白藜芦醇抑制AGEs诱导泡沫细胞形成及血管平滑肌细胞钙化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     目前糖尿病(DM)发病率呈明显的逐年增高趋势,DM患者发生动脉粥样硬化(AS)及危及生命的心血管并发症较正常人显著增加。另外,糖尿病的大血管钙化包括主动脉、肾动脉、周围血管等的钙化是导致肾动脉狭窄和周围血管闭塞性疾病甚至致残的重要原因。因此,深入研究糖尿病性血管病变的发生机制,寻找重要靶点和开发新的药物具有重要意义。
     持久的高血糖状态可导致DM患者体内蓄积过多的糖基化终产物(advanced glycation end products, AGEs),后者与细胞表面的AGEs受体(Receptor for AGEs, RAGE)相互作用而发挥一系列的血管病理作用,加速糖尿病血管并发症的发生发展。胆固醇酯的沉积和巨噬细胞源性的泡沫细胞形成是AS发生的早期事件和关键环节,而AGEs-RAGE对哪些脂质受体或脂质转运蛋白有调节作用,研究结果仍不一致。同时,临床资料提示,老龄、糖尿病、高血压和钙超载是动脉钙化的主要危险因素。近来发现,AGEs可促进血管平滑肌细胞(vascular smooth muscle cell, VSMC)的钙化,但其具体机制仍未完全明确。寻找阻断AGEs血管损害作用的药物并探索其机制具有重要的临床意义。
     白藜芦醇(resveratro1, RESV)是一种非黄酮类多酚化合物,具有保护心血管、抗肿瘤、抗炎症、抗氧化和模拟雌激素等广泛作用,对改善胰岛素敏感性、防治糖尿病和改善内皮损伤、预防心血管重构等具有显著效果。然而,白藜芦醇对糖尿病动脉粥样斑块中巨噬细胞源性泡沫细胞的形成有何影响尚不明确,同时白藜芦醇对糖尿病条件下血管平滑肌细胞的钙化有何影响尚未见报道。
     由于PPARγ在巨噬细胞脂质代谢过程中具有调节作用,而白藜芦醇可激活PPARγ,因此我们推测,白藜芦醇可能通过激活PPARγ抑制AGEs诱导的泡沫细胞形成。此外,由于VSMC钙化和骨细胞分化过程相似,而白藜芦醇可以影响骨细胞分化,我们推测白藜芦醇对AGEs作用下的VSMC钙化也有一定程度的作用。
     材料方法
     为了证实该推测,本研究将分为体外细胞实验和在体动物实验两部分。
     第一部分以人单核细胞系THP-1源性的巨噬细胞为模型,通过检测细胞脂质摄取和转运相关蛋白的表达以及细胞内脂质含量,研究AGEs联合或不联合白藜芦醇对氧化型LDL(ox-LDL)诱导的泡沫细胞形成的影响。第二部分以原代培养的小鼠VSMC为模型,给予适当的条件诱导其向成骨细胞分化,检测相关信号通路和成骨信号分子的表达以及细胞钙含量,观察AGEs联合或不联合白藜芦醇对VSMC钙化的影响。第三部分以apoE基因敲除型小鼠为模型,给予STZ和高脂饮食联合诱导糖尿病动脉粥样硬化模型,给予含白藜芦醇的饲料进行干预,观察其对动物主动脉粥样斑块和钙化的影响。
     试验步骤如下:
     1.在经PMA诱导的THP-1源性巨噬细胞中加入不同浓度AGEs,以及在固定浓度AGEs作用下加入不同浓度的白藜芦醇,通过免疫印迹检测RAGE的表达变化;
     2.通过免疫印迹检测白藜芦醇作用下PPARγ等分子的表达,以及加入PPARγ拮抗剂GW9662后白藜芦醇对RAGE表达的影响;
     3.在AGEs和白藜芦醇作用下的巨噬细胞细胞中,检测加入或不加GW9662时CD36、SR-A、ABCA1及ABCG1等相关脂质转运基因的表达情况;
     4.通过细胞内总胆固醇定量和油红O染色,检测AGEs、AGEs+白藜芦醇以及AGEs+白藜芦醇+GW9662分别对细胞内胆固醇含量和脂滴形成的影响;
     5.通过定量PCR检测不同浓度白藜芦醇对VSMC钙化过程中cbfa1、sm22a和ALP的表达以及细胞钙含量的影响;
     6.通过免疫印迹明确白藜芦醇对VSMC中RAGE表达及ERK1/2磷酸化的影响;
     7.利用定量PCR和免疫印迹检测白藜芦醇、RAGE中和抗体、ERK1/2阻断剂分别对VSMC中cbfa1和sm22a表达的影响;
     8.建立糖尿病动脉粥样硬化小鼠模型,予以白藜芦醇干预20周后测定小鼠体重、血糖、血脂等指标;
     9.免疫印迹检测各组小鼠主动脉中RAGE、cbfa1、sm22a的表达情况,验证白藜芦醇对糖尿病小鼠粥样斑块形成和动脉钙化的影响;
     10.通过动脉冰冻切片油红O和茜素红染色,观察各组小鼠主动脉粥样硬化和钙化情况。
     结果
     1. AGEs显著上调巨噬细胞RAGE的表达,而白藜芦醇可以抑制AGEs诱导的RAGE表达上调;PPARγ拮抗剂GW9662可以减弱白藜芦醇对RAGE的抑制作用;
     2. AGEs可以上调SR-A的表达,降低ABCA1和ABCG1的表达,而白藜芦醇能够抑制AGEs引起的基因表达变化,但白藜芦醇的作用可被GW9662阻断;
     3. AGEs显著升高巨噬细胞中总胆固醇含量,促进脂滴形成;白藜芦醇能显著抑制AGEs引起的脂质蓄积,GW9662可以阻断白藜芦醇的效应;
     4.在VSMC中,白藜芦醇显著抑制AGEs诱导的cbfa1表达上调、细胞内ALP和钙含量增加,同时抑制AGEs引起的sm22a的表达降低;
     5. AGEs上调VSMC中RAGE的表达,促进ERK1/2磷酸化,而白藜芦醇可以抑制AGEs的作用;
     6.加入RAGE中和抗体和ERK1/2抑制剂后,同样可以抑制AGEs诱导的cbfa1表达上调和sm22a表达下降,提示RAGE和ERK1/2介导了白藜芦醇的生物学效应;
     7.白藜芦醇可以降低糖尿病小鼠血浆中总胆固醇、甘油三酯及LDL-C含量,升高HDL-C水平,从而部分恢复糖尿病引起的脂质代谢紊乱;
     8.白藜芦醇可以抑制糖尿病小鼠主动脉中RAGE、cbfa1的表达,上调PPARγ和sm22a的表达;同时白藜芦醇可以抑制糖尿病小鼠主动脉中粥样硬化斑块和动脉钙化斑块形成。
     结论:
     1.白藜芦醇通过激活PPARγ抑制RAGE表达,调控SR-A、ABCA1和ABCG1等脂质转运基因,减轻AGEs诱导的巨噬细胞内脂质蓄积,抑制泡沫细胞形成,从而抑制糖尿病apoE敲除小鼠动脉粥样硬化斑块形成。
     2.白藜芦醇通过抑制RAGE-ERK1/2通路,抑制AGEs诱导的血管平滑肌细胞钙化,从而减轻糖尿病apoE敲除小鼠的主动脉钙化。
Diabetes is associated with high frequency and high severity of atherosclerosis and vascular calcification which causes most morbidity and mortality in diabetic patients. This has highlighted the importance and urgency of studying the mechanism of diabetic atherosclerosis and vascular calcification for developing therapeutic options.
     Diabetic patients have increased production and reduced clearance of advanced glycation end products (AGEs). It has been well documented that AGEs and their receptor (RAGE) axis is involved in the pathogenesis of cardiovascular disease due to oxidative stress and inflammatory responses. Furthermore, impaired macrophage lipid metabolism directly participates in the foam cell formation in diabetes. In another hand, previous studies found that AGEs increased the osteoblastic trans-differentiation of vascular smooth muscle cell (VSMC). However, these studies were inconsistent and whether the macrophage lipid accumulation and VSMC calcification was actually affected by RAGE activation was still unclear.
     Resveratrol (trans-3,5,4’-trihydroxystilbene, RESV), a natural polyphenol phytoalexin, possesses various bioactivities. A recent study indicated that resveratrol inhibits foam cell formation via suppression of reactive oxygen species (ROS) generation and macrophage activation. However, it’s still unknown whether resveratrol could prevent the impairment of AGE on the lipid homeostasis in macrophages, which might partially contribute to the prevention of diabetic atherosclerosis. Furthermore, resveratrol could regulate the differentiation of osteoblast in skeletal. Considering that osteoblast differentiation and VSMC calcification share a lot of similarites, it is possible that resveratol may regulate the VSMC calcification in diabetic patients.
     To test the above hypothesis, we first find that resveratrol down-regulates RAGE expression and prevents the impairment of AGEs on macrophage lipid homeostasis through PPARγactivation. Then we document that resveratrol inhibits the AGEs-induced calcification of VSMC by suppression of AGEs-RAGE-ERK1/2 pathway. Finally, the cardiovascular protective effects of resveratol were validated in diabetic apoE knockout (apoE-/-) mice in vivo.
     Materials and Methods:
     The present study includes in vivo and in vitro experiments. In vivo models include apoE-/- mouse and STZ-induced-diabetic apoE-/- mouse fed with or without resveratrol. In vitro experiments were carried out in THP-1 derived macrophages and in VSMC primarily cultured from the aortas of C57BL/6J mice.
     1. The effects of different concentrations of AGEs on RAGE expression and cholesterol accumulation in macrophages were detected by western blot and fluorometric assay respectively.
     2. The effect of resveratrol on AGEs-induced protein expression of RAGE, SR-A, ABCA1 and ABCG1 was detected by immunoblotting.
     3. The effect of resveratrol on AGEs-induced acceleration of cholesterol accumulation and foam cell formation were detected by fluorometric assay and Oil-Red O staining.
     4. The effects of different concentrations of resveratrol on cbfa1 and sm22a expression in VSMC were detected by Real-time PCR.
     5. The ALP expression and calcium accumulation in VSMC were detected with specific assay kits.
     6. The effect of resveratrol on AGEs-induced RAGE expression and ERK1/2 phosphorylation in VSMC were detected by immunoblotting.
     7. The effects of resveratrol, anti-RAGE antibody and ERK1/2 inhibitor on the mRNA expression of cbfa1 and sm22a were detected by real-time PCR.
     8. Diabetic atherosclerotic mice models were established by treating apoE-/- mice with STZ and high-fat diet.
     9. Blood levels of glucose and lipids were detected by specific assay kits.
     10. The calcificaton of VSMC and aortas were shown by alizarin red staining.
     Results:
     1. AGE promotes cholesterol accumulation through induction of RAGE in macrophages.
     2. Resveratrol reduces AGEs-induced RAGE expression via activation of PPARγbut not PPARαnor AMPK.
     3. Resveratrol reverses the effect of AGEs on the expression of proteins involved in lipid homeostasis via PPARγactivation.
     4. Resveratrol prevents the AGEs-induced acceleration of cholesterol accumulation and inhibits foam cell formation via PPARγ.
     5. Resveratrol inhibits AGEs-induced expression of cbfa1 and ALP, upregulates sm22a expression, and attenuates calcium accumulation in VSMC.
     5. Resveratrol reduces AGEs-induced RAGE expression and ERK1/2 phosphorylation in VSMC.
     6. Blocking RAGE and ERK1/2 pathway mimics the protective effect of resveratrol on AGEs-induced calcification in VSMC.
     7. Dietary resveratrol lowers the levels of plasma lipids in diabetic apoE-/- mice.
     8. Long-term intervention with resveratrol reduces atherosclerotic lesions and artery tunica media calcification in diabetic apoE-/- mice.
     Conclusions:
     1. Resveratrol inhibits AGEs-induced foam cell formation through regulating lipid transport in macrophages by suppressing RAGE expression and reduces atherosclerotic lesions in diabetic apoE-/- mice.
     2. Resveratrol suppresses AGEs-induced calcification of VSMC through the inhibition of RAGE-ERK1/2 pathway and ameliorates artery tunica media calcification in diabetic apoE-/- mice.
引文
1. Beckman, J.A., M.A. Creager, and P. Libby, Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA, 2002. 287(19): p. 2570-81.
    2. Wallin, R., et al., Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev, 2001. 21(4): p. 274-301.
    3. Obayashi, H., et al., Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochem Biophys Res Commun, 1996. 226(1): p. 37-41.
    4. Csiszar, A. and Z. Ungvari, Endothelial dysfunction and vascular inflammation in type 2 diabetes: interaction of AGE/RAGE and TNF-alpha signaling. Am J Physiol Heart Circ Physiol, 2008. 295(2): p. H475-6.
    5. Shashkin, P., B. Dragulev, and K. Ley, Macrophage differentiation to foam cells. Curr Pharm Des, 2005. 11(23): p. 3061-72.
    6. Isoda, K., et al., vip AGE-BSA decreases ABCG1 expression and reduces macrophage cholesterol efflux to HDL. Atherosclerosis, 2007. 192(2): p. 298-304.
    7. Iwashima, Y., et al., vip Advanced glycation end products-induced gene expression of scavenger receptors in cultured human monocyte-derived macrophages. Biochem Biophys Res Commun, 2000. 277(2): p. 368-80.
    8. You, H., et al., Advanced oxidation protein products induce vascular calcification by promoting osteoblastic trans-differentiation of smooth muscle cells via oxidative stress and ERK pathway. Ren Fail, 2009. 31(4): p. 313-9.
    9. Sutra, T., et al., Superoxide production: a procalcifying cell signalling event in osteoblastic differentiation of vascular smooth muscle cells exposed to calcificationmedia. Free Radic Res, 2008. 42(9): p. 789-97.
    10. Wang, F.S., et al., Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem, 2002. 277(13): p. 10931-7.
    11. Tanikawa, T., et al., Advanced Glycation End Products Induce Calcification of Vascular Smooth Muscle Cells through RAGE/p38 MAPK. J Vasc Res, 2009. 46(6): p. 572-580.
    12. Pervaiz, S., Resveratrol: from grapevines to mammalian biology. Faseb J, 2003. 17(14): p. 1975-85.
    13. Sadruddin, S. and R. Arora, Resveratrol: biologic and therapeutic implications. J Cardiometab Syndr, 2009. 4(2): p. 102-6.
    14. Bishayee, A., Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila Pa), 2009. 2(5): p. 409-18.
    15. Hale, S.L. and R.A. Kloner, Effects of resveratrol, a flavinoid found in red wine, on infarct size in an experimental model of ischemia/reperfusion. J Stud Alcohol, 2001. 62(6): p. 730-5.
    16. Fukao, H., et al., Effect of trans-resveratrol on the thrombogenicity and atherogenicity in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Blood Coagul Fibrinolysis, 2004. 15(6): p. 441-6.
    17. King, H., R.E. Aubert, and W.H. Herman. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998 Sep 04:[1414-31].
    18. Wu, J.T., Advanced glycosylation end products: a new disease marker for diabetes and aging. J Clin Lab Anal, 1993. 7(5): p. 252-5.
    19. Cuchel, M. and D.J. Rader, Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation, 2006. 113(21): p. 2548-55.
    20. Passarelli, M., et al., vip Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes, 2005. 54(7): p. 2198-205.
    21. Zang, M., et al., Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes, 2006. 55(8): p. 2180-91.
    22. Park, D.W., et al., Resveratrol inhibits foam cell formation via NADPH oxidase 1-mediated reactive oxygen species and monocyte chemotactic protein-1. Exp Mol Med, 2009. 41(3): p. 171-9.
    23. Ulrich, S., et al., Peroxisome proliferator-activated receptor gamma as a molecular target of resveratrol-induced modulation of polyamine metabolism. Cancer Res, 2006. 66(14): p. 7348-54.
    24. Cheng, G., et al., Resveratrol inhibits MMP-9 expression by up-regulating PPAR alpha expression in an oxygen glucose deprivation-exposed neuron model. Neurosci Lett, 2009. 451(2): p. 105-8.
    25. Yoshida, T., et al., Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia, 2006. 49(12): p. 3094-9.
    26. Wang, K., et al., vip Peroxisome proliferator-activated receptor gamma down-regulates receptor for advanced glycation end products and inhibits smooth muscle cell proliferation in a diabetic and nondiabetic rat carotid artery injury model. J Pharmacol Exp Ther, 2006. 317(1): p. 37-43.
    27. Matsui, T., et al., Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation. Biochem Biophys Res Commun, 2009. 385(2): p. 269-72.
    28. Yamagishi, S., et al., Receptor for advanced glycation end products (RAGE): a novel therapeutic target for diabetic vascular complication. Curr Pharm Des, 2008. 14(5): p. 487-95.
    29. Bro, S., et al., vip A neutralizing antibody against receptor for advanced glycation end products (RAGE) reduces atherosclerosis in uremic mice. Atherosclerosis, 2008. 201(2): p. 274-80.
    30. Xanthis, A., et al., vip Receptor of Advanced Glycation End Products (RAGE) Positively Regulates CD36 Expression and Reactive Oxygen Species Production in Human Monocytes in Diabetes. Angiology, 2009.
    31. Mizutani, K., et al., Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. J Hypertens, 2000. 18(12): p. 1833-40.
    32. Mizutani, K., K. Ikeda, and Y. Yamori, Resveratrol inhibits AGEs-induced proliferation and collagen synthesis activity in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun, 2000. 274(1): p. 61-7.
    33. Ma, L., et al., vip Grape seed proanthocyanidin extracts inhibit vascular cell adhesion molecule expression induced by advanced glycation end products through activation of peroxisome proliferators-activated receptor gamma. J Cardiovasc Pharmacol, 2007. 49(5): p. 293-8.
    34. Li, A.C., et al., Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest, 2004. 114(11): p. 1564-76.
    35. Moore, K.J., et al., The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med, 2001. 7(1): p. 41-7.
    36. Tontonoz, P., et al., PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 1998. 93(2): p. 241-52.
    1. Vattikuti, R. and D.A. Towler, Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab, 2004. 286(5): p. E686-96.
    2. Speer, M.Y., et al., Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res, 2009. 104(6): p. 733-41.
    3. Delmas, D., B. Jannin, and N. Latruffe, Resveratrol: preventing properties againstvascular alterations and ageing. Mol Nutr Food Res, 2005. 49(5): p. 377-95.
    4. Dai, Z., et al., Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine, 2007. 14(12): p. 806-14.
    5. Lei, M., S.Q. Liu, and Y.L. Liu, Resveratrol protects bone marrow mesenchymal stem cell derived chondrocytes cultured on chitosan-gelatin scaffolds from the inhibitory effect of interleukin-1beta. Acta Pharmacol Sin, 2008. 29(11): p. 1350-6.
    6. Zhou, H., et al., Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Exp Cell Res, 2009.
    7. Boissy, P., et al., Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res, 2005. 65(21): p. 9943-52.
    8. Ekshyyan, V.P., et al., Resveratrol inhibits rat aortic vascular smooth muscle cell proliferation via estrogen receptor dependent nitric oxide production. J Cardiovasc Pharmacol, 2007. 50(1): p. 83-93.
    9. Alikhani, M., et al., Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone, 2007. 40(2): p. 345-53.
    10. Tanikawa, T., et al., Advanced Glycation End Products Induce Calcification of Vascular Smooth Muscle Cells through RAGE/p38 MAPK. J Vasc Res, 2009. 46(6): p. 572-580.
    11. Steitz, S.A., et al., Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res, 2001. 89(12): p. 1147-54.
    12. Stary, H.C., Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol, 2000. 89 Suppl 2: p. 28-35.
    13. Karsenty, G., Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet, 2008. 9: p. 183-96.
    14. Ge, C., et al., Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem, 2009. 284(47): p. 32533-43.
    15. Yoon, Y.W., et al., Pathobiological role of advanced glycation endproducts via mitogen-activated protein kinase dependent pathway in the diabetic vasculopathy. Exp Mol Med, 2008. 40(4): p. 398-406.
    16. Sanguineti, R., et al., Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci, 2008. 1126: p. 166-72.
    17. Mizutani, K., et al., Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun, 1998. 253(3): p. 859-63.
    18. Ding, H.T., et al., Fibronectin enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells via ERK pathway. J Cell Biochem, 2006. 99(5): p. 1343-52.
    19. Sun, C., et al., Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol, 2009. 104(1): p. 42-9.
    1. Rabbani, N., et al., Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin. Diabetes,2010. 59(4): p. 1038-45.
    2. Pearson, K.J., et al., Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span. Cell Metab, 2008.
    3. Hao, H.D. and L.R. He, Mechanisms of cardiovascular protection by resveratrol. J Med Food, 2004. 7(3): p. 290-8.
    4. Vlassara, H., et al., Advanced glycation end product homeostasis - Exogenous oxidants and innate defenses, in Maillard Reaction: Recent Advances in Food and Biomedical Sciences. 2008. p. 46-52.
    5. Singh, R., et al., Advanced glycation end-products: a review. Diabetologia, 2001. 44(2): p. 129-46.
    6. Paigen, B., A.S. Plump, and E.M. Rubin, The mouse as a model for human cardiovascular disease and hyperlipidemia. Curr Opin Lipidol, 1994. 5(4): p. 258-64.
    7. Do, G.M., et al., Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem Biophys Res Commun, 2008. 374(1): p. 55-9.
    8. Yu, C., et al., Human, rat, and mouse metabolism of resveratrol. Pharm Res, 2002. 19(12): p. 1907-14.
    9. Baur, J.A., et al., Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006. 444(7117): p. 337-42
    10. Zhang, Y., et al., Insulin secretion and cyclooxygenase enzyme inhibition by cabernet sauvignon grape skin compounds. J Agric Food Chem, 2004. 52(2): p. 228-33.
    11. Su, H.C., L.M. Hung, and J.K. Chen, Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab, 2006. 290(6): p. E1339-46.
    12. Palsamy, P. and S. Subramanian, Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem Biol Interact, 2009. 179(2-3): p. 356-62
    13. Ding, D.F., et al., Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am J Nephrol, 2010. 31(4): p. 363-74.
    14. Liu, Z.P., et al., Effects of trans-resveratrol from Polygonum cuspidatum on bone loss using the ovariectomized rat model. J Med Food, 2005. 8(1): p. 14-9.
    1. Kopp, P., Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the 'French paradox'? Eur J Endocrinol, 1998. 138(6): p. 619-20.
    2. Bertelli, A.A. and D.K. Das, Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol, 2009. 54(6): p. 468-76.
    3. Pervaiz, S., Resveratrol: from grapevines to mammalian biology. Faseb J, 2003. 17(14): p. 1975-85.
    4. Sadruddin, S. and R. Arora, Resveratrol: biologic and therapeutic implications. J Cardiometab Syndr, 2009. 4(2): p. 102-6.
    5. Bishayee, A., Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila Pa), 2009. 2(5): p. 409-18.
    6. Su, H.C., L.M. Hung, and J.K. Chen, Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab, 2006. 290(6): p. E1339-46.
    7. Chi, T.C., et al., Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats. Life Sci, 2007. 80(18): p. 1713-20.
    8. Palsamy, P. and S. Subramanian, Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomed Pharmacother, 2008. 62(9): p. 598-605.
    9. Palsamy, P. and S. Subramanian, Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide -induced diabetic rats. Chem Biol Interact, 2009. 179(2-3): p. 356-62.
    10. Chaudhary, N. and P.T. Pfluger, Metabolic benefits from Sirt1 and Sirt1 activators. Curr Opin Clin Nutr Metab Care, 2009. 12(4): p. 431-7.
    11. Csiszar, A., et al., Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev, 2009. 130(8): p. 518-27.
    12. Sun, C., et al., SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab, 2007. 6(4): p. 307-19.
    13. Ramadori, G., et al., Central administration of resveratrol improves diet-induced diabetes. Endocrinology, 2009. 150(12): p. 5326-33.
    14. Park, C.E., et al., Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med, 2007. 39(2): p. 222-9.
    15. Baur, J.A., et al., Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006. 444(7117): p. 337-42.
    16. Lagouge, M., et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006. 127(6): p.1109-22.
    17. Szkudelski, T., The insulin-suppressive effect of resveratrol - an in vitro and in vivo phenomenon. Life Sci, 2008. 82(7-8): p. 430-5.
    18. Szkudelski, T., Resveratrol inhibits insulin secretion from rat pancreatic islets. Eur J Pharmacol, 2006. 552(1-3): p. 176-81.
    19. Hambrock, A., et al., Resveratrol binds to the sulfonylurea receptor (SUR) and induces apoptosis in a SUR subtype-specific manner. J Biol Chem, 2007. 282(5): p. 3347-56.
    20. Moynihan, K.A., et al., Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab, 2005. 2(2): p. 105-17.
    21. Bordone, L., et al., Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol, 2006. 4(2): p. e31.
    22. Zou, J., et al., Effects of resveratrol on oxidative modification of human low density lipoprotein. Chin Med J (Engl), 2000. 113(2): p. 99-102.
    23. Fremont, L., L. Belguendouz, and S. Delpal, Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci, 1999. 64(26): p. 2511-21.
    24. Park, C.S., et al., Inhibitory effects of Polygonum cuspidatum water extract (PCWE) and its component resveratrol [correction of rasveratrol] on acyl-coenzyme A-cholesterol acyltransferase activity for cholesteryl ester synthesis in HepG2 cells. Vascul Pharmacol, 2004. 40(6): p. 279-84.
    25. Frankel, E.N., A.L. Waterhouse, and J.E. Kinsella, Inhibition of human LDL oxidation by resveratrol. Lancet, 1993. 341(8852): p. 1103-4.
    26. Wang, Z., et al., Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int J Mol Med, 2002. 9(1): p. 77-9.
    27. About, I., et al., Pulpal inflammatory responses following non-carious class V restorations. Oper Dent, 2001. 26(4): p. 336-42.
    28. Oh, Y.C., et al., Anti-inflammatory effect of resveratrol by inhibition of IL-8 production in LPS-induced THP-1 cells. Am J Chin Med, 2009. 37(6): p. 1203-14.
    29. Kang, O.H., et al., Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: pivotal roles of NF-kappaB and MAPK. Pharmacol Res, 2009. 59(5): p. 330-7.
    30. Das, S. and D.K. Das, Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets, 2007. 6(3): p. 168-73.
    31. Ferrero, M.E., et al., Activity in vitro of resveratrol on granulocyte and monocyte adhesion to endothelium. Am J Clin Nutr, 1998. 68(6): p. 1208-14.
    32. Nagaoka, T., et al., Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels. Invest Ophthalmol Vis Sci, 2007. 48(9): p. 4232-9.
    33. Hsieh, T.C., et al., Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21(WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res, 1999. 59(11): p. 2596-601.
    34. Mizutani, K., K. Ikeda, and Y. Yamori, Resveratrol inhibits AGEs-induced proliferation and collagen synthesis activity in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun, 2000. 274(1): p. 61-7.
    35. Araim, O., et al., Inhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols. J Vasc Surg, 2002. 35(6): p. 1226-32.
    36. El-Mowafy, A.M. and R.E. White, Resveratrol inhibits MAPK activity and nuclear translocation in coronary artery smooth muscle: reversal of endothelin-1 stimulatory effects. FEBS Lett, 1999. 451(1): p. 63-7.
    37. Iwakura, K., et al., Association between hyperglycemia and the no-reflow phenomenon in patients with acute myocardial infarction. J Am Coll Cardiol, 2003. 41(1): p. 1-7.
    38. Hale, S.L. and R.A. Kloner, Effects of resveratrol, a flavinoid found in red wine, on infarct size in an experimental model of ischemia/reperfusion. J Stud Alcohol, 2001. 62(6): p. 730-5.
    39. Kaga, S., et al., Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascularendothelial growth factor. J Mol Cell Cardiol, 2005. 39(5): p. 813-22.
    40. Lekli, I., et al., Protective mechanisms of resveratrol against ischemia-reperfusion -induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. Am J Physiol Heart Circ Physiol, 2008. 294(2): p. H859-66.
    41. Dekkers, D.H., et al., Identification by a differential proteomic approach of the induced stress and redox proteins by resveratrol in the normal and diabetic rat heart. J Cell Mol Med, 2008. 12(5A): p. 1677-89.
    42. Hattori, R., et al., Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol Heart Circ Physiol, 2002. 282(6): p. H1988-95.
    43. Xu, Q., et al., Resveratrol prevents hyperglycemia-induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase. Biochem Biophys Res Commun, 2009. 388(2): p. 389-94.
    44. Mayers, J.R., B.W. Iliff, and S.J. Swoap, Resveratrol treatment in mice does not elicit the bradycardia and hypothermia associated with calorie restriction. Faseb J, 2009. 23(4): p. 1032-40.
    45. Fukao, H., et al., Effect of trans-resveratrol on the thrombogenicity and atherogenicity in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Blood Coagul Fibrinolysis, 2004. 15(6): p. 441-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700