会,中国居民膳食指南(2007).西藏人民出版社,2008:90-95
    15马冠生,杜松明,郝利楠等,中国成年居民过量饮酒现况的分析.营养学报,2009.31(3):213-217
    16Aydinoglu, F., S.N. Yilmaz, B. Coskun, et al., Effects of ethanol treatmenton the neurogenic and endothelium-dependent relaxation of corpuscavernosum smooth muscle in the mouse. Pharmacol Rep,2008.60(5):725-34
    17Qian Qi, Xia Liu, Guozhong Zhang, et al., Morphological Changes ofCerebral Vessels and Expression Patterns of MMP-2and MMP-9onCerebrovascular Wall of Alcoholic Rats. International Journal of Clinicaland Experimental Pathology,2014,7(5):1880-1888
    18Haorah, J., K. Schall, S.H. Ramirez, et al., Activation of protein tyrosinekinases and matrix metalloproteinases causes blood-brain barrier injury:Novel mechanism for neurodegeneration associated with alcohol abuse.Glia,2008.56(1):78-88
    19Wright, J.W., A.J. Masino, J.R. Reichert, et al., Ethanol-inducedimpairment of spatial memory and brain matrix metalloproteinases. BrainRes,2003.963(1-2):252-61
    20Sillanaukee, P., A. Kalela, K. Seppa, et al., Matrix metalloproteinase-9iselevated in serum of alcohol abusers. Eur J Clin Invest,2002.32(4):225-9)
    21Shapira, Y., A.M. Lam, A. Paez, et al., The influence of acute and chronicalcohol treatment on brain edema, cerebral infarct volume andneurological outcome following experimental head trauma in rats. JNeurosurg Anesthesiol,1997.9(2):118-27
    22Pearson, J.D., Normal endothelial cell function. Lupus,2000.9(3):183-8
    23Celine Bouvet, Eric Belin de Chantemele, Anne-Laure Guihot, et al.,Flow-induced remodeling in resistance arteries from obese zucker rats isassociated with endothelial dysfunction. Hypertension,2007.50(1),248-254
    24Odile Dumont, Laurent Loufrani, Daniel Henrion,Key role of theNO-pathway and matrix metalloprotease-9in high blood flow-inducedremodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol,2007.27(2):317-324
    25Sonoyama K, Greenstein A, Price A, et al., Vascular remodeling:implications for small artery function and target organ damage. Ther AdvCardiovasc Dis,2007.1(2):129-137
    26David Morrow, JPC., Weimin Liu, Paul A. Cahill, et al., Alcohol inhibitssmooth muscle cell proliferation via regulation of the notch signalingpathway. Arterioscler Thromb Vasc Biol,2010.30(12),2597-603
    27Frisch, S.M. H. Francis, Disruption of epithelial cell-matrix interactionsinduces apoptosis. J Cell Biol,1994.124(4):619-26
    28Meredith, J.E., Jr., B. Fazeli, M.A. Schwartz, et al., The extracellularmatrix as a cell survival factor. Mol Biol Cell,1993.4(9):953-61
    29Lawson, C, D.D. Schlaepfer, Integrin adhesions: Who's on first? What'son second? Connections between fak and talin. Cell Adh Migr,2012.6(4):302-6
    30Xiong, W., J.T. Parsons, Induction of apoptosis after expression of pyk2,a tyrosine kinase structurally related to focal adhesion kinase. J Cell Biol,1997.139(2):529-39
    31Bijian, K., T. Takano, J. Papillon, et al., Extracellular matrix regulatesglomerular epithelial cell survival and proliferation. Am J Physiol RenalPhysiol,2004.286(2): F255-66
    32Attwell, S., C. Roskelley S., Dedhar, et al., The integrin-linked kinase (ilk)suppresses anoikis. Oncogene,2000.19(33):3811-5
    33Erin L. Baker, Muhammad H. Zaman, The biomechanical integrin. JBiomech,2010.43(1):38-44
    1Geiger, B., J.P. Spatz, A.D. Bershadsky, et al., Environmental sensingthrough focal adhesions. Nat Rev Mol Cell Biol,2009.10(1):21-33
    2Berrier, A.L., K.M. Yamada, Cell-matrix adhesion. J Cell Physiol,2007.213(3):565-73
    3Schwartz, M.A., D.W. DeSimone, Cell adhesion receptors inmechanotransduction. Curr Opin Cell Biol,2008.20(5):551-6
    4Chan, K.T., C.L. Cortesio, A. Huttenlocher, et al., Fak altersinvadopodia and focal adhesion composition and dynamics to regulatebreast cancer invasion. J Cell Biol,2009.185(2):357-70
    5Cheung, P.F., C.K. Wong, W.K. Ip, et al., Fak-mediated activation oferk for eosinophil migration: A novel mechanism forinfection-induced allergic inflammation. Int Immunol,2008.20(3):353-63
    6Owen, K.A., M.Y. Abshire, R.W. Tilghman, et al., Fak regulatesintestinal epithelial cell survival and proliferation during mucosalwound healing. PLoS One,2011.6(8): e23123
    7Pan, N., A.R. Zhang, M.S. Mu, et al., Effects of fak expression levelon proliferation and motility of colorectal carcinoma cells. Xi Bao YuFen Zi Mian Yi Xue Za Zhi,2009.25(9):783-6
    8Goldmann, W.H., Mechanotransduction and focal adhesions. Cell BiolInt,2012.36(7):649-52
    9Samarel A., M. Costameres, Focal adhesions, and cardiomyocytemechanotransduction. Am J Physiol Heart Circ Physiol,2005.289(6):H2291-301
    10Golubovskaya, V.M., F.A. Kweh, W.G. Cance et al, Focal adhesionkinase and cancer. Histol Histopathol,2009.24(4):503-10
    11Vadali, K., X. Cai, M.D. Schaller, et al., Focal adhesion kinase: Anessential kinase in the regulation of cardiovascular functions. IUBMBLife,2007.59(11):709-16
    12Zhang, P., W. Wang, X. Wang, et al., Focal adhesion kinase mediatesatrial fibrosis via the akt/s6k signaling pathway in chronic atrialfibrillation patients with rheumatic mitral valve disease. Int J Cardiol,2013.168(4):3200-7
    13Sugimura, K., Y. Fukumoto, J. Nawata, et al., Hypertension promotesphosphorylation of focal adhesion kinase and proline-rich tyrosinekinase2in rats: Implication for the pathogenesis of hypertensivevascular disease. Tohoku J Exp Med,2010.222(3):201-10
    14Liu, Y., Z. Shen, L.H. Chen, et al., Role of focal adhesion kinase inalcoholic liver disease. Zhonghua Gan Zang Bing Za Zhi,2013.21(12):958-60
    15Leeb, S.N., Vogl D., Gunckel M., et al., Reduced migration offibroblasts in inflammatory bowel disease: Role of inflammatorymediators and focal adhesion kinase. Gastroenterology,2003.125(5):1341-54
    16Wang, S., Zhong Z., Wan J., et al., Oridonin induces apoptosis,inhibits migration and invasion on highly-metastatic human breastcancer cells. Am J Chin Med,2013.41(1):177-96
    17Yancy, S.L., Shelden E.A., Gilmont R.R., et al., Sodium arseniteexposure alters cell migration, focal adhesion localization anddecreases tyrosine phosphorylation of focal adhesion kinase in h9c2myoblasts. Toxicol Sci,2005.84(2):278-86
    18Giuliani, R., F. Bettoni, D. Leali, et al., Focal adhesion molecules aspotential target of lead toxicity in nrk-52e cell line. FEBS Lett,2005.579(27):6251-8
    19Nakagawa-Yagi, Y., D.K. Choi, N. Ogane, et al., Discovery of a novelcompound: Insight into mechanisms for acrylamide-inducedaxonopathy and colchicine-induced apoptotic neuronal cell death.Brain Res,2001.909(1-2):8-19
    20Thomas, W., G.D. Pullinger, A.J. Lax, et al., Escherichia coli cytotoxicnecrotizing factor and pasteurella multocida toxin induce focaladhesion kinase autophosphorylation and src association. InfectImmun,2001.69(9):5931-5
    21Sivaswamy, S., E.J. Neafsey M.A. Collins, et al., Neuroprotectivepreconditioning of rat brain cultures with ethanol: Potentialtransduction by pkc isoforms and focal adhesion kinase upstream ofincreases in effector heat shock proteins. Eur J Neurosci,2010.32(11):1800-12
    22Ma, Y., S. Semba, R.I. Khan, et al., Focal adhesion kinase regulatesintestinal epithelial barrier function via redistribution of tight junction.Biochim Biophys Acta,2013.1832(1):151-9
    23Byron Adam., Analyzing the anatomy of integrin adhesions. ScienceSignaling,2011.4(170):1-3
    24Parsons, J.T., Focal adhesion kinase: The first ten years. J Cell Sci,2003.116(Pt8):1409-16
    25Lawson, C. D.D. Schlaepfer, et al., Integrin adhesions: Who's on first?What's on second? Connections between fak and talin. Cell Adh Migr,2012.6(4):302-6
    26Wehrle-Haller, B., Structure and function of focal adhesions. CurrOpin Cell Biol,2012.24(1):116-24
    27Manso, A.M., S.M. Kang R.S. Ross, et al., Integrins, focal adhesions,and cardiac fibroblasts. J Investig Med,2009.57(8):856-60
    28Ngu, H., Y. Feng, L. Lu, et al., Effect of focal adhesion proteins onendothelial cell adhesion, motility and orientation response to cyclicstrain. Ann Biomed Eng,2010.38(1):208-22
    29Leiss, M., K. Beckmann, A. Giros, et al., The role of integrin bindingsites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol,2008.20(5):502-7
    30Michael, K.E., D.W. Dumbauld, K.L. Burns, et al., Focal adhesionkinase modulates cell adhesion strengthening via integrin activation.Mol Biol Cell,2009.20(9):2508-19
    31Gilmore, A.P. L.H. Romer, et al., Inhibition of focal adhesion kinase(FAK) signaling in focal adhesions decreases cell motility andproliferation. Mol Biol Cell,1996.7(8):1209-24
    32Broussard, J.A., D.J. Webb I. Kaverina et al., Asymmetric focaladhesion disassembly in motile cells. Curr Opin Cell Biol,2008.20(1):85-90
    33Hamadi, A., M. Bouali, M. Dontenwill, et al., Regulation of focaladhesion dynamics and disassembly by phosphorylation of fak attyrosine397. J Cell Sci,2005.118(Pt19):4415-25
    34Orr, A.W. J.E. Murphy-Ullrich, et al., Regulation of endothelial cellfunction by fak and pyk2. Front Biosci,2004.9:1254-66
    35Scales, T. M., Parsons, M. Spatial and temporal regulation of integrinsignalling during cell migration. Curr Opin Cell Biol,2011.23(5):562-8
    36Cary, L.A., J.F. Chang J.L. Guan et al, Stimulation of cell migrationby overexpression of focal adhesion kinase and its association withsrc and fyn. J Cell Sci,1996.109(Pt7):1787-94
    37Owen, J.D., P.J. Ruest, D.W. Fry, et al., Induced focal adhesion kinase(fak) expression in fak-null cells enhances cell spreading andmigration requiring both auto-and activation loop phosphorylationsites and inhibits adhesion-dependent tyrosine phosphorylation ofpyk2. Mol Cell Biol,1999.19(7):4806-18
    38Webb DJ, Donais K, Whitmore LA, et al., FAK-Srcsignalling through paxillin, ERK and MLCK regulates adhesiondisassembly. Nat Cell Biol,2004,6(2):154-161
    39Schober, M., S. Raghavan, M. Nikolova, et al., Focal adhesion kinasemodulates tension signaling to control actin and focal adhesiondynamics. J Cell Biol,2007.176(5):667-80
    40Dunty, J.M., V. Gabarra-Niecko, M.L. King, et al., Ferm domaininteraction promotes fak signaling. Mol Cell Biol,2004.24(12):5353-68
    41Lim, S.T., D. Mikolon, D.G. Stupack, et al., Ferm control of fakfunction: Implications for cancer therapy. Cell Cycle,2008.7(15):2306-14
    42Jacamo, R.O. E. Rozengurt et al, A truncated fak lacking the fermdomain displays high catalytic activity but retains responsiveness toadhesion-mediated signals. Biochem Biophys Res Commun,2005.334(4):1299-304
    43Ezratty, E. J., M. A. Partridge G. G. Gundersen et al.,Microtubule-induced focal adhesion disassembly is mediated bydynamin and focal adhesion kinase. Nat Cell Biol,2005.7(6):581-90
    44Lulo, J., S. Yuzawa J. Schlessinger et al., Crystal structures of free andligand-bound focal adhesion targeting domain of pyk2. BiochemBiophys Res Commun,2009.383(3):347-52
    45Scheswohl, D.M., J.R. Harrell, Z. Rajfur, et al., Multiple paxillinbinding sites regulate fak function. J Mol Signal,2008.3:1
    46Mofrad, M.R., J. Golji, N.A. Abdul Rahim, et al., Force-inducedunfolding of the focal adhesion targeting domain and the influence ofpaxillin binding. Mech Chem Biosyst,2004.1(4):253-65
    47Lim ST, Chen XL, Tomar A, et al., Knock-in mutation reveals anessential role for focal adhesion kinase activity in blood vesselmorphogenesis and cell motility-polarity but not cell proliferation. JBiol Chem,2010.285(2):1526-36
    48Li, S., P. Butler, Y. Wang, et al., The role of the dynamics of focaladhesion kinase in the mechanotaxis of endothelial cells. Proc NatlAcad Sci U S A,2002.99(6):3546-51
    49Bryant, P.W., Q. Zheng K.M. Pumiglia et al., Focal adhesion kinase isa phospho-regulated repressor of rac and proliferation in humanendothelial cells. Biol Open,2012.1(8):723-30
    50Valtcheva-Sarker, R., E. Stephanova, K. Hristova, et al., Halothaneaffects focal adhesion proteins in the a549cells. Mol Cell Biochem,2007.295(1-2):59-64
    51Lee, Y.P., J.T. Liao, Y.W. Cheng, et al., Inhibition of human alcoholand aldehyde dehydrogenases by acetaminophen: Assessment of theeffects on first-pass metabolism of ethanol. Alcohol,2013.47(7):559-65
    52Seitz, H.K., P. Becker, Alcohol metabolism and cancer risk. AlcoholRes Health,2007.30(1):38-41,44-7
    53Zima, T., Ethanol metabolism and pathobiochemistry of organdamage--1992. Iii. Mechanisms of damage to the gastrointestinal tractand the liver by ethanol. Sb Lek,1993.94(4):295-302
    54Haseba, T., Kameyama K., Mashimo K., et al., Dose-dependentchange in elimination kinetics of ethanol due to shift of dominantmetabolizing enzyme from adh1(classⅠ) to adh3(class Ⅲ) inmouse. Int J Hepatol,2012.2012:4081-90
    55Haorah, J., Knipe B., Leibhart J., et al., Alcohol-induced oxidativestress in brain endothelial cells causes blood-brain barrier dysfunction.J Leukoc Biol,2005.78(6):1223-32
    56Touyz, R.M., Oxidative stress and vascular damage in hypertension.Curr Hypertens Rep,2000.2(1):98-105
    57Touyz, R.M., Briones A.M., Reactive oxygen species and vascularbiology: Implications in human hypertension. Hypertens Res,2011.34(1):5-14
    58Swanson, P.A., Kumar A., Samarin S., et al., Enteric commensalbacteria potentiate epithelial restitution via reactive oxygenspecies-mediated inactivation of focal adhesion kinase phosphatases.Proc Natl Acad Sci U S A,2011.108(21):8803-8
    59Lee, S.H., Lee Y.J., Song C.H., et al., Role of fak phosphorylation inhypoxia-induced hmscs migration: Involvement of vegf as well asmapks and enos pathways. Am J Physiol Cell Physiol,2010.298(4):C847-56
    60Ben Mahdi, M.H., Andrieu V., Pasquier C., et al., Focal adhesion
    kinase regulation by oxidative stress in different cell types. IUBMB
    Life,2000.50(4-5):291-9
    1Nakagawa-Yagi, Y., D.K. Choi, N. Ogane, et al., Discovery of a novelcompound: Insight into mechanisms for acrylamide-induced axonopathyand colchicine-induced apoptotic neuronal cell death. Brain Res,2001.909(1-2):8-19
    2Thomas, W., G.D. Pullinger, A.J. Lax, et al., Escherichia coli cytotoxicnecrotizing factor and pasteurella multocida toxin induce focal adhesionkinase autophosphorylation and src association. Infect Immun,2001.69(9):5931-5
    3Parsons, J.T., Focal adhesion kinase: The first ten years. J Cell Sci,2003.116(Pt8):1409-16
    4Stoeltzing, O., F. Meric-BernstamL.M. Ellis, et al., Intracellular signalingin tumor and endothelial cells: The expected and, yet again, theunexpected. Cancer Cell,2006.10(2):89-91
    5Cain, R.J., A.J. Ridley, Phosphoinositide3-kinases in cell migration. BiolCell,2009.101(1):13-29
    6Go, Y.M., Y.C. Boo, H. Park, et al., Protein kinase b/akt activates c-junnh(2)-terminal kinase by increasing no production in response to shearstress. J Appl Physiol (1985),2001.91(4):1574-81
    7Toda, N., Ayajikil K., Okamura T. et al, Cerebral blood flow regulation bynitric oxide: Recent advances. Pharmacol Rev,2009.61(1):62-97
    8Cuzzocrea, S., E. Mazzon, R. Di Paola, et al., A role for nitricoxide-mediated peroxynitrite formation in a model of endotoxin-inducedshock. J Pharmacol Exp Ther,2006.319(1):73-81
    9Qi, H., X. Zheng, X. Qin, et al., Protein kinase g regulates the basaltension and plays a major role in nitrovasodilator-induced relaxation ofporcine coronary veins. Br J Pharmacol,2007.152(7):1060-9
    10Priviero, F.B. R.C. Webb, et al., Heme-dependent and independentsoluble guanylate cyclase activators and vasodilation. J CardiovascPharmacol,2010.56(3):229-33
    11Surks, H.K., cGMP-dependent protein kinase i and smooth musclerelaxation: A tale of two isoforms. Circ Res,2007.101(11):1078-80
    12Chai, Y., Y.F. Lin, Dual regulation of the atp-sensitive potassium channelby activation of cGMP-dependent protein kinase. Pflugers Arch,2008.456(5):897-915
    13Kitazawa, T., S. Semba, Y.H. Huh, et al., Nitric oxide-induced biphasicmechanism of vascular relaxation via dephosphorylation of cpi-17andmypt1. J Physiol,2009.587(Pt14):3587-603
    14Chai, Y., D.M. Zhang Y.F. Lin et al., Activation of cGMP-dependentprotein kinase stimulates cardiac atp-sensitive potassium channels via aros/calmodulin/camkii signaling cascade. PLoS One,2011.6(3): e18191
    15Davis, M.E., H. Cai, L. McCann, et al., Role of c-src in regulation ofendothelial nitric oxide synthase expression during exercise training. AmJ Physiol Heart Circ Physiol,2003.284(4): H1449-53
    16Drew, B.G., N.H. Fidge, G. Gallon-Beaumier, et al., High-densitylipoprotein and apolipoprotein ai increase endothelial no synthase activityby protein association and multisite phosphorylation. Proc Natl Acad SciU S A,2004.101(18):6999-7004
    17Venkov, C.D., P.R. Myers, M.A. Tanner, et al., Ethanol increasesendothelial nitric oxide production through modulation of nitric oxidesynthase expression. Thromb Haemost,1999.81(4):638-42
    18Polikandriotis, J.A., H.L. Rupnow C.M. Hart, et al., Chronic ethanolexposure stimulates endothelial cell nitric oxide production through pi-3kinase-and hsp90-dependent mechanisms. Alcohol Clin Exp Res,2005.29(11):1932-8
    19Kleinhenz, D.J., R.L. Sutliff, J.A. Polikandriotis, et al., Chronic ethanolingestion increases aortic endothelial nitric oxide synthase expression andnitric oxide production in the rat. Alcohol Clin Exp Res,2008.32(1):148-54
    20Polikandriotis, J.A., H.L. Rupnow, L.A. Brown, et al., Chronic ethanolingestion increases nitric oxide production in the lung. Alcohol,2007.41(5):309-16
    21Acevedo, C.G., G. Carrasco, M. Burotto, et al., Ethanol inhibitsL-arginine uptake and enhances no formation in human placenta. Life Sci,2001.68(26):2893-903
    22Hendrickson, R.J., P.A. Cahill, J.V. Sitzmann, et al., Ethanol enhancesbasal and flow-stimulated nitric oxide synthase activity in vitro byactivating an inhibitory guanine nucleotide binding protein. J PharmacolExp Ther,1999.289(3):1293-300
    23Tirapelli, C.R., A.F. Leone, A. Yogi, et al., Ethanol consumption increasesblood pressure and alters the responsiveness of the mesenteric vasculaturein rats. J Pharm Pharmacol,2008.60(3):331-41
    24Blaise, G.A., D. Gauvin, M. Gangal, et al., Nitric oxide, cell signaling andcell death. Toxicology,2005.208(2):177-92
    25Aikio, O., K. Vuopala, M.L. Pokela, et al., Nitrotyrosine and no synthasesin infants with respiratory failure: Influence of inhaled no. PediatrPulmonol,2003.35(1):8-16
    26Peluffo, G., R. Radi, Biochemistry of protein tyrosine nitration incardiovascular pathology. Cardiovasc Res,2007.75(2):291-302
    27Schopfer, F.J., P.R. Baker B.A. Freeman, et al., No-dependent proteinnitration: A cell signaling event or an oxidative inflammatory response?Trends Biochem Sci,2003.28(12):646-54
    28Kuhn, D.M., S.A. Sakowski, M. Sadidi, et al., Nitrotyrosine as a markerfor peroxynitrite-induced neurotoxicity: The beginning or the end of theend of dopamine neurons? J Neurochem,2004.89(3):529-36
    29Ahsan, H.,3-nitrotyrosine: A biomarker of nitrogen free radical speciesmodified proteins in systemic autoimmunogenic conditions. HumImmunol,2013.74(10):1392-9
    30Murata, M., S. Kawanishi, Oxidative DNA damage induced bynitrotyrosine, a biomarker of inflammation. Biochem Biophys ResCommun,2004.316(1):123-8
    31Sharma, A., S. Jain, R. Gupta, et al., Ultrastructural alterations inendothelial mitochondria are associated with enhanced nitrotyrosineaccumulation and progressive reduction of vegf expression in sequentialprotocol renal allograft biopsies with calcineurin inhibitor toxicity.Transpl Int,2010.23(4):407-16
    1Geiger, B., J.P. Spatz A.D. et al., Bershadsky, Environmental sensingthrough focal adhesions. Nat Rev Mol Cell Biol,2009.10(1):21-33
    2Berrier, A.L. et alK.M. Yamada, Cell-matrix adhesion. J Cell Physiol,2007.213(3):565-73
    3Schwartz, M.A. D.W. DeSimone, et al., Cell adhesion receptors inmechanotransduction. Curr Opin Cell Biol,2008.20(5):551-6
    4Ngu, H., Y. Feng, L. Lu, et al., Effect of focal adhesion proteins onendothelial cell adhesion, motility and orientation response to cyclicstrain. Ann Biomed Eng,2010.38(1):208-22
    5Kuo, J.C., Mechanotransduction at focal adhesions: Integratingcytoskeletal mechanics in migrating cells. J Cell Mol Med,2013.17(6):704-12
    6Wehrle-Haller, B., Structure and function of focal adhesions. Curr OpinCell Biol,2012.24(1):116-24
    7Manso, A.M., S.M. Kang R.S. Ross, et al., Integrins, focal adhesions, andcardiac fibroblasts. J Investig Med,2009.57(8):856-60
    8Plow, E.F., T.A. Haas, L. Zhang, et al., Ligand binding to integrins. J BiolChem,2000.275(29):21785-8
    9Chao, J.T. M.J. Davis, et al., The roles of integrins in mediating theeffects of mechanical force and growth factors on blood vessels inhypertension. Curr Hypertens Rep,2011.13(6):421-9
    10Geiger, B., A. Bershadsky, R. Pankov, et al., Transmembrane crosstalkbetween the extracellular matrix--cytoskeleton crosstalk. Nat Rev MolCell Biol,2001.2(11):793-805
    11Zamir, E. B. Geiger, et al., Molecular complexity and dynamics ofcell-matrix adhesions. J Cell Sci,2001.114(Pt20):3583-90
    12Jacamo, R.O. E. Rozengurt, et al., A truncated fak lacking the fermdomain displays high catalytic activity but retains responsiveness toadhesion-mediated signals. Biochem Biophys Res Commun,2005.334(4):1299-304
    13Dunty, J.M., V. Gabarra-Niecko, M.L. King, et al., Ferm domaininteraction promotes fak signaling. Mol Cell Biol,2004.24(12):5353-68
    14Lim, S.T., D. Mikolon, D.G. Stupack, et al., Ferm control of fak function:Implications for cancer therapy. Cell Cycle,2008.7(15):2306-14
    15Parsons, J.T., Focal adhesion kinase: The first ten years. J Cell Sci,2003.116(Pt8):1409-16
    16Ezratty, E.J., M.A. Partridge G.G. Gundersen, et al., Microtubule-inducedfocal adhesion disassembly is mediated by dynamin and focal adhesionkinase. Nat Cell Biol,2005.7(6):581-90
    17Lulo, J., S. Yuzawa J. Schlessinger, et al., Crystal structures of free andligand-bound focal adhesion targeting domain of pyk2. Biochem BiophysRes Commun,2009.383(3):347-52
    18Scheswohl, D.M., J.R. Harrell, Z. Rajfur, et al., Multiple paxillin bindingsites regulate fak function. J Mol Signal,2008.3:1
    19Qi, J.H. L. Claesson-Welsh, et al., VEGF-induced activation ofphosphoinositide3-kinase is dependent on focal adhesion kinase. ExpCell Res,2001.263(1):173-82
    20Schlaepfer, D.D., M.A. Broome T. Hunter, et al., Fibronectin-stimulatedsignaling from a focal adhesion kinase-c-src complex: Involvement of thegrb2, p130cas, and nck adaptor proteins. Mol Cell Biol,1997.17(3):1702-13
    21Cary, L.A. J.L. Guan, et al., Focal adhesion kinase in integrin-mediatedsignaling. Front Biosci,1999.4: D102-13
    22Schaller, M.D., Biochemical signals and biological responses elicited bythe focal adhesion kinase. Biochim Biophys Acta,2001.1540(1):1-21
    23Hildebrand, J.D., J.M. Taylor J.T. Parsons, et al., An sh3domain-containing gtpase-activating protein for rho and cdc42associateswith focal adhesion kinase. Mol Cell Biol,1996.16(6):3169-78
    24Subauste, M.C., O. Pertz, E.D. Adamson, et al., Vinculin modulation ofpaxillin-fak interactions regulates erk to control survival and motility. JCell Biol,2004.165(3):371-81
    25Hunger-Glaser, I., E.P. Salazar, J. Sinnett-Smith, et al., Bombesin,lysophosphatidic acid, and epidermal growth factor rapidly stimulatefocal adhesion kinase phosphorylation at ser-910: Requirement for erkactivation. J Biol Chem,2003.278(25):22631-43
    26Liu, Z.X., C.F. Yu, C. Nickel, et al., Hepatocyte growth factor induceserk-dependent paxillin phosphorylation and regulates paxillin-focaladhesion kinase association. J Biol Chem,2002.277(12):10452-8
    27Hahn, C., C. Wang, A.W. Orr, et al., Jnk2promotes endothelial cellalignment under flow. PLoS One,2011.6(8): e24338
    28Lee, Y.C., A.Y. Chang, M.H. Lin-Feng, et al., Paxillin phosphorylation byjnk and p38is required for nfat activation. Eur J Immunol,2012.42(8):2165-75
    29Yoshizuka, N., R.M. Chen, Z. Xu, et al., A novel function ofp38-regulated/activated kinase in endothelial cell migration and tumorangiogenesis. Mol Cell Biol,2012.32(3):606-18
    30Lim, S.T., X.L. Chen, Y. Lim, et al., Nuclear fak promotes cellproliferation and survival through ferm-enhanced p53degradation. MolCell,2008.29(1):9-22
    31Golubovskaya, V.M., R. Finch W.G. Cance, et al., Direct interaction of then-terminal domain of focal adhesion kinase with the n-terminaltransactivation domain of p53. J Biol Chem,2005.280(26):25008-21
    32Golubovskaya, V.M., R. Finch, M. Zheng, et al., The7-amino-acid site inthe proline-rich region of the n-terminal domain of p53is involved in theinteraction with fak and is critical for p53functioning. Biochem J,2008.411(1):151-60
    33Mei, L. W.C. Xiong, et al., Fak interaction with mbd2: A link from celladhesion to nuclear chromatin remodeling? Cell Adh Migr,2010.4(1):77-80
    34Kweh, F., M. Zheng, E. Kurenova, et al., Neurofibromin physicallyinteracts with the n-terminal domain of focal adhesion kinase. MolCarcinog,2009.48(11):1005-17
    35Mamali, I., P. Kotsantis, M. Lampropoulou, et al., Elk-1associates withfak, regulates the expression of fak and map kinases as well as apoptosisin hk-2cells. J Cell Physiol,2008.216(1):198-206
    36Goldmann, W.H., Mechanotransduction and focal adhesions. Cell Biol Int,2012.36(7):649-52
    37Shikata, Y., A. Rios, K. Kawkitinarong, et al., Differential effects of shearstress and cyclic stretch on focal adhesion remodeling, site-specific fakphosphorylation, and small gtpases in human lung endothelial cells. ExpCell Res,2005.304(1):40-9
    38Yano, Y., J. Geibel B.E. Sumpio, et al., Tyrosine phosphorylation ofpp125fak and paxillin in aortic endothelial cells induced by mechanicalstrain. Am J Physiol,1996.271(2Pt1): C635-49
    39Fonseca, P.M., R.Y. Inoue, C.B. Kobarg, et al., Targeting to c-terminalmyosin heavy chain may explain mechanotransduction involving focaladhesion kinase in cardiac myocytes. Circ Res,2005.96(1):73-81
    40Zhang, S.J., G.A. Truskey W.E. Kraus, et al., Effect of cyclic stretch onbeta1d-integrin expression and activation of fak and rhoa. Am J PhysiolCell Physiol,2007.292(6): C2057-69
    41Mofrad, M.R., J. Golji, N.A. Abdul Rahim, et al., Force-inducedunfolding of the focal adhesion targeting domain and the influence ofpaxillin binding. Mech Chem Biosyst,2004.1(4):253-65
    42Wang, H.B., M. Dembo, S.K. Hanks, et al., Focal adhesion kinase isinvolved in mechanosensing during fibroblast migration. Proc Natl AcadSci U S A,2001.98(20):11295-300
    43Li, S., P. Butler, Y. Wang, et al., The role of the dynamics of focaladhesion kinase in the mechanotaxis of endothelial cells. Proc Natl AcadSci U S A,2002.99(6):3546-51
    44Albinsson, S. P. Hellstrand, Integration of signal pathways forstretch-dependent growth and differentiation in vascular smooth muscle.Am J Physiol Cell Physiol,2007.293(2): C772-82
    45Serrels, B., A. Serrels, V.G. Brunton, et al., Focal adhesion kinase controlsactin assembly via a ferm-mediated interaction with the arp2/3complex.Nat Cell Biol,2007.9(9):1046-56
    46Shao, Y., J.M. Mann, W. Chen, et al., Global architecture of the f-actincytoskeleton regulates cell shape-dependent endothelialmechanotransduction. Integr Biol (Camb),2014.6(3):300-11
    47Ting, L.H., J.R. Jahn, J.I. Jung, et al., Flow mechanotransductionregulates traction forces, intercellular forces, and adherens junctions. AmJ Physiol Heart Circ Physiol,2012.302(11): H2220-9
    48Sokabe, M., K. Naruse, S. Sai, et al., Mechanotransduction andintracellular signaling mechanisms of stretch-induced remodeling inendothelial cells. Heart Vessels,1997. Suppl12:191-3
    49Sen, U., K.S. Moshal, M. Singh, et al., Homocysteine-inducedbiochemical stress predisposes to cytoskeletal remodeling in stretchedendothelial cells. Mol Cell Biochem,2007.302(1-2):133-43
    50Ali, M.H., P.T. Mungai P.T. Schumacker, et al., Stretch-inducedphosphorylation of focal adhesion kinase in endothelial cells: Role ofmitochondrial oxidants. Am J Physiol Lung Cell Mol Physiol,2006.291(1): L38-45
    51Hsu, H.J., C.F. Lee, A. Locke, et al., Stretch-induced stress fiberremodeling and the activations of jnk and erk depend on mechanicalstrain rate, but not fak. PLoS One,2010.5(8): e12470
    52Ahn, S. H. Park, Xiap is essential for shear stress-enhanced tyr-576phosphorylation of fak. Biochem Biophys Res Commun,2010.399(2):256-61
    53Califano, J.P. C.A. Reinhart-King, The effects of substrate elasticity onendothelial cell network formation and traction force generation. ConfProc IEEE Eng Med Biol Soc,2009.2009:3343-5
    54Gov, N.S., Traction forces during collective cell motion. HFSP J,2009.3(4):223-7
    55Kniazeva, E. A. J. Putnam, Endothelial cell traction and ecm densityinfluence both capillary morphogenesis and maintenance in3-d. Am JPhysiol Cell Physiol,2009.297(1): C179-87
    56Li, B. J.H. Wang, Fibroblasts and myofibroblasts in wound healing: Forcegeneration and measurement. J Tissue Viability,2011.20(4):108-20
    57Sieminski, A.L., R.P. Hebbel K.J. Gooch, et al., The relative magnitudesof endothelial force generation and matrix stiffness modulate capillarymorphogenesis in vitro. Exp Cell Res,2004.297(2):574-84
    58Stevenson, M.D., A.L. Sieminski, C.M. McLeod, et al., Pericellularconditions regulate extent of cell-mediated compaction of collagen gels.Biophys J,2010.99(1):19-28
    59Rape, A., W.H. Guo Y.L. Wang, et al., Microtubule depolymerizationinduces traction force increase through two distinct pathways. J Cell Sci,2011.124(Pt24):4233-40
    60Koshida, R., P. Rocic, S. Saito, et al., Role of focal adhesion kinase inflow-induced dilation of coronary arterioles. Arterioscler Thromb VascBiol,2005.25(12):2548-53
    61Choi, C.H., B.A. Webb, M.S. Chimenti, et al., Ph sensing by fak-his58regulates focal adhesion remodeling. J Cell Biol,2013.202(6):849-59
    62Ilic, D., Y. Furuta, S. Kanazawa, et al., Reduced cell motility andenhanced focal adhesion contact formation in cells from fak-deficientmice. Nature,1995.377(6549):539-44
    63Ilic, D., B. Kovacic, S. McDonagh, et al., Focal adhesion kinase isrequired for blood vessel morphogenesis. Circ Res,2003.92(3):300-7
    64Braren, R., H. Hu, Y.H. Kim, et al., Endothelial fak is essential forvascular network stability, cell survival, and lamellipodial formation. JCell Biol,2006.172(1):151-62
    65Shen, T.L., A.Y. Park, A. Alcaraz, et al., Conditional knockout of focaladhesion kinase in endothelial cells reveals its role in angiogenesis andvascular development in late embryogenesis. J Cell Biol,2005.169(6):941-52
    66Bellas, R.E., E.O. Harrington, K.L. Sheahan, et al., Fak bluntsadenosine-homocysteine-induced endothelial cell apoptosis: Requirementfor pi3-kinase. Am J Physiol Lung Cell Mol Physiol,2002.282(5):L1135-42
    67Frisch, S.M. H. Francis, Disruption of epithelial cell-matrix interactionsinduces apoptosis. J Cell Biol,1994.124(4):619-26
    68Zouq, N.K., J.A. Keeble, J. Lindsay, et al., Fak engages multiplepathways to maintain survival of fibroblasts and epithelia: Differentialroles for paxillin and p130cas. J Cell Sci,2009.122(Pt3):357-67
    69Khwaja, A., P. Rodriguez-Viciana, S. Wennstrom, et al., Matrix adhesionand ras transformation both activate a phosphoinositide3-oh kinase andprotein kinase b/akt cellular survival pathway. EMBO J,1997.16(10):2783-93
    70Wu, C.C., Y.S. Li, J.H. Haga, et al., Directional shear flow and rhoactivation prevent the endothelial cell apoptosis induced bymicropatterned anisotropic geometry. Proc Natl Acad Sci U S A,2007.104(4):1254-9
    71Boosani, C.S., N. Nalabothula, V. Munugalavadla, et al., Fak andp38-map kinase-dependent activation of apoptosis and caspase-3inretinal endothelial cells by alpha1(iv)nc1. Invest Ophthalmol Vis Sci,2009.50(10):4567-75
    72Kurenova, E., L.H. Xu, X. Yang, et al., Focal adhesion kinase suppressesapoptosis by binding to the death domain of receptor-interacting protein.Mol Cell Biol,2004.24(10):4361-71
    73Lim, S.T., Nuclear fak: A new mode of gene regulation from cellularadhesions. Mol Cells,2013.36(1):1-6
    74Arnold, K.M., Z.M. Goeckeler R.B. Wysolmerski, et al., Loss of focaladhesion kinase enhances endothelial barrier function and increases focaladhesions. Microcirculation,2013.20(7):637-49
    75Bryant, P.W., Q. Zheng K.M. Pumiglia, et al., Focal adhesion kinase is aphospho-regulated repressor of rac and proliferation in human endothelialcells. Biol Open,2012.1(8):723-30
    76Cheng, M., X. Guan, H. Li, et al., Shear stress regulates late epcdifferentiation via mechanosensitive molecule-mediated cytoskeletalrearrangement. PLoS One,2013.8(7): e67675
    77Pu, D.R. L. Liu, Remnant like particles may induce atherosclerosis viaaccelerating endothelial progenitor cells senescence. Med Hypotheses,2007.69(2):293-6
    78Broussard, J.A., D.J. Webb I. Kaverina, et al., Asymmetric focal adhesiondisassembly in motile cells. Curr Opin Cell Biol,2008.20(1):85-90
    79Easley, C.A.t., C.M. Brown, A.F. Horwitz, et al., Camk-ii promotes focaladhesion turnover and cell motility by inducing tyrosinedephosphorylation of fak and paxillin. Cell Motil Cytoskeleton,2008.65(8):662-74
    80Goetz, J.G., B. Joshi, P. Lajoie, et al., Concerted regulation of focaladhesion dynamics by galectin-3and tyrosine-phosphorylated caveolin-1.J Cell Biol,2008.180(6):1261-75
    81Owen, K.A., F.J. Pixley, K.S. Thomas, et al., Regulation of lamellipodialpersistence, adhesion turnover, and motility in macrophages by focaladhesion kinase. J Cell Biol,2007.179(6):1275-87
    82Xu, Y., N. Benlimame, J. Su, et al., Regulation of focal adhesion turnoverby erbb signalling in invasive breast cancer cells. Br J Cancer,2009.100(4):633-43
    83Gilmore, A.P. L.H. Romer, et al., Inhibition of focal adhesion kinase (fak)signaling in focal adhesions decreases cell motility and proliferation. MolBiol Cell,1996.7(8):1209-24
    84Cary, L.A., J.F. Chang J.L. Guan, et al., Stimulation of cell migration byoverexpression of focal adhesion kinase and its association with src andfyn. J Cell Sci,1996.109(Pt7):1787-94
    85Owen, J.D., P.J. Ruest, D.W. Fry, et al., Induced focal adhesion kinase(fak) expression in fak-null cells enhances cell spreading and migrationrequiring both auto-and activation loop phosphorylation sites and inhibitsadhesion-dependent tyrosine phosphorylation of pyk2. Mol Cell Biol,1999.19(7):4806-18
    86Chan, K.T., C.L. Cortesio et al., A. Huttenlocher, Fak alters invadopodiaand focal adhesion composition and dynamics to regulate breast cancerinvasion. J Cell Biol,2009.185(2):357-70
    87Hamadi, A., M. Bouali, M. Dontenwill, et al., Regulation of focaladhesion dynamics and disassembly by phosphorylation of fak at tyrosine397. J Cell Sci,2005.118(Pt19):4415-25
    88Orr, A.W., J.E. Murphy-Ullrich, Regulation of endothelial cell functionby fak and pyk2. Front Biosci,2004.9:1254-66
    89Schober, M., S. Raghavan, M. Nikolova, et al., Focal adhesion kinasemodulates tension signaling to control actin and focal adhesion dynamics.J Cell Biol,2007.176(5):667-80
    90Park, A.Y., T.L. Shen, S. Chien, et al., Role of focal adhesion kinaseser-732phosphorylation in centrosome function during mitosis. J BiolChem,2009.284(14):9418-25
    91Corsi, J.M., Houbron C., Billuart P., et al.,Autophosphorylation-independent and-dependent functions of focaladhesion kinase during development. J Biol Chem,2009.284(50):34769-76
    92Eliceiri, B.P., X.S. Puente, J.D. Hood, et al., Src-mediated coupling offocal adhesion kinase to integrin alpha(v)beta5in vascular endothelialgrowth factor signaling. J Cell Biol,2002.157(1):149-60
    93Kim, I., H.G. Kim, S.O. Moon, et al., Angiopoietin-1induces endothelialcell sprouting through the activation of focal adhesion kinase and plasminsecretion. Circ Res,2000.86(9):952-9
    94Zhang, Y., M. Chen, S. Venugopal, et al., Isthmin exerts pro-survival anddeath-promoting effect on endothelial cells through alphavbeta5integrindepending on its physical state. Cell Death Dis,2011.2: e153
    95Alghisi, G.C., L. Ponsonnet C. Ruegg, et al., The integrin antagonistcilengitide activates alphavbeta3, disrupts ve-cadherin localization at celljunctions and enhances permeability in endothelial cells. PLoS One,2009.4(2): e4449
    96Lamalice, L., F. Le Boeuf J. Huot, et al., Endothelial cell migrationduring angiogenesis. Circ Res,2007.100(6):782-94
    97Udan, R.S., T.J. Vadakkan M.E. Dickinson, et al., Dynamic responses ofendothelial cells to changes in blood flow during vascular remodeling ofthe mouse yolk sac. Development,2013.140(19):4041-50
    98Enciso, J.M., C.M. Konecny, H.E. Karpen, et al., Endothelial cellmigration during murine yolk sac vascular remodeling occurs by meansof a rac1and fak activation pathway in vivo. Dev Dyn,2010.239(10):2570-83
    99Kostourou, V., T. Lechertier, L.E. Reynolds, et al., Fak-heterozygousmice display enhanced tumour angiogenesis. Nat Commun,2013.4:2020
    100Mitra, S.K., D. Mikolon, J.E. Molina, et al., Intrinsic fak activity andy925phosphorylation facilitate an angiogenic switch in tumors.Oncogene,2006.25(44):5969-84
    101Tavora, B., S. Batista, L.E. Reynolds, et al., Endothelial fak is requiredfor tumour angiogenesis. EMBO Mol Med,2010.2(12):516-28
    102Infusino, G.A. J.R. Jacobson, et al., Endothelial fak as a therapeutic targetin disease. Microvasc Res,2012.83(1):89-96
    103Chung, B.H., Y.L. Cho, J.D. Kim, et al., Promotion of direct angiogenesisin vitro and in vivo by puerariae flos extract via activation of mek/erk-,pi3k/akt/enos-, and src/fak-dependent pathways. Phytother Res,2010.24(6):934-40
    104Wang, H. Y. Su, Collagen iv contributes to nitric oxide-inducedangiogenesis of lung endothelial cells. Am J Physiol Cell Physiol,2011.300(5): C979-88
    105Stewart, J.A., Jr., T.A. West P.A. Lucchesi, et al., Nitric oxide-inducedcollagen iv expression and angiogenesis: Fak or fiction? Focus on"collagen iv contributes to nitric oxide-induced angiogenesis of lungendothelial cells". Am J Physiol Cell Physiol,2011.300(5): C968-9
    106Deanfield, J., A. Donald, C. Ferri, et al., Endothelial function anddysfunction. Part i: Methodological issues for assessment in the differentvascular beds: A statement by the working group on endothelin andendothelial factors of the european society of hypertension. J Hypertens,2005.23(1):7-17
    107Zhao, X., X. Peng, S. Sun, et al., Role of kinase-independent and-dependent functions of fak in endothelial cell survival and barrierfunction during embryonic development. J Cell Biol,2010.189(6):955-65
    108Quadri, S.K., Cross talk between focal adhesion kinase and cadherins:Role in regulating endothelial barrier function. Microvasc Res,2012.83(1):3-11
    109Sun, X., Y. Shikata, L. Wang, et al., Enhanced interaction between focaladhesion and adherens junction proteins: Involvement in sphingosine1-phosphate-induced endothelial barrier enhancement. Microvasc Res,2009.77(3):304-13
    110Knezevic, N., M. Tauseef, T. Thennes, et al., The g protein betagammasubunit mediates reannealing of adherens junctions to reverse endothelialpermeability increase by thrombin. J Exp Med,2009.206(12):2761-77
    111Garcia, J.G., K.L. Schaphorst, A.D. Verin, et al., Diperoxovanadate altersendothelial cell focal contacts and barrier function: Role of tyrosinephosphorylation. J Appl Physiol (1985),2000.89(6):2333-43
    112Hordijk, P.L., E. Anthony, F.P. Mul, et al., Vascular-endothelial-cadherinmodulates endothelial monolayer permeability. J Cell Sci,1999.112(Pt12):1915-23
    113Mehta, D., C. Tiruppathi, R. Sandoval, et al., Modulatory role of focaladhesion kinase in regulating human pulmonary arterial endothelialbarrier function. J Physiol,2002.539(Pt3):779-89
    114Quadri, S.K., J. Bhattacharya, Resealing of endothelial junctions by focaladhesion kinase. Am J Physiol Lung Cell Mol Physiol,2007.292(1):L334-42
    115Schmidt, T.T., M. Tauseef, L. Yue, et al., Conditional deletion of fak inmice endothelium disrupts lung vascular barrier function due todestabilization of rhoa and rac1activities. Am J Physiol Lung Cell MolPhysiol,2013.305(4): L291-300
    116Chen, X.L., J.O. Nam, C. Jean, et al., Vegf-induced vascular permeabilityis mediated by fak. Dev Cell,2012.22(1):146-57
    117Quadri, S.K., M. Bhattacharjee, K. Parthasarathi, et al., Endothelialbarrier strengthening by activation of focal adhesion kinase. J Biol Chem,2003.278(15):13342-9
    118Wu, M.H., M. Guo, S.Y. Yuan, et al., Focal adhesion kinase mediatesporcine venular hyperpermeability elicited by vascular endothelial growthfactor. J Physiol,2003.552(Pt3):691-9
    119Ren, X.D., W.B. Kiosses, D.J. Sieg, et al., Focal adhesion kinasesuppresses rho activity to promote focal adhesion turnover. J Cell Sci,2000.113(Pt20):3673-8
    120Chen, B.H., J.T. Tzen, A.R. Bresnick, et al., Roles of rho-associatedkinase and myosin light chain kinase in morphological and migratorydefects of focal adhesion kinase-null cells. J Biol Chem,2002.277(37):33857-63
    121Dumbauld, D.W., K.E. Michael, S.K. Hanks, et al., Focal adhesionkinase-dependent regulation of adhesive forces involves vinculinrecruitment to focal adhesions. Biol Cell,2010.102(4):203-13
    122Mierke, C.T., P. Kollmannsberger, D.P. Zitterbart, et al.,Mechano-coupling and regulation of contractility by the vinculin taildomain. Biophys J,2008.94(2):661-70
    123Thennes, T., D. Mehta, Heterotrimeric g proteins, focal adhesion kinase,and endothelial barrier function. Microvasc Res,2012.83(1):31-44
    124Belvitch, P., S.M. Dudek, Role of fak in s1p-regulated endothelialpermeability. Microvasc Res,2012.83(1):22-30
    125Zhao, J., P.A. Singleton, M.E. Brown, et al., Phosphotyrosine proteindynamics in cell membrane rafts of sphingosine-1-phosphate-stimulatedhuman endothelium: Role in barrier enhancement. Cell Signal,2009.21(12):1945-60
    126Shikata, Y., K.G. Birukov, A.A. Birukova, et al., Involvement ofsite-specific fak phosphorylation in sphingosine-1phosphate-andthrombin-induced focal adhesion remodeling: Role of src and git. FASEBJ,2003.17(15):2240-9
    127Birukova, A.A., I. Cokic, N. Moldobaeva, et al., Paxillin is involved inthe differential regulation of endothelial barrier by hgf and vegf. Am JRespir Cell Mol Biol,2009.40(1):99-107
    128Birukova, A.A., S. Chatchavalvanich, O. Oskolkova, et al., Signalingpathways involved in oxpapc-induced pulmonary endothelial barrierprotection. Microvasc Res,2007.73(3):173-81
    129Lee, Y.H., U.S. Kayyali, A.M. Sousa, et al., Transforming growthfactor-beta1effects on endothelial monolayer permeability involve focaladhesion kinase/src. Am J Respir Cell Mol Biol,2007.37(4):485-93
    130Nieuw Amerongen, G.P., K. Natarajan, G. Yin, et al., Git1mediatesthrombin signaling in endothelial cells: Role in turnover of rhoa-typefocal adhesions. Circ Res,2004.94(8):1041-9
    131Rabiet, M.J., J.L. Plantier, Y. Rival, et al., Thrombin-induced increase inendothelial permeability is associated with changes in cell-to-celljunction organization. Arterioscler Thromb Vasc Biol,1996.16(3):488-96
    132Avraham, H.K., T.H. Lee, Y. Koh, et al., Vascular endothelial growthfactor regulates focal adhesion assembly in human brain microvascularendothelial cells through activation of the focal adhesion kinase andrelated adhesion focal tyrosine kinase. J Biol Chem,2003.278(38):36661-8
    133Lim, S.T., N.L. Miller, X.L. Chen, et al., Nuclear-localized focal adhesionkinase regulates inflammatory vcam-1expression. J Cell Biol,2012.197(7):907-19
    134Petzold, T., A.W. Orr, C. Hahn, et al., Focal adhesion kinase modulatesactivation of nf-kappab by flow in endothelial cells. Am J Physiol CellPhysiol,2009.297(4): C814-22
    135Luu, N.T., K.E. Glen, S. Egginton, et al., Integrin-substrate interactionsunderlying shear-induced inhibition of the inflammatory response ofendothelial cells. Thromb Haemost,2013.109(2):298-308
    136Shaik, S.S., T.D. Soltau, G. Chaturvedi, et al., Low intensity shear stressincreases endothelial elr+cxc chemokine production via a focal adhesionkinase-p38{beta} mapk-nf-{kappa}b pathway. J Biol Chem,2009.284(9):5945-55
    137Arumuganathan, T., S.K. Das, Discrete polyoxovanadate cluster into anorganic free metal-oxide-based material: Syntheses, crystal structures,and magnetic properties of a new series of lanthanide linked-povcompounds [{Ln(H2O)6}2As8V14O42(SO3)] x8H2O (Ln=La3+,Sm3+, and Ce3+). Inorg Chem,2009.48(2):496-507
    138Iwaki, K., K. Ohashi, M. Ikeda, et al., Decrease in the amount of focaladhesion kinase (p125(fak)) in interleukin-1beta-stimulated humanumbilical vein endothelial cells by binding of human monocytic cell lines.J Biol Chem,1997.272(33):20665-70
    139Parsons, S.A., R. Sharma, D.L. Roccamatisi, et al., Endothelial paxillinand focal adhesion kinase (fak) play a critical role in neutrophiltransmigration. Eur J Immunol,2012.42(2):436-46
    140Cuvelier, S.L., S. Paul, N. Shariat, et al., Eosinophil adhesion under flowconditions activates mechanosensitive signaling pathways in humanendothelial cells. J Exp Med,2005.202(6):865-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700